metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Ferrocenymethyl-N-phenyl­propionamide

aVTRS Laboratory, Institute of Sciences and Technology, University of El-Oued, PO Box 789, El-Oued 39000, Algeria, and bDepartment of Chemistry, University of Ouargla, PO Box 511, Ouargla 30000, Algeria
*Correspondence e-mail: lanezt@gmail.com

(Received 17 March 2012; accepted 14 April 2012; online 21 April 2012)

In the title compound, [Fe(C5H5)(C15H16NO)], the two cyclo­penta­dienyl (Cp) rings are nearly parallel to each other, forming a dihedral angle of 3.7 (1)°, and adopt a staggered conformation. The amide group is almost perpendicular to the plane of the substituted Cp ring, with a C—N—C—C torsion angle of 101.3 (2)°, and the N and O atoms in the ethanoyl group are coplanar, with a C—N—C—O torsion angle of −0.7 (3)°. Weak C—H⋯O hydrogen bonds link adjacent mol­ecules.

Related literature

For background to the design and properties of ferrocene derivatives, see: Argyropoulos & Coutouli-Argyropoulou (2002[Argyropoulos, N. & Coutouli-Argyropoulou, E. (2002). J. Organomet. Chem. 654, 117-122.]); Cano et al. (1995[Cano, J., Benito, A., Martínez-Máñez, R., Soto, J., Payá, J., Lloret, F., Julve, M., Marcos, M. D. & Sinn, E. (1995). Inorg. Chim. Acta, 231, 45-56.]); Kelly et al. (2007[Kelly, P. N., Prêtre, A., Devoy, S., O'Rielly, I., Devery, R., Goel, A., Gallagher, J. F., Lough, A. J. & Kenny, P. T. M. (2007). J. Organomet. Chem. 692, 1327-1331.]); Shaabani & Shaghaghi (2010[Shaabani, B. & Shaghaghi, Z. (2010). Tetrahedron, 66, 3259-3264.]); Torres et al. (2002[Torres, J. C., Pilli, R. A., Vargas, M. D., Violante, F. A., Garden, S. J. & Pinto, A. C. (2002). Tetrahedron, 58, 4487-4492.]). For the synthesis of N-ferrocenyl­methyl­aniline, see: Osgerby & Pauson (1961[Osgerby, J. M. & Pauson, P. L. (1961). J. Chem. Soc. pp. 4600-4604.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H16NO)]

  • Mr = 347.23

  • Monoclinic, P 21 /n

  • a = 13.243 (5) Å

  • b = 7.983 (5) Å

  • c = 15.248 (5) Å

  • β = 94.873 (5)°

  • V = 1606.2 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: refined from ΔF (DIFABS; Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.823, Tmax = 0.991

  • 16518 measured reflections

  • 3670 independent reflections

  • 2747 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.02

  • 3670 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Oi 1.07 2.50 3.292 (4) 130
Symmetry code: (i) x, y+1, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, the design of new ferrocene derivatives has been of considerable interest, because of their utility in organic synthesis (Cano et al., 1995), asymmetric synthesis (Torres et al., 2002) and medicinal chemistry (Argyropoulos & Coutouli-Argyropoulou, 2002). Our interest in ferrocene derivatives containing N-ethyl-N-phenylpropionamide group arises from the fact that similar compounds such as N-(ferrocenylmethyl)benzene-carboxamide derivatives possess a broad range of biological activities (Kelly et al., 2007). Moreover, ferrocene derivatives that contain N-ethyl-N-phenylpropionamide moieties are capable of undergoing easy transformation into a variety of functionally useful ferrocenes. The incorporation of N-ethyl-N-phenylpropionamide in a ferrocene moiety could provide new derivatives with important biological activities since several ferrocene derivatives have already been shown to be active against a number of tumors (Shaabani & Shaghaghi, 2010). Herein, as a continuation of our research related to ferrocenyl derivatives, we report the synthesis and X-ray diffraction characterization of the title compound.

In the title compound (Fig.1), the amide substituent is positioned perpendicular to the plane of the substituted cyclopentadienyl (Cp) ring [the C12—N—C11—C10 torsion angle is 101.3 (2)°]. In the ethanoyl group, the N and O atoms are coplanar [the C11—N—C12—O torsion angle is -0.7 (3)°]. The Fe—C bond distances within the ferrocene group are in a range of 2.041 (3)–2.058 (3) Å for the substituted Cp1 ring (C6–C10) and 2.035 (3)–2.064 (3) Å for the unsubstituted Cp2 ring (C1–C5) (Table 1). The planar Cp rings are nearly parallel to each other [the interplanar angle is 3.7 (1)°]. The Cp rings are essentially staggered and the Fe–centroid distances are 1.659 (3) (Cp1) and 1.652 (3) Å (Cp2). The [Cg1—Fe1—Cg2] angle is 177.60 (2)° (Cg1 and Cg2 are the centroids of the Cp1 and Cp2 rings). Weak C—H···O hydrogen bonds link adjacent molecules (Table 2).

Related literature top

For background to the design and properties of ferrocene derivatives, see: Argyropoulos & Coutouli-Argyropoulou (2002); Cano et al. (1995); Kelly et al. (2007); Shaabani & Shaghaghi (2010); Torres et al. (2002). For the synthesis of N-ferrocenylmethylaniline, see: Osgerby & Pauson (1961).

Experimental top

N-ferrocenylmethylaniline was obtained according to literature procedures (Osgerby & Pauson, 1961). To a round bottom flask equipped with a reflux condenser and a magnetic stirrer was added under a nitrogen atmosphere a portion of N-ferrocenylmethylaniline (6 g, 20 mmol) in 50 ml of anhydride toluene. The resulting suspension was heated at 65°C until total dissolution. 10 ml of propenoique acid was then added and the resulting mixture was vigorously stirred under reflux for 25 min. The reaction mixture was then allowed to cool to room temperature and washed twice with water. The organic layer was then dried and evaporated. The residue was recrystallized from a mixture of ethanol–water to yield N-ferrocenymethyl-N-phenylpropionamide as yellow-orange needles (yield: 5.85 g, 84%). m.p. 121–122°C. The compounds gave clean 1H and 13C NMR spectra in CDCl3.

Refinement top

H atoms were located from difference Fourier maps and fixed in refinements, with C—H distances in a range of 0.89–1.07 Å and Uiso(H) = 0.02–0.05 Å2.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the 50% probability displacement ellipsoids.
N-Ferrocenymethyl-N-phenylpropionamide top
Crystal data top
[Fe(C5H5)(C15H16NO)]F(000) = 728
Mr = 347.23Dx = 1.436 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3670 reflections
a = 13.243 (5) Åθ = 2–27.5°
b = 7.983 (5) ŵ = 0.94 mm1
c = 15.248 (5) ÅT = 293 K
β = 94.873 (5)°Needle, orange-yellow
V = 1606.2 (13) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3670 independent reflections
Radiation source: fine-focus sealed tube2747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω and ϕ scansh = 1717
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
k = 010
Tmin = 0.823, Tmax = 0.991l = 019
16518 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0394P)2 + 1.6054P]
where P = (Fo2 + 2Fc2)/3
3670 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Fe(C5H5)(C15H16NO)]V = 1606.2 (13) Å3
Mr = 347.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.243 (5) ŵ = 0.94 mm1
b = 7.983 (5) ÅT = 293 K
c = 15.248 (5) Å0.30 × 0.10 × 0.10 mm
β = 94.873 (5)°
Data collection top
Nonius KappaCCD
diffractometer
3670 independent reflections
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
2747 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.991Rint = 0.048
16518 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
3670 reflectionsΔρmin = 0.38 e Å3
209 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.07206 (2)0.49468 (4)0.32287 (2)0.0123 (1)
O0.02577 (12)0.0369 (2)0.12252 (12)0.0221 (5)
N0.07871 (14)0.1884 (2)0.12666 (12)0.0143 (5)
C10.22431 (18)0.5319 (3)0.33414 (18)0.0242 (8)
C20.1672 (2)0.6519 (3)0.38492 (17)0.0260 (8)
C30.10882 (19)0.7428 (3)0.3266 (2)0.0328 (9)
C40.1313 (2)0.6771 (4)0.24067 (19)0.0335 (9)
C50.2024 (2)0.5468 (4)0.24592 (18)0.0293 (8)
C60.03618 (18)0.2442 (3)0.32216 (16)0.0165 (7)
C70.00389 (18)0.3168 (3)0.40574 (16)0.0196 (7)
C80.06553 (18)0.4483 (3)0.39123 (15)0.0184 (7)
C90.07570 (17)0.4581 (3)0.29904 (15)0.0153 (6)
C100.01264 (16)0.3324 (3)0.25563 (15)0.0137 (6)
C110.00067 (17)0.2992 (3)0.15843 (15)0.0160 (6)
C120.05746 (17)0.0230 (3)0.11058 (14)0.0154 (6)
C130.14207 (18)0.0824 (3)0.07880 (16)0.0188 (7)
C140.1182 (2)0.2690 (3)0.08018 (18)0.0237 (8)
C150.17258 (17)0.2651 (3)0.10724 (15)0.0143 (6)
C160.18986 (18)0.2981 (3)0.02018 (15)0.0180 (7)
C170.27898 (19)0.3783 (3)0.00165 (17)0.0220 (8)
C180.34896 (18)0.4295 (3)0.06963 (18)0.0217 (7)
C190.33203 (18)0.3945 (3)0.15659 (17)0.0215 (7)
C200.24406 (17)0.3113 (3)0.17543 (15)0.0173 (7)
H10.272900.449800.354500.0500*
H20.164300.668500.450300.0500*
H30.058100.834190.345100.0500*
H40.103400.702800.178500.0500*
H50.235100.477100.198320.0500*
H60.077800.157900.310700.0500*
H70.025540.289000.463500.0500*
H80.101600.513330.432570.0500*
H90.113210.532100.271200.0500*
H11A0.002300.394500.124910.0500*
H11B0.059420.249500.141710.0500*
H13A0.153590.049410.019250.0226*
H13B0.203930.061340.115920.0226*
H14A0.057700.290810.042610.0356*
H14B0.173600.330900.059560.0356*
H14C0.108090.302760.139220.0356*
H160.141400.266100.022920.0500*
H170.287800.403610.061100.0500*
H180.406680.500800.054600.0500*
H190.385600.430000.204800.0500*
H200.232100.278790.233500.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0118 (2)0.0135 (2)0.0116 (2)0.0019 (1)0.0013 (1)0.0004 (1)
O0.0165 (8)0.0205 (9)0.0300 (10)0.0035 (7)0.0060 (7)0.0006 (7)
N0.0129 (9)0.0160 (9)0.0143 (10)0.0004 (8)0.0036 (8)0.0038 (8)
C10.0145 (11)0.0209 (13)0.0377 (15)0.0037 (10)0.0057 (11)0.0052 (11)
C20.0261 (13)0.0341 (15)0.0174 (12)0.0161 (12)0.0002 (11)0.0040 (11)
C30.0146 (12)0.0130 (12)0.069 (2)0.0048 (10)0.0075 (13)0.0013 (12)
C40.0311 (15)0.0396 (16)0.0318 (16)0.0216 (14)0.0142 (13)0.0215 (13)
C50.0228 (13)0.0378 (16)0.0254 (14)0.0126 (12)0.0083 (11)0.0062 (11)
C60.0175 (11)0.0130 (11)0.0195 (12)0.0039 (9)0.0038 (9)0.0015 (9)
C70.0223 (12)0.0212 (12)0.0156 (12)0.0100 (10)0.0026 (10)0.0040 (10)
C80.0162 (11)0.0226 (12)0.0155 (11)0.0071 (10)0.0034 (9)0.0022 (9)
C90.0130 (10)0.0165 (11)0.0165 (11)0.0033 (9)0.0016 (9)0.0022 (9)
C100.0120 (10)0.0146 (11)0.0145 (11)0.0028 (9)0.0012 (9)0.0006 (9)
C110.0163 (11)0.0182 (11)0.0136 (11)0.0033 (9)0.0017 (9)0.0034 (9)
C120.0185 (11)0.0168 (12)0.0109 (10)0.0022 (9)0.0008 (9)0.0013 (9)
C130.0183 (12)0.0174 (12)0.0209 (12)0.0022 (10)0.0027 (10)0.0011 (10)
C140.0262 (13)0.0160 (12)0.0287 (14)0.0026 (11)0.0008 (11)0.0014 (10)
C150.0154 (11)0.0126 (11)0.0150 (11)0.0002 (9)0.0027 (9)0.0009 (8)
C160.0184 (12)0.0202 (12)0.0152 (11)0.0012 (10)0.0008 (10)0.0003 (9)
C170.0227 (13)0.0232 (13)0.0207 (13)0.0009 (11)0.0052 (11)0.0046 (10)
C180.0164 (12)0.0190 (12)0.0302 (14)0.0017 (10)0.0054 (11)0.0008 (10)
C190.0172 (12)0.0221 (13)0.0247 (13)0.0008 (10)0.0015 (10)0.0086 (10)
C200.0159 (11)0.0201 (12)0.0160 (12)0.0031 (10)0.0025 (9)0.0036 (9)
Geometric parameters (Å, º) top
Fe—C12.060 (3)C15—C161.391 (3)
Fe—C22.064 (3)C15—C201.395 (3)
Fe—C32.042 (3)C16—C171.393 (4)
Fe—C42.035 (3)C17—C181.392 (4)
Fe—C52.046 (3)C18—C191.392 (4)
Fe—C62.055 (3)C19—C201.392 (3)
Fe—C72.058 (3)C1—H10.9900
Fe—C82.055 (3)C2—H21.0000
Fe—C92.041 (3)C3—H31.0200
Fe—C102.045 (3)C4—H41.0700
O—C121.229 (3)C5—H50.9900
N—C111.486 (3)C6—H60.8900
N—C121.368 (3)C7—H70.9700
N—C151.439 (3)C8—H80.9200
C1—C21.411 (4)C9—H90.9000
C1—C51.405 (4)C11—H11A0.9200
C2—C31.425 (4)C11—H11B0.8900
C3—C41.419 (4)C13—H13A0.9700
C4—C51.410 (4)C13—H13B0.9700
C6—C71.432 (3)C14—H14A0.9600
C6—C101.433 (3)C14—H14B0.9600
C7—C81.426 (3)C14—H14C0.9600
C8—C91.426 (3)C16—H160.9200
C9—C101.431 (3)C17—H170.9900
C10—C111.502 (3)C18—H181.0000
C12—C131.514 (3)C19—H191.0200
C13—C141.523 (4)C20—H200.9500
C1—Fe—C240.00 (10)C8—C9—C10108.5 (2)
C1—Fe—C367.68 (10)Fe—C10—C669.93 (13)
C1—Fe—C467.62 (10)Fe—C10—C969.36 (13)
C1—Fe—C540.03 (11)Fe—C10—C11125.68 (16)
C1—Fe—C6111.65 (10)C6—C10—C9107.3 (2)
C1—Fe—C7115.44 (10)C6—C10—C11126.1 (2)
C1—Fe—C8144.68 (10)C9—C10—C11126.5 (2)
C1—Fe—C9174.56 (10)N—C11—C10113.56 (18)
C1—Fe—C10135.70 (10)O—C12—N121.5 (2)
C2—Fe—C340.62 (10)O—C12—C13121.9 (2)
C2—Fe—C468.20 (11)N—C12—C13116.6 (2)
C2—Fe—C567.73 (11)C12—C13—C14112.2 (2)
C2—Fe—C6138.10 (10)N—C15—C16119.5 (2)
C2—Fe—C7113.03 (10)N—C15—C20120.2 (2)
C2—Fe—C8115.25 (10)C16—C15—C20120.3 (2)
C2—Fe—C9143.16 (10)C15—C16—C17119.5 (2)
C2—Fe—C10175.61 (10)C16—C17—C18120.4 (2)
C3—Fe—C440.75 (12)C17—C18—C19120.0 (2)
C3—Fe—C568.10 (12)C18—C19—C20119.9 (2)
C3—Fe—C6178.60 (11)C15—C20—C19120.0 (2)
C3—Fe—C7138.23 (11)Fe—C1—H1127.00
C3—Fe—C8111.35 (10)C2—C1—H1128.00
C3—Fe—C9112.23 (10)C5—C1—H1123.00
C3—Fe—C10140.42 (10)Fe—C2—H2124.00
C4—Fe—C540.43 (12)C1—C2—H2127.00
C4—Fe—C6140.37 (11)C3—C2—H2125.00
C4—Fe—C7176.63 (10)Fe—C3—H3123.00
C4—Fe—C8136.09 (10)C2—C3—H3125.00
C4—Fe—C9108.54 (10)C4—C3—H3127.00
C4—Fe—C10110.11 (10)Fe—C4—H4123.00
C5—Fe—C6112.26 (11)C3—C4—H4134.00
C5—Fe—C7142.86 (11)C5—C4—H4118.00
C5—Fe—C8175.12 (10)Fe—C5—H5127.00
C5—Fe—C9134.58 (10)C1—C5—H5123.00
C5—Fe—C10108.26 (10)C4—C5—H5129.00
C6—Fe—C740.74 (9)Fe—C6—H6128.00
C6—Fe—C868.41 (10)C7—C6—H6128.00
C6—Fe—C968.56 (10)C10—C6—H6123.00
C6—Fe—C1040.91 (9)Fe—C7—H7124.00
C7—Fe—C840.57 (9)C6—C7—H7129.00
C7—Fe—C968.50 (9)C8—C7—H7123.00
C7—Fe—C1068.89 (9)Fe—C8—H8129.00
C8—Fe—C940.74 (9)C7—C8—H8128.00
C8—Fe—C1068.88 (9)C9—C8—H8124.00
C9—Fe—C1041.01 (9)Fe—C9—H9124.00
C11—N—C12119.50 (18)C8—C9—H9127.00
C11—N—C15117.50 (17)C10—C9—H9124.00
C12—N—C15122.79 (18)N—C11—H11A104.00
Fe—C1—C270.16 (14)N—C11—H11B105.00
Fe—C1—C569.45 (15)C10—C11—H11A113.00
C2—C1—C5108.9 (2)C10—C11—H11B113.00
Fe—C2—C169.83 (14)H11A—C11—H11B107.00
Fe—C2—C368.84 (14)C12—C13—H13A109.00
C1—C2—C3107.3 (2)C12—C13—H13B109.00
Fe—C3—C270.53 (14)C14—C13—H13A109.00
Fe—C3—C469.36 (16)C14—C13—H13B109.00
C2—C3—C4107.8 (2)H13A—C13—H13B108.00
Fe—C4—C369.89 (16)C13—C14—H14A109.00
Fe—C4—C570.21 (17)C13—C14—H14B109.00
C3—C4—C5108.0 (2)C13—C14—H14C109.00
Fe—C5—C170.53 (15)H14A—C14—H14B109.00
Fe—C5—C469.37 (16)H14A—C14—H14C110.00
C1—C5—C4108.1 (2)H14B—C14—H14C109.00
Fe—C6—C769.74 (14)C15—C16—H16118.00
Fe—C6—C1069.16 (13)C17—C16—H16123.00
C7—C6—C10108.2 (2)C16—C17—H17117.00
Fe—C7—C669.53 (13)C18—C17—H17122.00
Fe—C7—C869.58 (13)C17—C18—H18118.00
C6—C7—C8107.9 (2)C19—C18—H18122.00
Fe—C8—C769.85 (13)C18—C19—H19118.00
Fe—C8—C969.13 (13)C20—C19—H19122.00
C7—C8—C9108.0 (2)C15—C20—H20118.00
Fe—C9—C870.13 (13)C19—C20—H20122.00
Fe—C9—C1069.64 (13)
C2—Fe—C1—C5120.1 (2)C3—Fe—C8—C999.70 (16)
C3—Fe—C1—C238.08 (16)C4—Fe—C8—C7179.30 (16)
C3—Fe—C1—C582.06 (18)C4—Fe—C8—C959.8 (2)
C4—Fe—C1—C282.30 (17)C6—Fe—C8—C737.74 (14)
C4—Fe—C1—C537.84 (18)C6—Fe—C8—C981.79 (15)
C5—Fe—C1—C2120.1 (2)C7—Fe—C8—C9119.5 (2)
C6—Fe—C1—C2140.59 (15)C9—Fe—C8—C7119.5 (2)
C6—Fe—C1—C599.27 (18)C10—Fe—C8—C781.81 (14)
C7—Fe—C1—C296.15 (16)C10—Fe—C8—C937.71 (14)
C7—Fe—C1—C5143.71 (17)C2—Fe—C9—C862.7 (2)
C8—Fe—C1—C257.7 (2)C2—Fe—C9—C10177.75 (16)
C8—Fe—C1—C5177.88 (18)C3—Fe—C9—C897.37 (16)
C10—Fe—C1—C2178.64 (15)C3—Fe—C9—C10143.04 (15)
C10—Fe—C1—C558.5 (2)C4—Fe—C9—C8140.80 (15)
C1—Fe—C2—C3118.8 (2)C4—Fe—C9—C1099.61 (15)
C3—Fe—C2—C1118.8 (2)C5—Fe—C9—C8177.98 (16)
C4—Fe—C2—C180.71 (17)C5—Fe—C9—C1062.4 (2)
C4—Fe—C2—C338.09 (16)C6—Fe—C9—C881.39 (15)
C5—Fe—C2—C136.94 (16)C6—Fe—C9—C1038.21 (14)
C5—Fe—C2—C381.86 (17)C7—Fe—C9—C837.46 (14)
C6—Fe—C2—C162.1 (2)C7—Fe—C9—C1082.13 (14)
C6—Fe—C2—C3179.13 (16)C8—Fe—C9—C10119.6 (2)
C7—Fe—C2—C1102.69 (16)C10—Fe—C9—C8119.6 (2)
C7—Fe—C2—C3138.51 (16)C1—Fe—C10—C667.93 (19)
C8—Fe—C2—C1147.28 (15)C1—Fe—C10—C9173.60 (15)
C8—Fe—C2—C393.92 (17)C1—Fe—C10—C1152.8 (3)
C9—Fe—C2—C1172.86 (16)C3—Fe—C10—C6179.35 (16)
C9—Fe—C2—C354.1 (2)C3—Fe—C10—C960.9 (2)
C1—Fe—C3—C237.51 (15)C3—Fe—C10—C1160.0 (3)
C1—Fe—C3—C481.13 (17)C4—Fe—C10—C6146.08 (14)
C2—Fe—C3—C4118.7 (2)C4—Fe—C10—C995.46 (15)
C4—Fe—C3—C2118.7 (2)C4—Fe—C10—C1125.4 (2)
C5—Fe—C3—C280.87 (16)C5—Fe—C10—C6103.20 (15)
C5—Fe—C3—C437.78 (16)C5—Fe—C10—C9138.33 (15)
C7—Fe—C3—C266.2 (2)C5—Fe—C10—C1117.5 (2)
C7—Fe—C3—C4175.12 (16)C6—Fe—C10—C9118.47 (19)
C8—Fe—C3—C2104.35 (16)C6—Fe—C10—C11120.7 (2)
C8—Fe—C3—C4137.01 (15)C7—Fe—C10—C637.37 (14)
C9—Fe—C3—C2148.37 (15)C7—Fe—C10—C981.10 (14)
C9—Fe—C3—C492.99 (16)C7—Fe—C10—C11158.1 (2)
C10—Fe—C3—C2173.37 (15)C8—Fe—C10—C681.00 (14)
C10—Fe—C3—C454.7 (2)C8—Fe—C10—C937.47 (13)
C1—Fe—C4—C381.30 (16)C8—Fe—C10—C11158.3 (2)
C1—Fe—C4—C537.47 (16)C9—Fe—C10—C6118.47 (19)
C2—Fe—C4—C337.98 (15)C9—Fe—C10—C11120.8 (3)
C2—Fe—C4—C580.80 (17)C12—N—C11—C10101.3 (2)
C3—Fe—C4—C5118.8 (2)C15—N—C11—C1083.8 (2)
C5—Fe—C4—C3118.8 (2)C11—N—C12—O0.7 (3)
C6—Fe—C4—C3178.68 (15)C11—N—C12—C13179.74 (19)
C6—Fe—C4—C559.9 (2)C15—N—C12—O175.3 (2)
C8—Fe—C4—C366.3 (2)C15—N—C12—C135.6 (3)
C8—Fe—C4—C5174.90 (16)C11—N—C15—C16101.1 (3)
C9—Fe—C4—C3102.82 (16)C11—N—C15—C2076.5 (3)
C9—Fe—C4—C5138.41 (16)C12—N—C15—C1673.6 (3)
C10—Fe—C4—C3146.36 (15)C12—N—C15—C20108.7 (3)
C10—Fe—C4—C594.86 (17)Fe—C1—C2—C358.87 (17)
C1—Fe—C5—C4119.0 (2)C5—C1—C2—Fe58.83 (19)
C2—Fe—C5—C136.92 (15)C5—C1—C2—C30.0 (3)
C2—Fe—C5—C482.07 (18)Fe—C1—C5—C459.4 (2)
C3—Fe—C5—C180.92 (17)C2—C1—C5—Fe59.27 (18)
C3—Fe—C5—C438.07 (17)C2—C1—C5—C40.2 (3)
C4—Fe—C5—C1119.0 (2)Fe—C2—C3—C459.60 (18)
C6—Fe—C5—C197.62 (17)C1—C2—C3—Fe59.49 (17)
C6—Fe—C5—C4143.40 (16)C1—C2—C3—C40.1 (3)
C7—Fe—C5—C162.3 (2)Fe—C3—C4—C560.1 (2)
C7—Fe—C5—C4178.75 (17)C2—C3—C4—Fe60.34 (18)
C9—Fe—C5—C1178.93 (14)C2—C3—C4—C50.2 (3)
C9—Fe—C5—C462.1 (2)Fe—C4—C5—C160.16 (19)
C10—Fe—C5—C1141.17 (15)C3—C4—C5—Fe59.93 (19)
C10—Fe—C5—C499.85 (17)C3—C4—C5—C10.2 (3)
C1—Fe—C6—C7104.32 (15)Fe—C6—C7—C859.20 (17)
C1—Fe—C6—C10135.86 (14)C10—C6—C7—Fe58.61 (16)
C2—Fe—C6—C766.7 (2)C10—C6—C7—C80.6 (3)
C2—Fe—C6—C10173.53 (15)Fe—C6—C10—C959.52 (16)
C4—Fe—C6—C7175.06 (16)Fe—C6—C10—C11120.1 (2)
C4—Fe—C6—C1055.2 (2)C7—C6—C10—Fe58.97 (16)
C5—Fe—C6—C7147.63 (14)C7—C6—C10—C90.6 (3)
C5—Fe—C6—C1092.56 (15)C7—C6—C10—C11179.1 (2)
C7—Fe—C6—C10119.82 (19)Fe—C7—C8—C958.77 (16)
C8—Fe—C6—C737.58 (14)C6—C7—C8—Fe59.16 (17)
C8—Fe—C6—C1082.23 (14)C6—C7—C8—C90.4 (3)
C9—Fe—C6—C781.53 (15)Fe—C8—C9—C1059.27 (16)
C9—Fe—C6—C1038.29 (13)C7—C8—C9—Fe59.22 (17)
C10—Fe—C6—C7119.82 (19)C7—C8—C9—C100.1 (3)
C1—Fe—C7—C694.23 (15)Fe—C9—C10—C659.88 (16)
C1—Fe—C7—C8146.47 (14)Fe—C9—C10—C11119.8 (2)
C2—Fe—C7—C6138.22 (14)C8—C9—C10—Fe59.58 (16)
C2—Fe—C7—C8102.48 (15)C8—C9—C10—C60.3 (3)
C3—Fe—C7—C6178.57 (15)C8—C9—C10—C11179.4 (2)
C3—Fe—C7—C862.1 (2)Fe—C10—C11—N173.98 (15)
C5—Fe—C7—C655.2 (2)C6—C10—C11—N96.0 (3)
C5—Fe—C7—C8174.45 (17)C9—C10—C11—N84.5 (3)
C6—Fe—C7—C8119.30 (19)O—C12—C13—C1410.3 (3)
C8—Fe—C7—C6119.30 (19)N—C12—C13—C14168.8 (2)
C9—Fe—C7—C681.69 (15)N—C15—C16—C17177.5 (2)
C9—Fe—C7—C837.62 (14)C20—C15—C16—C170.2 (4)
C10—Fe—C7—C637.52 (14)N—C15—C20—C19176.1 (2)
C10—Fe—C7—C881.78 (14)C16—C15—C20—C191.5 (4)
C1—Fe—C8—C759.6 (2)C15—C16—C17—C181.9 (4)
C1—Fe—C8—C9179.14 (16)C16—C17—C18—C192.7 (4)
C2—Fe—C8—C796.56 (15)C17—C18—C19—C201.3 (4)
C2—Fe—C8—C9143.92 (14)C18—C19—C20—C150.8 (4)
C3—Fe—C8—C7140.78 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Oi1.072.503.292 (4)130
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H16NO)]
Mr347.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.243 (5), 7.983 (5), 15.248 (5)
β (°) 94.873 (5)
V3)1606.2 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
Tmin, Tmax0.823, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
16518, 3670, 2747
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.02
No. of reflections3670
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.38

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Fe—C12.060 (3)Fe—C62.055 (3)
Fe—C22.064 (3)Fe—C72.058 (3)
Fe—C32.042 (3)Fe—C82.055 (3)
Fe—C42.035 (3)Fe—C92.041 (3)
Fe—C52.046 (3)Fe—C102.045 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Oi1.072.503.292 (4)130
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors are grateful to Merazig Hocine for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArgyropoulos, N. & Coutouli-Argyropoulou, E. (2002). J. Organomet. Chem. 654, 117–122.  Web of Science CrossRef CAS Google Scholar
First citationCano, J., Benito, A., Martínez-Máñez, R., Soto, J., Payá, J., Lloret, F., Julve, M., Marcos, M. D. & Sinn, E. (1995). Inorg. Chim. Acta, 231, 45–56.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKelly, P. N., Prêtre, A., Devoy, S., O'Rielly, I., Devery, R., Goel, A., Gallagher, J. F., Lough, A. J. & Kenny, P. T. M. (2007). J. Organomet. Chem. 692, 1327–1331.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOsgerby, J. M. & Pauson, P. L. (1961). J. Chem. Soc. pp. 4600–4604.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShaabani, B. & Shaghaghi, Z. (2010). Tetrahedron, 66, 3259–3264.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorres, J. C., Pilli, R. A., Vargas, M. D., Violante, F. A., Garden, S. J. & Pinto, A. C. (2002). Tetrahedron, 58, 4487–4492.  Web of Science CrossRef CAS Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds