metal-organic compounds
Poly[diaquabis{μ-5-[4-(1H-imidazol-1-ylmethyl)phenyl]tetrazolato}copper(II)]
aDepartment of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China
*Correspondence e-mail: rzchen2012@163.com
In the title compound, [Cu(C11H9N6)2(H2O)2]n, the CuII atom lies on an inversion center and is coordinated by four N atoms from four 5-[4-(1H-imidazol-1-ylmethyl)phenyl]tetrazolate ligands and two water molecules in a distorted octahedral geometry. The ligands bridge the CuII atoms, leading to the formation of a two-dimensional network parallel to (100). The structure is further stabilized by O—H⋯N hydrogen bonds within the network.
Related literature
For background to metal-organic architectures, see: Song et al. (2012); Wang et al. (2010). For background to metal-azolate frameworks, see: Masciocchi et al. (2005). For a related structure, see: Zhang et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812015176/hy2532sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812015176/hy2532Isup2.hkl
A mixture of CuCl2.2H2O (0.2 mmol, 0.034 g), 5-(4-imidazol-1-yl-benzyl)-2H-tetrazole (0.2 mmol, 0.045 g), NaOH (0.2 mmol, 0.008 g) and water (10 ml) was sealed in a 15 ml Teflon-lined reactor, which was heated at 120°C for 72 h and then gradually cooled to room temperature. Blue crystals were obtained.
H atoms on C atoms were generated geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C11H9N6)2(H2O)2] | F(000) = 566 |
Mr = 550.06 | Dx = 1.609 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2224 reflections |
a = 7.3363 (10) Å | θ = 1.0–26.0° |
b = 6.1934 (9) Å | µ = 1.01 mm−1 |
c = 25.219 (4) Å | T = 293 K |
β = 97.708 (2)° | Block, blue |
V = 1135.5 (3) Å3 | 0.25 × 0.21 × 0.20 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 2224 independent reflections |
Radiation source: fine-focus sealed tube | 2064 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
ϕ and ω scans | θmax = 26.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −6→9 |
Tmin = 0.751, Tmax = 0.824 | k = −7→7 |
6050 measured reflections | l = −27→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.044P)2 + 0.7185P] where P = (Fo2 + 2Fc2)/3 |
2224 reflections | (Δ/σ)max < 0.001 |
175 parameters | Δρmax = 0.35 e Å−3 |
2 restraints | Δρmin = −0.29 e Å−3 |
[Cu(C11H9N6)2(H2O)2] | V = 1135.5 (3) Å3 |
Mr = 550.06 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.3363 (10) Å | µ = 1.01 mm−1 |
b = 6.1934 (9) Å | T = 293 K |
c = 25.219 (4) Å | 0.25 × 0.21 × 0.20 mm |
β = 97.708 (2)° |
Bruker APEXII CCD diffractometer | 2224 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2064 reflections with I > 2σ(I) |
Tmin = 0.751, Tmax = 0.824 | Rint = 0.015 |
6050 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 2 restraints |
wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.35 e Å−3 |
2224 reflections | Δρmin = −0.29 e Å−3 |
175 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.0000 | 0.5000 | 0.03061 (14) | |
C1 | 0.1942 (2) | 0.1287 (3) | 0.35950 (7) | 0.0210 (4) | |
C2 | 0.2239 (2) | 0.0738 (3) | 0.30431 (7) | 0.0206 (4) | |
C3 | 0.1855 (3) | −0.1330 (3) | 0.28390 (7) | 0.0238 (4) | |
H3 | 0.1428 | −0.2387 | 0.3054 | 0.029* | |
C4 | 0.2110 (3) | −0.1813 (3) | 0.23170 (7) | 0.0241 (4) | |
H4 | 0.1839 | −0.3193 | 0.2183 | 0.029* | |
C5 | 0.2764 (2) | −0.0262 (3) | 0.19905 (7) | 0.0204 (4) | |
C6 | 0.3139 (3) | 0.1795 (3) | 0.21932 (7) | 0.0246 (4) | |
H6 | 0.3571 | 0.2848 | 0.1978 | 0.030* | |
C7 | 0.2875 (3) | 0.2295 (3) | 0.27156 (7) | 0.0235 (4) | |
H7 | 0.3126 | 0.3682 | 0.2847 | 0.028* | |
C8 | 0.3083 (3) | −0.0898 (3) | 0.14277 (7) | 0.0252 (4) | |
H8A | 0.4269 | −0.1604 | 0.1444 | 0.030* | |
H8B | 0.2147 | −0.1928 | 0.1285 | 0.030* | |
C9 | 0.1502 (3) | 0.1771 (3) | 0.07892 (7) | 0.0252 (4) | |
H9 | 0.0324 | 0.1233 | 0.0800 | 0.030* | |
C10 | 0.3754 (3) | 0.3717 (4) | 0.06022 (8) | 0.0337 (5) | |
H10 | 0.4416 | 0.4790 | 0.0454 | 0.040* | |
C11 | 0.4493 (3) | 0.2182 (4) | 0.09521 (8) | 0.0315 (5) | |
H11 | 0.5727 | 0.2005 | 0.1087 | 0.038* | |
N1 | 0.1185 (2) | 0.1067 (3) | 0.43685 (6) | 0.0249 (3) | |
N2 | 0.1231 (3) | −0.0072 (2) | 0.39174 (7) | 0.0287 (4) | |
N3 | 0.1844 (2) | 0.3016 (3) | 0.43178 (6) | 0.0293 (4) | |
N4 | 0.2332 (3) | 0.3209 (3) | 0.38258 (7) | 0.0316 (4) | |
N5 | 0.3034 (2) | 0.0945 (3) | 0.10656 (6) | 0.0230 (3) | |
N6 | 0.1884 (2) | 0.3443 (3) | 0.05002 (6) | 0.0273 (4) | |
O1W | −0.2368 (3) | 0.3145 (3) | 0.50004 (7) | 0.0427 (4) | |
H1A | −0.214 (4) | 0.447 (3) | 0.5139 (12) | 0.064* | |
H1B | −0.336 (3) | 0.265 (5) | 0.5113 (12) | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0456 (2) | 0.0346 (2) | 0.01278 (19) | −0.02094 (15) | 0.00818 (14) | −0.00562 (13) |
C1 | 0.0209 (9) | 0.0248 (9) | 0.0174 (9) | −0.0010 (7) | 0.0029 (7) | −0.0002 (7) |
C2 | 0.0200 (8) | 0.0262 (9) | 0.0160 (9) | 0.0007 (7) | 0.0041 (6) | 0.0006 (7) |
C3 | 0.0276 (9) | 0.0250 (10) | 0.0195 (9) | −0.0025 (8) | 0.0062 (7) | 0.0033 (7) |
C4 | 0.0296 (10) | 0.0230 (9) | 0.0198 (9) | −0.0006 (8) | 0.0036 (7) | −0.0006 (7) |
C5 | 0.0206 (9) | 0.0264 (9) | 0.0139 (9) | 0.0048 (7) | 0.0012 (7) | 0.0025 (7) |
C6 | 0.0308 (10) | 0.0270 (10) | 0.0170 (9) | −0.0009 (8) | 0.0067 (7) | 0.0058 (7) |
C7 | 0.0289 (10) | 0.0227 (9) | 0.0188 (9) | −0.0029 (8) | 0.0034 (7) | −0.0007 (7) |
C8 | 0.0345 (10) | 0.0261 (10) | 0.0153 (9) | 0.0079 (8) | 0.0043 (7) | 0.0033 (7) |
C9 | 0.0283 (10) | 0.0286 (10) | 0.0185 (9) | 0.0068 (8) | 0.0030 (7) | 0.0025 (7) |
C10 | 0.0367 (11) | 0.0403 (12) | 0.0265 (11) | 0.0037 (9) | 0.0136 (9) | 0.0104 (9) |
C11 | 0.0276 (10) | 0.0408 (12) | 0.0271 (10) | 0.0025 (9) | 0.0070 (8) | 0.0062 (9) |
N1 | 0.0346 (9) | 0.0250 (8) | 0.0160 (7) | −0.0079 (7) | 0.0064 (6) | −0.0040 (6) |
N2 | 0.0454 (11) | 0.0258 (9) | 0.0167 (8) | −0.0091 (7) | 0.0110 (7) | −0.0039 (6) |
N3 | 0.0429 (10) | 0.0269 (9) | 0.0200 (8) | −0.0103 (7) | 0.0116 (7) | −0.0042 (6) |
N4 | 0.0479 (11) | 0.0281 (9) | 0.0217 (8) | −0.0110 (8) | 0.0149 (7) | −0.0035 (7) |
N5 | 0.0276 (8) | 0.0282 (8) | 0.0134 (7) | 0.0056 (7) | 0.0039 (6) | 0.0024 (6) |
N6 | 0.0362 (9) | 0.0324 (9) | 0.0142 (7) | 0.0107 (7) | 0.0067 (6) | 0.0041 (6) |
O1W | 0.0577 (11) | 0.0355 (9) | 0.0361 (9) | −0.0071 (8) | 0.0100 (8) | −0.0050 (7) |
Cu1—N1 | 2.0247 (15) | C8—N5 | 1.459 (2) |
Cu1—N6i | 1.9909 (16) | C8—H8A | 0.9700 |
Cu1—O1W | 2.610 (2) | C8—H8B | 0.9700 |
C1—N2 | 1.325 (2) | C9—N6 | 1.318 (3) |
C1—N4 | 1.339 (2) | C9—N5 | 1.341 (2) |
C1—C2 | 1.477 (2) | C9—H9 | 0.9300 |
C2—C7 | 1.391 (3) | C10—C11 | 1.359 (3) |
C2—C3 | 1.395 (3) | C10—N6 | 1.372 (3) |
C3—C4 | 1.387 (3) | C10—H10 | 0.9300 |
C3—H3 | 0.9300 | C11—N5 | 1.378 (3) |
C4—C5 | 1.392 (3) | C11—H11 | 0.9300 |
C4—H4 | 0.9300 | N1—N3 | 1.313 (2) |
C5—C6 | 1.386 (3) | N1—N2 | 1.343 (2) |
C5—C8 | 1.521 (2) | N3—N4 | 1.342 (2) |
C6—C7 | 1.392 (3) | O1W—H1A | 0.900 (18) |
C6—H6 | 0.9300 | O1W—H1B | 0.874 (18) |
C7—H7 | 0.9300 | ||
N6ii—Cu1—N6i | 180.00 | C2—C7—H7 | 119.7 |
N6ii—Cu1—N1 | 89.67 (6) | C6—C7—H7 | 119.7 |
N6i—Cu1—N1 | 90.33 (6) | N5—C8—C5 | 112.80 (15) |
N6ii—Cu1—N1iii | 90.33 (6) | N5—C8—H8A | 109.0 |
N6i—Cu1—N1iii | 89.67 (6) | C5—C8—H8A | 109.0 |
N1—Cu1—N1iii | 180.0 | N5—C8—H8B | 109.0 |
O1W—Cu1—N1 | 96.47 (6) | C5—C8—H8B | 109.0 |
O1W—Cu1—N6ii | 87.49 (7) | H8A—C8—H8B | 107.8 |
O1W—Cu1—O1Wiii | 180.00 | N6—C9—N5 | 111.21 (18) |
O1W—Cu1—N1iii | 83.53 (6) | N6—C9—H9 | 124.4 |
O1W—Cu1—N6i | 92.51 (7) | N5—C9—H9 | 124.4 |
N2—C1—N4 | 112.13 (16) | C11—C10—N6 | 109.69 (18) |
N2—C1—C2 | 123.50 (16) | C11—C10—H10 | 125.2 |
N4—C1—C2 | 124.37 (16) | N6—C10—H10 | 125.2 |
C7—C2—C3 | 119.01 (16) | C10—C11—N5 | 105.68 (18) |
C7—C2—C1 | 120.23 (17) | C10—C11—H11 | 127.2 |
C3—C2—C1 | 120.75 (16) | N5—C11—H11 | 127.2 |
C4—C3—C2 | 120.16 (17) | N3—N1—N2 | 110.41 (15) |
C4—C3—H3 | 119.9 | N3—N1—Cu1 | 125.39 (12) |
C2—C3—H3 | 119.9 | N2—N1—Cu1 | 123.89 (12) |
C3—C4—C5 | 120.89 (17) | C1—N2—N1 | 104.08 (15) |
C3—C4—H4 | 119.6 | N1—N3—N4 | 108.63 (15) |
C5—C4—H4 | 119.6 | C1—N4—N3 | 104.76 (15) |
C6—C5—C4 | 118.91 (16) | C9—N5—C11 | 107.46 (16) |
C6—C5—C8 | 122.29 (16) | C9—N5—C8 | 124.89 (16) |
C4—C5—C8 | 118.79 (16) | C11—N5—C8 | 127.63 (16) |
C5—C6—C7 | 120.50 (17) | C9—N6—C10 | 105.94 (16) |
C5—C6—H6 | 119.8 | C9—N6—Cu1iv | 123.39 (14) |
C7—C6—H6 | 119.8 | C10—N6—Cu1iv | 130.58 (14) |
C2—C7—C6 | 120.53 (17) | H1A—O1W—H1B | 109 (3) |
N2—C1—C2—C7 | 175.61 (18) | N6i—Cu1—N1—N2 | 146.67 (17) |
N4—C1—C2—C7 | −3.5 (3) | N4—C1—N2—N1 | −0.1 (2) |
N2—C1—C2—C3 | −3.2 (3) | C2—C1—N2—N1 | −179.28 (17) |
N4—C1—C2—C3 | 177.71 (18) | N3—N1—N2—C1 | −0.2 (2) |
C7—C2—C3—C4 | 0.0 (3) | Cu1—N1—N2—C1 | 173.62 (13) |
C1—C2—C3—C4 | 178.88 (17) | N2—N1—N3—N4 | 0.4 (2) |
C2—C3—C4—C5 | 0.6 (3) | Cu1—N1—N3—N4 | −173.29 (13) |
C3—C4—C5—C6 | −0.8 (3) | N2—C1—N4—N3 | 0.3 (2) |
C3—C4—C5—C8 | 177.86 (17) | C2—C1—N4—N3 | 179.51 (17) |
C4—C5—C6—C7 | 0.3 (3) | N1—N3—N4—C1 | −0.4 (2) |
C8—C5—C6—C7 | −178.27 (17) | N6—C9—N5—C11 | 0.8 (2) |
C3—C2—C7—C6 | −0.5 (3) | N6—C9—N5—C8 | 179.32 (16) |
C1—C2—C7—C6 | −179.34 (17) | C10—C11—N5—C9 | −0.5 (2) |
C5—C6—C7—C2 | 0.3 (3) | C10—C11—N5—C8 | −178.94 (17) |
C6—C5—C8—N5 | −24.7 (3) | C5—C8—N5—C9 | −85.6 (2) |
C4—C5—C8—N5 | 156.69 (17) | C5—C8—N5—C11 | 92.7 (2) |
N6—C10—C11—N5 | 0.0 (2) | N5—C9—N6—C10 | −0.8 (2) |
N6ii—Cu1—N1—N3 | 139.55 (17) | N5—C9—N6—Cu1iv | 176.09 (12) |
N6i—Cu1—N1—N3 | −40.45 (17) | C11—C10—N6—C9 | 0.5 (2) |
N6ii—Cu1—N1—N2 | −33.33 (17) | C11—C10—N6—Cu1iv | −176.08 (14) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, −y, −z+1; (iv) −x, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···N3v | 0.90 (2) | 2.07 (2) | 2.929 (3) | 161 (3) |
Symmetry code: (v) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C11H9N6)2(H2O)2] |
Mr | 550.06 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.3363 (10), 6.1934 (9), 25.219 (4) |
β (°) | 97.708 (2) |
V (Å3) | 1135.5 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.01 |
Crystal size (mm) | 0.25 × 0.21 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.751, 0.824 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6050, 2224, 2064 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.085, 1.09 |
No. of reflections | 2224 |
No. of parameters | 175 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.35, −0.29 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).
Cu1—N1 | 2.0247 (15) | Cu1—O1W | 2.610 (2) |
Cu1—N6i | 1.9909 (16) |
Symmetry code: (i) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···N3ii | 0.90 (2) | 2.07 (2) | 2.929 (3) | 161 (3) |
Symmetry code: (ii) −x, −y+1, −z+1. |
Acknowledgements
We thank Changchun Normal University for support.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Masciocchi, N., Galli, S. & Sironi, A. (2005). Comm. Inorg. Chem. 26, 1–37. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877–882. Web of Science CSD CrossRef CAS Google Scholar
Wang, G.-H., Lei, Y.-Q., Wang, N., He, R.-L., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2010). Cryst. Growth Des. 6, 519–523. Google Scholar
Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2006). Cryst. Growth Des. 10, 534–540. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal-organic architectures constructed by flexible, multifunctional ligands often exhibit structural diversity (Song et al., 2012; Wang et al., 2010). Metal-azolate frameworks, being composed of transition metal ions and deprotonated five-membered heterocycles, are regarded as a great achievement in understanding supramolecular isomerism (Masciocchi et al., 2005). The azolate nitrogen donors can be presicely controlled as coordination and guest binding sites. In addition to the strong coordination ability toward transition metal ions, azolate ligands also combine the negative charge of carboxylates and predictable coordination modes of pyridines. Recently, we obtained the title complex by the reaction of copper chloride with 5-(4-imidazol-1-yl-benzyl)-2H-tetrazole using hydrothermal method and its crystal structure is reported here.
In the title compound, the CuII atom lies on an inversion center and adopts a distorted octahedral coordination geometry, being coordinated by four N atoms from four azolate ligands and two water molecules (Fig. 1, Table 1). The Cu—O and Cu—N bond lengths and the bond angles are in the normal range (Zhang et al., 2006). The bridging azolate ligands allow the formation of a two-dimensional network parallel to (1 0 0) (Fig. 2). The crystal structure is further stabilized by O—H···N hydrogen bonds within the network (Table 2).