metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(1-methyl-1H-imidazole-κN3)bis­­[2-(naphthalen-1-yl)acetato-κO]cobalt(II)

aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, bJiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, cHuaiyin Insititute of Technology, Huaiyin 223003, People's Republic of China, and dDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China
*Correspondence e-mail: yfj1999@126.com

(Received 3 March 2012; accepted 28 March 2012; online 4 April 2012)

In the title compound, [Co(C12H9O2)2(C4H6N2)2(H2O)2], the CoII ion is located on an inversion centre and displays a distorted octa­hedral coordination geometry. Two O atoms from two water mol­ecules and two carboxyl­ate O atoms from two 2-(naphthalen-1-yl)acetate ligands are in the equatorial plane and two N atoms from two 1-methyl-1H-imidazole ligands are in the axial positions. The structure is stabilized by intra­molecular O—H⋯O hydrogen bonds. Inter­molecular O—H⋯O hydrogen bonds link the complex mol­ecules into chains along [100].

Related literature

For the structures of related complexes with 2-(naphthalen-1-yl)acetate ligands, see: Duan et al. (2007[Duan, J.-G., Liu, J.-W. & Wu, S. (2007). Acta Cryst. E63, m692-m694.]); Ji et al. (2011[Ji, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606.]); Tang et al. (2006[Tang, D.-X., Feng, L.-X. & Zhang, X.-Q. (2006). Chin. J. Inorg. Chem. 22, 1891-1894.]); Yang et al. (2008[Yang, Y.-Q., Li, C.-H., Li, W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 30, 4524-4530.]); Yin et al. (2011[Yin, F.-J., Han, L.-J., Yang, S.-P. & Xu, X. Y. (2011). Acta Cryst. E67, m1772.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H9O2)2(C4H6N2)2(H2O)2]

  • Mr = 629.56

  • Monoclinic, P 21 /c

  • a = 7.3384 (7) Å

  • b = 24.582 (2) Å

  • c = 8.8559 (8) Å

  • β = 111.158 (1)°

  • V = 1489.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 298 K

  • 0.34 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.815, Tmax = 0.885

  • 13335 measured reflections

  • 3356 independent reflections

  • 2865 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.05

  • 3356 reflections

  • 203 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.84 (2) 2.13 (2) 2.8523 (18) 144 (2)
O3—H3B⋯O2 0.85 (2) 1.81 (2) 2.6463 (16) 168 (2)
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years 2-(naphthalen-1-yl)acetate ligand has attracted many interests in coordination chemistry due to its ability to form metal complexes (Duan et al., 2007; Ji et al., 2011; Tang et al., 2006; Yang et al., 2008; Yin et al., 2011). The crystal structure of the title compound was determined as part of an ongoing study of the properties of cobalt complexes containing imidazole ligands.

In the title compound (Fig. 1), the CoII ion is located on an inversion centre and displays a distorted octahedral coordination geometry. Two O atoms from two water molecules and two carboxylate O atoms from two 2-(naphthalen-1-yl)acetate ligands are in the equatorial plane and two N atoms from two N-methylimidazole ligands are in the axial positions. The structure is stabilized by intramolecular O—H···O hydrogen bonds (Table 1). In the crystal, intermolecular O—H···O hydrogen bonds link the complex molecules into chains along [100] (Fig. 2).

Related literature top

For the structures of related complexes with 2-(naphthalen-1-yl)acetate ligands, see: Duan et al. (2007); Ji et al. (2011); Tang et al. (2006); Yang et al. (2008); Yin et al. (2011).

Experimental top

The title compound was synthesized by the reaction of CoCl2.6H2O (71.3 mg, 0.3 mmol), 2-(naphthalen-1-yl)acetic acid (93 mg, 0.5 mmol), N-methylimidazole (32.8 mg, 0.4 mmol) and NaOH (20 mg, 0.5 mmol) in 15 ml of a water-ethanol mixture (v/v 1:1) under solvothermal conditions. The starting mixture was homogenized and transferred into a sealed Teflon-lined bomb (25 ml) and heated at 140° C for three days. After cooling, red crystals of the title compound were obtained, which were washed with distilled water and absolute ethyl alcohol (yield: 26.8% based on Co).

Refinement top

H atoms attached to C atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The water H atoms were located in a difference Fourier map and refined with a restraint of O—H = 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x+1, -y+1, -z.]
[Figure 2] Fig. 2. Part of the chain structure of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds are omitted for clarity.
Diaquabis(1-methyl-1H-imidazole-κN3)bis[2-(naphthalen- 1-yl)acetato-κO]cobalt(II) top
Crystal data top
[Co(C12H9O2)2(C4H6N2)2(H2O)2]F(000) = 658
Mr = 629.56Dx = 1.403 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3356 reflections
a = 7.3384 (7) Åθ = 2.6–27.3°
b = 24.582 (2) ŵ = 0.63 mm1
c = 8.8559 (8) ÅT = 298 K
β = 111.158 (1)°Block, red
V = 1489.8 (2) Å30.34 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3356 independent reflections
Radiation source: fine-focus sealed tube2865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.815, Tmax = 0.885k = 3130
13335 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.3567P]
where P = (Fo2 + 2Fc2)/3
3356 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Co(C12H9O2)2(C4H6N2)2(H2O)2]V = 1489.8 (2) Å3
Mr = 629.56Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3384 (7) ŵ = 0.63 mm1
b = 24.582 (2) ÅT = 298 K
c = 8.8559 (8) Å0.34 × 0.30 × 0.20 mm
β = 111.158 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3356 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2865 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.885Rint = 0.024
13335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0322 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.25 e Å3
3356 reflectionsΔρmin = 0.28 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.00000.03250 (10)
N10.3651 (2)0.49725 (5)0.25228 (16)0.0396 (3)
N20.2163 (2)0.46891 (6)0.50250 (16)0.0439 (3)
O10.37360 (16)0.57809 (4)0.00491 (14)0.0417 (3)
O20.14963 (16)0.55623 (4)0.11124 (14)0.0429 (3)
O30.26123 (16)0.46019 (5)0.04077 (14)0.0414 (3)
C10.2365 (2)0.58909 (6)0.05248 (17)0.0344 (3)
C20.1641 (3)0.64816 (7)0.0303 (2)0.0430 (4)
H2A0.27600.67200.05180.052*
H2B0.08030.65330.08190.052*
C30.0536 (2)0.66527 (6)0.1363 (2)0.0405 (4)
C40.1444 (3)0.67227 (7)0.0715 (2)0.0508 (4)
H40.21050.66490.03770.061*
C50.2506 (3)0.69042 (8)0.1662 (3)0.0631 (6)
H50.38510.69510.11860.076*
C60.1594 (3)0.70103 (8)0.3253 (3)0.0601 (5)
H60.23110.71360.38590.072*
C70.0448 (3)0.69323 (6)0.4006 (2)0.0471 (4)
C80.1530 (2)0.67521 (6)0.3049 (2)0.0393 (3)
C90.3577 (3)0.66855 (7)0.3824 (2)0.0494 (4)
H90.43140.65670.32270.059*
C100.4479 (3)0.67927 (9)0.5436 (3)0.0636 (5)
H100.58260.67510.59180.076*
C110.3404 (4)0.69649 (8)0.6373 (3)0.0686 (6)
H110.40380.70340.74710.082*
C120.1447 (4)0.70302 (7)0.5682 (3)0.0611 (5)
H120.07440.71410.63170.073*
C130.3534 (3)0.53921 (7)0.3573 (2)0.0473 (4)
H130.40100.57420.32700.057*
C140.2625 (3)0.52220 (8)0.5115 (2)0.0510 (4)
H140.23670.54280.60510.061*
C150.2803 (2)0.45573 (7)0.34511 (19)0.0428 (4)
H150.26660.42140.30620.051*
C160.1186 (3)0.43256 (10)0.6383 (2)0.0617 (5)
H16A0.20630.42390.69320.093*
H16B0.00450.45020.71220.093*
H16C0.08100.39970.59860.093*
H3A0.161 (3)0.4468 (11)0.029 (2)0.093*
H3B0.222 (4)0.4886 (7)0.074 (3)0.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03202 (16)0.03393 (16)0.03224 (16)0.00035 (11)0.01242 (11)0.00172 (11)
N10.0412 (7)0.0412 (7)0.0347 (7)0.0010 (6)0.0119 (6)0.0007 (6)
N20.0419 (7)0.0557 (9)0.0331 (7)0.0014 (6)0.0124 (6)0.0032 (6)
O10.0423 (6)0.0395 (6)0.0479 (6)0.0053 (5)0.0220 (5)0.0010 (5)
O20.0454 (6)0.0376 (6)0.0503 (7)0.0003 (5)0.0230 (5)0.0017 (5)
O30.0391 (6)0.0393 (6)0.0479 (7)0.0033 (5)0.0183 (5)0.0046 (5)
C10.0346 (7)0.0365 (8)0.0287 (7)0.0001 (6)0.0074 (6)0.0041 (6)
C20.0501 (9)0.0376 (8)0.0443 (9)0.0055 (7)0.0205 (7)0.0026 (7)
C30.0441 (9)0.0276 (7)0.0532 (10)0.0021 (6)0.0218 (8)0.0009 (6)
C40.0440 (9)0.0412 (9)0.0632 (12)0.0005 (7)0.0145 (8)0.0032 (8)
C50.0397 (10)0.0559 (12)0.0970 (17)0.0036 (8)0.0287 (11)0.0024 (11)
C60.0599 (12)0.0485 (11)0.0881 (16)0.0029 (9)0.0462 (12)0.0084 (10)
C70.0602 (11)0.0293 (8)0.0619 (11)0.0016 (7)0.0343 (9)0.0039 (7)
C80.0457 (9)0.0255 (7)0.0511 (9)0.0002 (6)0.0226 (7)0.0007 (6)
C90.0478 (10)0.0444 (9)0.0567 (11)0.0011 (7)0.0197 (8)0.0005 (8)
C100.0605 (12)0.0554 (12)0.0640 (13)0.0008 (9)0.0094 (10)0.0010 (10)
C110.0946 (17)0.0521 (12)0.0520 (12)0.0037 (11)0.0180 (11)0.0053 (9)
C120.0958 (17)0.0387 (10)0.0614 (13)0.0015 (10)0.0437 (12)0.0070 (9)
C130.0540 (10)0.0429 (9)0.0455 (10)0.0023 (8)0.0186 (8)0.0039 (7)
C140.0554 (11)0.0575 (11)0.0402 (9)0.0035 (9)0.0173 (8)0.0105 (8)
C150.0467 (9)0.0444 (9)0.0364 (8)0.0006 (7)0.0141 (7)0.0014 (7)
C160.0622 (12)0.0798 (14)0.0396 (10)0.0100 (10)0.0142 (9)0.0162 (9)
Geometric parameters (Å, º) top
Co1—N12.0928 (13)C5—H50.9300
Co1—O12.1392 (11)C6—C71.416 (3)
Co1—O32.1483 (11)C6—H60.9300
N1—C151.317 (2)C7—C121.419 (3)
N1—C131.371 (2)C7—C81.425 (2)
N2—C151.340 (2)C8—C91.418 (2)
N2—C141.363 (2)C9—C101.364 (3)
N2—C161.461 (2)C9—H90.9300
O1—C11.2528 (18)C10—C111.401 (3)
O2—C11.2525 (18)C10—H100.9300
O3—H3A0.84 (2)C11—C121.352 (3)
O3—H3B0.85 (2)C11—H110.9300
C1—C21.534 (2)C12—H120.9300
C2—C31.505 (2)C13—C141.352 (3)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—H140.9300
C3—C41.367 (2)C15—H150.9300
C3—C81.427 (2)C16—H16A0.9600
C4—C51.408 (3)C16—H16B0.9600
C4—H40.9300C16—H16C0.9600
C5—C61.349 (3)
N1—Co1—N1i180.000 (1)C6—C5—C4120.71 (18)
N1—Co1—O190.52 (5)C6—C5—H5119.6
N1i—Co1—O189.48 (5)C4—C5—H5119.6
N1—Co1—O1i89.48 (5)C5—C6—C7120.51 (18)
N1i—Co1—O1i90.52 (5)C5—C6—H6119.7
O1—Co1—O1i180.0C7—C6—H6119.7
N1—Co1—O3i86.31 (5)C6—C7—C12121.94 (18)
N1i—Co1—O3i93.69 (5)C6—C7—C8118.93 (17)
O1—Co1—O3i88.89 (4)C12—C7—C8119.13 (17)
O1i—Co1—O3i91.11 (4)C9—C8—C7117.92 (16)
N1—Co1—O393.69 (5)C9—C8—C3122.62 (15)
N1i—Co1—O386.31 (5)C7—C8—C3119.46 (15)
O1—Co1—O391.11 (4)C10—C9—C8120.91 (18)
O1i—Co1—O388.89 (4)C10—C9—H9119.5
O3i—Co1—O3180.00 (6)C8—C9—H9119.5
C15—N1—C13105.06 (14)C9—C10—C11120.9 (2)
C15—N1—Co1128.77 (11)C9—C10—H10119.6
C13—N1—Co1126.13 (11)C11—C10—H10119.6
C15—N2—C14106.99 (14)C12—C11—C10120.1 (2)
C15—N2—C16126.28 (16)C12—C11—H11119.9
C14—N2—C16126.72 (15)C10—C11—H11119.9
C1—O1—Co1127.40 (10)C11—C12—C7121.06 (19)
Co1—O3—H3A127.2 (18)C11—C12—H12119.5
Co1—O3—H3B94.9 (19)C7—C12—H12119.5
H3A—O3—H3B105 (3)C14—C13—N1109.88 (16)
O2—C1—O1126.26 (14)C14—C13—H13125.1
O2—C1—C2117.33 (13)N1—C13—H13125.1
O1—C1—C2116.37 (14)C13—C14—N2106.28 (15)
C3—C2—C1115.10 (13)C13—C14—H14126.9
C3—C2—H2A108.5N2—C14—H14126.9
C1—C2—H2A108.5N1—C15—N2111.79 (15)
C3—C2—H2B108.5N1—C15—H15124.1
C1—C2—H2B108.5N2—C15—H15124.1
H2A—C2—H2B107.5N2—C16—H16A109.5
C4—C3—C8118.82 (16)N2—C16—H16B109.5
C4—C3—C2120.25 (16)H16A—C16—H16B109.5
C8—C3—C2120.92 (14)N2—C16—H16C109.5
C3—C4—C5121.53 (19)H16A—C16—H16C109.5
C3—C4—H4119.2H16B—C16—H16C109.5
C5—C4—H4119.2
O1—Co1—N1—C15139.37 (14)C6—C7—C8—C9178.98 (16)
O1i—Co1—N1—C1540.63 (14)C12—C7—C8—C90.8 (2)
O3i—Co1—N1—C15131.77 (15)C6—C7—C8—C30.2 (2)
O3—Co1—N1—C1548.23 (15)C12—C7—C8—C3179.99 (15)
O1—Co1—N1—C1343.28 (14)C4—C3—C8—C9179.47 (16)
O1i—Co1—N1—C13136.72 (14)C2—C3—C8—C91.4 (2)
O3i—Co1—N1—C1345.58 (14)C4—C3—C8—C71.3 (2)
O3—Co1—N1—C13134.42 (14)C2—C3—C8—C7177.79 (14)
N1—Co1—O1—C1107.01 (13)C7—C8—C9—C100.2 (3)
N1i—Co1—O1—C172.99 (13)C3—C8—C9—C10178.98 (17)
O3i—Co1—O1—C1166.69 (12)C8—C9—C10—C110.8 (3)
O3—Co1—O1—C113.31 (12)C9—C10—C11—C120.4 (3)
Co1—O1—C1—O22.2 (2)C10—C11—C12—C70.7 (3)
Co1—O1—C1—C2175.43 (10)C6—C7—C12—C11178.52 (19)
O2—C1—C2—C322.5 (2)C8—C7—C12—C111.2 (3)
O1—C1—C2—C3159.65 (14)C15—N1—C13—C140.2 (2)
C1—C2—C3—C4106.75 (18)Co1—N1—C13—C14177.66 (12)
C1—C2—C3—C874.13 (19)N1—C13—C14—N20.2 (2)
C8—C3—C4—C51.8 (3)C15—N2—C14—C130.06 (19)
C2—C3—C4—C5177.34 (16)C16—N2—C14—C13179.08 (17)
C3—C4—C5—C60.6 (3)C13—N1—C15—N20.16 (19)
C4—C5—C6—C71.1 (3)Co1—N1—C15—N2177.62 (10)
C5—C6—C7—C12178.80 (19)C14—N2—C15—N10.07 (19)
C5—C6—C7—C81.5 (3)C16—N2—C15—N1178.96 (16)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.84 (2)2.13 (2)2.8523 (18)144 (2)
O3—H3B···O20.85 (2)1.81 (2)2.6463 (16)168 (2)
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C12H9O2)2(C4H6N2)2(H2O)2]
Mr629.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.3384 (7), 24.582 (2), 8.8559 (8)
β (°) 111.158 (1)
V3)1489.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.34 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.815, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
13335, 3356, 2865
Rint0.024
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.05
No. of reflections3356
No. of parameters203
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.84 (2)2.13 (2)2.8523 (18)144 (2)
O3—H3B···O20.85 (2)1.81 (2)2.6463 (16)168 (2)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Jiangsu Marine Resources Development Research Institute and Huaihai Institute of Technology for support of this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, J.-G., Liu, J.-W. & Wu, S. (2007). Acta Cryst. E63, m692–m694.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJi, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, D.-X., Feng, L.-X. & Zhang, X.-Q. (2006). Chin. J. Inorg. Chem. 22, 1891–1894.  CAS Google Scholar
First citationYang, Y.-Q., Li, C.-H., Li, W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 30, 4524–4530.  Google Scholar
First citationYin, F.-J., Han, L.-J., Yang, S.-P. & Xu, X. Y. (2011). Acta Cryst. E67, m1772.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds