metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[μ3-4-nitro-N-(5-phenyl-1,3,4-oxa­diazol-2-yl)benzamidato]tetra­kis­[methano­lsodium(I)]

aDepartment of Environment Engineering and Chemistry, Luoyang Institute of Science and Technology, 471023 Luoyang, People's Republic of China
*Correspondence e-mail: yinguojie000000@yahoo.com.cn

(Received 19 March 2012; accepted 4 April 2012; online 13 April 2012)

In the title compound, [Na4(C15H9N4O4)4(CH3OH)4], the N3O3 environment around the Na+ ion is distorted octa­hedral. In the unit cell, four Na+ ions are bridged by four Schiff base anions, leading to a tetra­nuclear complex with -4 symmetry. O—H⋯N hydrogen bonds between the methanol mol­ecule and the Schiff base anion stabilize the structural set-up.

Related literature

For the preparation of 2-amino-5-phenyl-1,3,4-oxadiazole, see: Gibson (1962[Gibson, M. S. (1962). Tetrahedron, 18, 1377-1380.]) and of N-(5-phenyl-1,3,4-oxadiazol-2-yl)-p-nitro­benzamide, see: Zhang et al. (2009[Zhang, F. L., Hou, Y. H., Du, C. X. & Wu, Y. J. (2009). Dalton Trans. pp. 7359-7367.]). Organic ligands based on oxadiazole or carboxyl­ate groups have both good coordination ability and diverse coordination modes, see: Hu et al. (2008[Hu, T. L., Du, W. P., Hu, B. W., Li, J. R., Bu, X. H. & Cao, R. (2008). CrystEngComm, 10, 1037-1043.]).

[Scheme 1]

Experimental

Crystal data
  • [Na4(C15H9N4O4)4(CH4O)4]

  • Mr = 1457.18

  • Tetragonal, I 41 /a

  • a = 15.6635 (2) Å

  • c = 27.1833 (6) Å

  • V = 6669.29 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 1.000

  • 15582 measured reflections

  • 3413 independent reflections

  • 2653 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.02

  • 3413 reflections

  • 239 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Na1—O5 2.3413 (14)
Na1—N1 2.3828 (15)
Na1—O1 2.3848 (13)
Na1—O1i 2.3972 (13)
Na1—N2ii 2.4127 (15)
Na1—N1ii 2.9859 (15)
Symmetry codes: (i) [y+{\script{3\over 4}}, -x+{\script{5\over 4}}, -z+{\script{1\over 4}}]; (ii) [-y+{\script{5\over 4}}, x-{\script{3\over 4}}, -z+{\script{1\over 4}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As we all know, the organic ligands based on oxadiazole or carboxylate groups which containing N and O donors have both good coordination ability and diverse coordination modes (Hu et al., 2008). Therefore, the ligand N-(5-phenyl-1,3,4-oxadiazol-2-yl)- p-nitrobenzamide was chosen to create coordination architectures.

In the title compound, each NaI atom is six-coordinated by one O atom from a methyl alcohol, two O atoms and three N atoms from the ligands, forming a distorted octahedral geometry. In the asymmetric unit, the four NaI ions are bridged by four Schiff base anions, leading to a tetranuclear complex (Fig. 1 and Fig. 2), the coordination geometry of sodium ions can be described as distorted quadrilateral.

Related literature top

For the preparation of 2-amino-5-phenyl-1,3,4-oxadiazole, see: Gibson (1962) and of N-(5-phenyl-1,3,4-oxadiazol-2-yl)-p-nitrobenzamide, see: Zhang et al. (2009). Organic ligands based on oxadiazole or carboxylate groups have both good coordination ability and diverse coordination modes, see: Hu et al. (2008).

Experimental top

Reagents and solvents were of commercially available quality. The preparation of 2-Amino-5-phenyl-1,3,4-oxadiazole is based on a published method (Gibson, 1962). Bromine (0.66 ml) in glacial acetic acid (1.34 ml) was added to a stirred slurry of benzaldehyde semicarbazone (2.0 g) and powdered, anhydrous sodium acetate (4.0 g) in acetic acid (12 ml). The solids were dissolved giving a red solution, which suddenly grew warm and rapidly faded with white precipitate formed (sodium bromide). After 15 minutes, the mixture was poured into water (100 ml), and the precipitated solid (1.8 g) collected, washed and dried. Crystallization from ethanol gave stout needles.

The ligand of N-(5-phenyl-1,3,4-oxadiazol-2-yl)-p-nitrobenzamide was synthesized according to the method of literature (Zhang et al., 2009). 4-Nitrobenzoyl chloride (5.94 g, 0.032 mol) was dropped slowly into the stirred slurry of 2-Amino-5-phenyl-1,3,4-oxadiazole (5.64 g, 0.035 mol) in 50 ml pyridine. 2-Amino-5-phenyl-1,3,4-oxadiazole dissolved gradually and gave a buff solution. After 2 h, the solution was poured into water. Then the sodium hydroxide (2.80 g, 0.07 mol) was added to give a alkaline solution, the precipitate was collected and dried under vacuum. The title compound was obtained by re-crystallization from ethanol. Yield: 5.7 g, 60%.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H =0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of the title complex with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
Tetrakis[µ3-4-nitro-N-(5-phenyl-1,3,4-oxadiazol-2- yl)benzamidato]tetrakis[methanolsodium(I)] top
Crystal data top
[Na4(C15H9N4O4)4(CH4O)4]Dx = 1.451 Mg m3
Mr = 1457.18Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 5181 reflections
a = 15.6635 (2) Åθ = 3.0–29.0°
c = 27.1833 (6) ŵ = 0.13 mm1
V = 6669.29 (18) Å3T = 293 K
Z = 4Prismatic, yellow
F(000) = 30080.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3413 independent reflections
Radiation source: fine-focus sealed tube2653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1719
Tmin = 0.934, Tmax = 1.000k = 1919
15582 measured reflectionsl = 3330
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0488P)2 + 3.8193P]
where P = (Fo2 + 2Fc2)/3
3413 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Na4(C15H9N4O4)4(CH4O)4]Z = 4
Mr = 1457.18Mo Kα radiation
Tetragonal, I41/aµ = 0.13 mm1
a = 15.6635 (2) ÅT = 293 K
c = 27.1833 (6) Å0.30 × 0.20 × 0.20 mm
V = 6669.29 (18) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3413 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2653 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 1.000Rint = 0.027
15582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
3413 reflectionsΔρmin = 0.22 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.83748 (4)0.26324 (4)0.11911 (2)0.03798 (19)
O10.85910 (8)0.13991 (7)0.16902 (4)0.0404 (3)
O20.90153 (7)0.31903 (7)0.27519 (4)0.0363 (3)
O30.65522 (12)0.23034 (10)0.22897 (7)0.0783 (5)
O40.63373 (12)0.18639 (10)0.30241 (6)0.0805 (5)
O50.69874 (9)0.29271 (10)0.14628 (5)0.0532 (4)
H50.6938 (13)0.2932 (16)0.1773 (3)0.080*
N10.90347 (9)0.30288 (9)0.19472 (5)0.0386 (3)
N20.93939 (9)0.38225 (9)0.20680 (5)0.0388 (3)
N30.84467 (9)0.19219 (8)0.24835 (5)0.0352 (3)
C11.00589 (13)0.52826 (12)0.26187 (9)0.0571 (5)
H11.01610.52740.22820.069*
C21.03166 (15)0.59702 (14)0.28927 (12)0.0733 (7)
H21.05930.64260.27420.088*
C31.01644 (15)0.59842 (15)0.33943 (12)0.0743 (8)
H31.03410.64480.35820.089*
C40.97544 (15)0.53153 (15)0.36130 (9)0.0660 (6)
H40.96490.53290.39500.079*
C50.94954 (13)0.46210 (12)0.33403 (7)0.0488 (5)
H5A0.92190.41670.34920.059*
C60.96483 (10)0.46020 (10)0.28401 (7)0.0373 (4)
C70.93688 (10)0.38873 (10)0.25373 (6)0.0330 (4)
C80.88199 (10)0.26667 (10)0.23605 (6)0.0324 (4)
C90.83531 (10)0.13374 (10)0.21273 (6)0.0322 (4)
C100.79134 (10)0.05235 (10)0.22781 (6)0.0332 (4)
C110.76375 (13)0.03611 (11)0.27529 (7)0.0468 (5)
H110.77340.07630.29980.056*
C120.72214 (13)0.03911 (12)0.28662 (7)0.0504 (5)
H120.70330.04960.31850.060*
C130.70909 (11)0.09794 (10)0.25015 (7)0.0409 (4)
C140.73597 (13)0.08450 (12)0.20282 (7)0.0503 (5)
H140.72680.12540.17860.060*
C150.77700 (12)0.00895 (12)0.19195 (7)0.0460 (4)
H150.79540.00110.15990.055*
N40.66286 (11)0.17717 (10)0.26138 (7)0.0527 (4)
C160.61860 (15)0.30244 (17)0.12369 (9)0.0732 (7)
H16A0.62600.32570.09130.110*
H16B0.58400.34040.14290.110*
H16C0.59110.24780.12140.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0474 (4)0.0400 (4)0.0266 (3)0.0005 (3)0.0019 (3)0.0022 (3)
O10.0541 (8)0.0366 (6)0.0305 (6)0.0014 (5)0.0096 (5)0.0032 (5)
O20.0489 (7)0.0342 (6)0.0257 (6)0.0075 (5)0.0036 (5)0.0010 (5)
O30.0961 (13)0.0499 (9)0.0890 (12)0.0320 (8)0.0193 (10)0.0198 (9)
O40.1073 (14)0.0652 (10)0.0691 (11)0.0349 (9)0.0210 (10)0.0069 (8)
O50.0461 (8)0.0717 (9)0.0420 (7)0.0027 (7)0.0096 (6)0.0025 (7)
N10.0496 (9)0.0373 (8)0.0289 (7)0.0089 (7)0.0050 (6)0.0008 (6)
N20.0448 (8)0.0390 (8)0.0327 (8)0.0083 (6)0.0054 (6)0.0014 (6)
N30.0436 (8)0.0327 (7)0.0293 (7)0.0048 (6)0.0049 (6)0.0016 (6)
C10.0543 (12)0.0471 (11)0.0699 (14)0.0149 (9)0.0119 (10)0.0055 (10)
C20.0597 (14)0.0465 (13)0.114 (2)0.0196 (10)0.0090 (14)0.0121 (13)
C30.0555 (13)0.0551 (14)0.112 (2)0.0034 (11)0.0177 (14)0.0392 (14)
C40.0749 (16)0.0620 (14)0.0611 (14)0.0022 (12)0.0168 (12)0.0249 (12)
C50.0574 (12)0.0459 (11)0.0431 (10)0.0000 (9)0.0065 (9)0.0064 (9)
C60.0322 (9)0.0350 (9)0.0445 (10)0.0005 (7)0.0022 (7)0.0039 (8)
C70.0323 (8)0.0330 (8)0.0337 (9)0.0034 (7)0.0030 (7)0.0021 (7)
C80.0357 (8)0.0348 (8)0.0267 (8)0.0022 (7)0.0034 (7)0.0036 (7)
C90.0332 (8)0.0324 (8)0.0310 (8)0.0029 (7)0.0020 (7)0.0014 (7)
C100.0333 (8)0.0315 (8)0.0347 (8)0.0013 (7)0.0013 (7)0.0026 (7)
C110.0656 (12)0.0363 (9)0.0384 (10)0.0087 (8)0.0096 (9)0.0070 (8)
C120.0681 (13)0.0432 (10)0.0399 (10)0.0099 (9)0.0136 (9)0.0003 (8)
C130.0398 (9)0.0330 (9)0.0498 (10)0.0038 (7)0.0046 (8)0.0003 (8)
C140.0611 (12)0.0421 (10)0.0476 (11)0.0128 (9)0.0047 (9)0.0114 (9)
C150.0571 (12)0.0445 (10)0.0365 (9)0.0103 (9)0.0068 (8)0.0058 (8)
N40.0525 (10)0.0408 (9)0.0649 (12)0.0084 (7)0.0070 (9)0.0005 (9)
C160.0564 (14)0.0979 (19)0.0654 (15)0.0038 (12)0.0021 (12)0.0079 (14)
Geometric parameters (Å, º) top
Na1—O52.3413 (14)C1—H10.9300
Na1—N12.3828 (15)C2—C31.384 (4)
Na1—O12.3848 (13)C2—H20.9300
Na1—O1i2.3972 (13)C3—C41.365 (4)
Na1—N2ii2.4127 (15)C3—H30.9300
Na1—N1ii2.9859 (15)C4—C51.377 (3)
Na1—Na1i3.6261 (9)C4—H40.9300
Na1—Na1ii3.6261 (9)C5—C61.381 (3)
O1—C91.2491 (19)C5—H5A0.9300
O1—Na1ii2.3972 (13)C6—C71.457 (2)
O2—C71.3559 (19)C9—C101.506 (2)
O2—C81.3778 (18)C10—C111.385 (2)
O3—N41.218 (2)C10—C151.387 (2)
O4—N41.214 (2)C11—C121.381 (3)
O5—C161.406 (3)C11—H110.9300
O5—H50.847 (9)C12—C131.369 (3)
N1—C81.303 (2)C12—H120.9300
N1—N21.4036 (19)C13—C141.370 (3)
N1—Na1i2.9859 (15)C13—N41.469 (2)
N2—C71.280 (2)C14—C151.379 (3)
N2—Na1i2.4127 (15)C14—H140.9300
N3—C91.341 (2)C15—H150.9300
N3—C81.347 (2)C16—H16A0.9600
C1—C21.370 (3)C16—H16B0.9600
C1—C61.383 (3)C16—H16C0.9600
O5—Na1—N194.54 (5)C3—C2—H2120.1
O5—Na1—O196.43 (5)C4—C3—C2119.8 (2)
N1—Na1—O170.05 (5)C4—C3—H3120.1
O5—Na1—O1i106.86 (5)C2—C3—H3120.1
N1—Na1—O1i90.40 (5)C3—C4—C5120.7 (2)
O1—Na1—O1i150.81 (5)C3—C4—H4119.7
O5—Na1—N2ii123.14 (5)C5—C4—H4119.7
N1—Na1—N2ii141.02 (6)C4—C5—C6119.7 (2)
O1—Na1—N2ii94.03 (5)C4—C5—H5A120.1
O1i—Na1—N2ii87.87 (5)C6—C5—H5A120.1
O5—Na1—N1ii146.17 (5)C5—C6—C1119.51 (17)
N1—Na1—N1ii113.69 (6)C5—C6—C7121.38 (16)
O1—Na1—N1ii77.43 (4)C1—C6—C7119.10 (17)
O1i—Na1—N1ii91.84 (4)N2—C7—O2112.17 (14)
N2ii—Na1—N1ii27.62 (4)N2—C7—C6127.92 (15)
O5—Na1—Na1i123.35 (5)O2—C7—C6119.89 (14)
N1—Na1—Na1i55.00 (4)N1—C8—N3134.68 (15)
O1—Na1—Na1i111.36 (4)N1—C8—O2110.45 (13)
O1i—Na1—Na1i40.56 (3)N3—C8—O2114.86 (13)
N2ii—Na1—Na1i103.62 (4)O1—C9—N3126.97 (15)
N1ii—Na1—Na1i89.20 (3)O1—C9—C10117.45 (14)
O5—Na1—Na1ii136.08 (5)N3—C9—C10115.58 (14)
N1—Na1—Na1ii80.91 (4)C11—C10—C15118.53 (16)
O1—Na1—Na1ii40.82 (3)C11—C10—C9123.50 (15)
O1i—Na1—Na1ii116.78 (3)C15—C10—C9117.97 (15)
N2ii—Na1—Na1ii65.47 (4)C12—C11—C10120.78 (17)
N1ii—Na1—Na1ii40.82 (3)C12—C11—H11119.6
Na1i—Na1—Na1ii89.553 (3)C10—C11—H11119.6
C9—O1—Na1124.17 (10)C13—C12—C11118.90 (17)
C9—O1—Na1ii129.32 (11)C13—C12—H12120.5
Na1—O1—Na1ii98.63 (5)C11—C12—H12120.5
C7—O2—C8103.76 (12)C12—C13—C14122.05 (16)
C16—O5—Na1135.43 (13)C12—C13—N4119.46 (17)
C16—O5—H5110.6 (14)C14—C13—N4118.47 (16)
Na1—O5—H5113.6 (14)C13—C14—C15118.46 (17)
C8—N1—N2106.69 (13)C13—C14—H14120.8
C8—N1—Na1121.22 (11)C15—C14—H14120.8
N2—N1—Na1127.35 (10)C14—C15—C10121.27 (17)
C8—N1—Na1i154.19 (11)C14—C15—H15119.4
N2—N1—Na1i52.83 (7)C10—C15—H15119.4
Na1—N1—Na1i84.17 (4)O4—N4—O3123.11 (17)
C7—N2—N1106.93 (13)O4—N4—C13118.49 (17)
C7—N2—Na1i148.36 (12)O3—N4—C13118.39 (17)
N1—N2—Na1i99.56 (9)O5—C16—H16A109.5
C9—N3—C8117.38 (13)O5—C16—H16B109.5
C2—C1—C6120.4 (2)H16A—C16—H16B109.5
C2—C1—H1119.8O5—C16—H16C109.5
C6—C1—H1119.8H16A—C16—H16C109.5
C1—C2—C3119.8 (2)H16B—C16—H16C109.5
C1—C2—H2120.1
Symmetry codes: (i) y+3/4, x+5/4, z+1/4; (ii) y+5/4, x3/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N3iii0.85 (1)2.12 (1)2.9534 (19)167 (2)
Symmetry code: (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Na4(C15H9N4O4)4(CH4O)4]
Mr1457.18
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)15.6635 (2), 27.1833 (6)
V3)6669.29 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.934, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15582, 3413, 2653
Rint0.027
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.02
No. of reflections3413
No. of parameters239
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected bond lengths (Å) top
Na1—O52.3413 (14)Na1—N1ii2.9859 (15)
Na1—N12.3828 (15)O1—Na1ii2.3972 (13)
Na1—O12.3848 (13)N1—Na1i2.9859 (15)
Na1—O1i2.3972 (13)N2—Na1i2.4127 (15)
Na1—N2ii2.4127 (15)
Symmetry codes: (i) y+3/4, x+5/4, z+1/4; (ii) y+5/4, x3/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N3iii0.847 (8)2.121 (10)2.9534 (19)167.3 (19)
Symmetry code: (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Luoyang Institute of Science and Technology.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGibson, M. S. (1962). Tetrahedron, 18, 1377–1380.  CrossRef CAS Web of Science Google Scholar
First citationHu, T. L., Du, W. P., Hu, B. W., Li, J. R., Bu, X. H. & Cao, R. (2008). CrystEngComm, 10, 1037–1043.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, F. L., Hou, Y. H., Du, C. X. & Wu, Y. J. (2009). Dalton Trans. pp. 7359–7367.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds