metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(di­chloridozinc)-μ-4,4′-bis­­[(1H-imidazol-1-yl)meth­yl]bi­phenyl-κ2N3:N3′]

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, and bEngineering Research Center of Pesticide of Heilongjiang University, Heilongjiang University, Harbin 150050, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 20 March 2012; accepted 31 March 2012; online 13 April 2012)

In the title compound, [ZnCl2(C20H18N4)]n, the ZnII ion lies on a twofold rotation axis and is four-coordinated in a tetra­hedral geometry defined by two Cl anions and two N atoms from two 4,4′-bis­[(imidazol-1-yl)meth­yl]biphenyl ligands. The mid-point of the ligand is located on an inversion center, and shows a trans conformation. The ligands link the ZnII ions, forming a chain structure along [10-1].

Related literature

For the synthesis of the ligand, see: Zhu et al. (2002[Zhu, H.-F., Zhao, W., Okamura, T., Fei, B.-L., Sun, W.-Y. & Ueyama, N. (2002). New J. Chem. 26, 1277-1279.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C20H18N4)]

  • Mr = 450.67

  • Monoclinic, C 2/c

  • a = 22.837 (5) Å

  • b = 5.9004 (12) Å

  • c = 16.012 (3) Å

  • β = 117.08 (3)°

  • V = 1921.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 293 K

  • 0.36 × 0.20 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.601, Tmax = 0.765

  • 8827 measured reflections

  • 2204 independent reflections

  • 1890 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.07

  • 2204 reflections

  • 123 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—Cl1 2.2349 (9)
Zn1—N1 2.0224 (16)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-containing ligands with an arene center have been widely used as building blocks for constructing inorganic-organic supramolecular architectures. Herein, we report the title compound constructed from 4,4'-(dimethylenebiphenyl)diimidazole and ZnCl2.

In the title compound, the ZnII ion lies on a twofold rotation axis and is four-coordinated in a tetrahedral environment defined by two Cl anions and two N atoms from two ligands (Fig. 1, Table 1). The mid-point of the ligand is located in an inversion center. The ligands showing a trans conformation link the ZnII ions into a chain structure along [1 0 1] (Fig. 2).

Related literature top

For the synthesis of the ligand, see: Zhu et al. (2002).

Experimental top

The 4,4'-(dimethylenebiphenyl)diimidazol ligand was synthesized followed the reference method (Zhu et al., 2002). ZnCl2 (0.140 g, 1 mmol) and ligand (0.32 g, 1 mmol) were dissolved in a mixed solution of 4 ml ethanol and 4 ml water. After stirring the suspension was sealed in a 18 ml Teflon-lined autoclave and heated at 140°C for 5 days. After slow cooling to room temperature, colorless block crystals were filtered and washed with distilled water (yield: 35% based on Zn).

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (methylene) Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) -x, y, 1/2-z; (ii) 1/2-x, -1/2-y, -z.]
[Figure 2] Fig. 2. A partial packing view, showing the chain structure along [1 0 1].
catena-Poly[(dichloridozinc)-µ-4,4'-bis[(1H-imidazol-1- yl)methyl]biphenyl-κ2N3:N3'] top
Crystal data top
[ZnCl2(C20H18N4)]F(000) = 920
Mr = 450.67Dx = 1.558 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7615 reflections
a = 22.837 (5) Åθ = 3.6–27.5°
b = 5.9004 (12) ŵ = 1.57 mm1
c = 16.012 (3) ÅT = 293 K
β = 117.08 (3)°Block, colorless
V = 1921.0 (9) Å30.36 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2204 independent reflections
Radiation source: fine-focus sealed tube1890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scanθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2926
Tmin = 0.601, Tmax = 0.765k = 77
8827 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.6927P]
where P = (Fo2 + 2Fc2)/3
2204 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[ZnCl2(C20H18N4)]V = 1921.0 (9) Å3
Mr = 450.67Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.837 (5) ŵ = 1.57 mm1
b = 5.9004 (12) ÅT = 293 K
c = 16.012 (3) Å0.36 × 0.20 × 0.18 mm
β = 117.08 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2204 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1890 reflections with I > 2σ(I)
Tmin = 0.601, Tmax = 0.765Rint = 0.027
8827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
2204 reflectionsΔρmin = 0.24 e Å3
123 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02165 (11)0.3388 (4)0.10470 (15)0.0471 (5)
H10.01300.40890.05440.057*
C20.05856 (10)0.1682 (4)0.09746 (15)0.0456 (5)
H20.05430.10020.04260.055*
C30.09174 (10)0.2535 (3)0.24453 (14)0.0392 (4)
H30.11520.25080.30960.047*
C40.15012 (12)0.0734 (4)0.21863 (17)0.0494 (5)
H4A0.12810.20800.22490.059*
H4B0.18560.03790.28000.059*
C50.17867 (10)0.1230 (3)0.15169 (14)0.0389 (4)
C60.16437 (12)0.3221 (4)0.10166 (18)0.0502 (5)
H60.13580.42530.10770.060*
C70.19175 (12)0.3717 (4)0.04240 (18)0.0499 (5)
H70.18100.50750.00930.060*
C80.23486 (8)0.2230 (3)0.03141 (12)0.0317 (4)
C90.24832 (10)0.0205 (4)0.08169 (15)0.0440 (5)
H90.27660.08400.07560.053*
C100.22065 (11)0.0283 (4)0.14005 (16)0.0482 (5)
H100.23030.16530.17220.058*
Cl10.07645 (3)0.79888 (10)0.12779 (4)0.05314 (16)
N10.04281 (8)0.3932 (3)0.19687 (12)0.0385 (4)
N20.10332 (8)0.1157 (3)0.18714 (12)0.0366 (3)
Zn10.00000.61108 (5)0.25000.03718 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0445 (10)0.0614 (13)0.0393 (11)0.0076 (10)0.0223 (9)0.0016 (9)
C20.0460 (10)0.0579 (12)0.0390 (10)0.0028 (10)0.0247 (9)0.0125 (9)
C30.0477 (10)0.0418 (10)0.0378 (10)0.0014 (9)0.0280 (8)0.0045 (8)
C40.0707 (14)0.0445 (11)0.0551 (13)0.0143 (10)0.0479 (11)0.0067 (9)
C50.0459 (10)0.0392 (10)0.0435 (10)0.0063 (8)0.0307 (9)0.0010 (8)
C60.0615 (13)0.0434 (10)0.0690 (15)0.0130 (10)0.0500 (12)0.0104 (10)
C70.0638 (13)0.0412 (11)0.0669 (14)0.0164 (10)0.0491 (12)0.0197 (10)
C80.0333 (8)0.0326 (9)0.0358 (9)0.0002 (7)0.0214 (7)0.0040 (7)
C90.0530 (11)0.0374 (10)0.0573 (13)0.0125 (9)0.0388 (10)0.0123 (9)
C100.0639 (13)0.0397 (10)0.0576 (13)0.0078 (10)0.0422 (11)0.0151 (10)
Cl10.0633 (3)0.0527 (3)0.0479 (3)0.0107 (3)0.0292 (3)0.0057 (2)
N10.0449 (9)0.0399 (8)0.0424 (9)0.0015 (7)0.0302 (7)0.0015 (7)
N20.0424 (8)0.0382 (8)0.0400 (8)0.0005 (7)0.0281 (7)0.0036 (6)
Zn10.0457 (2)0.03405 (18)0.0461 (2)0.0000.03332 (15)0.000
Geometric parameters (Å, º) top
C1—C21.352 (3)C5—C101.383 (3)
C1—N11.366 (3)C6—C71.385 (3)
C1—H10.9300C6—H60.9300
C2—N21.366 (3)C7—C81.389 (3)
C2—H20.9300C7—H70.9300
C3—N11.317 (3)C8—C91.395 (3)
C3—N21.340 (2)C8—C8i1.491 (3)
C3—H30.9300C9—C101.376 (3)
C4—N21.467 (3)C9—H90.9300
C4—C51.515 (3)C10—H100.9300
C4—H4A0.9700Zn1—Cl12.2349 (9)
C4—H4B0.9700Zn1—N12.0224 (16)
C5—C61.375 (3)
C2—C1—N1109.87 (19)C8—C7—H7119.3
C2—C1—H1125.1C7—C8—C9116.80 (16)
N1—C1—H1125.1C7—C8—C8i121.6 (2)
C1—C2—N2106.02 (18)C9—C8—C8i121.6 (2)
C1—C2—H2127.0C10—C9—C8121.50 (18)
N2—C2—H2127.0C10—C9—H9119.3
N1—C3—N2111.25 (18)C8—C9—H9119.3
N1—C3—H3124.4C9—C10—C5121.18 (19)
N2—C3—H3124.4C9—C10—H10119.4
N2—C4—C5112.62 (17)C5—C10—H10119.4
N2—C4—H4A109.1C3—N1—C1105.60 (16)
C5—C4—H4A109.1C3—N1—Zn1126.82 (14)
N2—C4—H4B109.1C1—N1—Zn1127.08 (14)
C5—C4—H4B109.1C3—N2—C2107.25 (16)
H4A—C4—H4B107.8C3—N2—C4124.48 (18)
C6—C5—C10117.91 (18)C2—N2—C4127.82 (17)
C6—C5—C4120.83 (18)N1—Zn1—N1ii101.05 (9)
C10—C5—C4121.25 (18)N1—Zn1—Cl1ii110.42 (5)
C5—C6—C7121.24 (19)N1ii—Zn1—Cl1ii106.35 (5)
C5—C6—H6119.4N1—Zn1—Cl1106.35 (5)
C7—C6—H6119.4N1ii—Zn1—Cl1110.42 (5)
C6—C7—C8121.37 (18)Cl1ii—Zn1—Cl1120.56 (4)
C6—C7—H7119.3
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C20H18N4)]
Mr450.67
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)22.837 (5), 5.9004 (12), 16.012 (3)
β (°) 117.08 (3)
V3)1921.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.36 × 0.20 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.601, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
8827, 2204, 1890
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.07
No. of reflections2204
No. of parameters123
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—Cl12.2349 (9)Zn1—N12.0224 (16)
 

Acknowledgements

This work was supported in part by the NSFC (Nos. 51143002, 21072049, 21072050, 21110402016 and 21074031), the CPDF (No. 201104456), the HLJNSF of Heilongjiang (Nos. E201118, E201144), the Abroad Person with Ability Foundation of Heilongjiang Province (No. 2010td03) and the Innovation Fellowship Foundation of Heilongjiang University (No. Hdtd2010-11).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-F., Zhao, W., Okamura, T., Fei, B.-L., Sun, W.-Y. & Ueyama, N. (2002). New J. Chem. 26, 1277–1279.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds