metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[5-(pyrazin-2-yl-κN1)-3-(pyridin-4-yl)-1H-1,2,4-triazol-1-ido-κN1]cobalt(II) methanol disolvate

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: hxxychj@mail.tjnu.edu.cn

(Received 27 March 2012; accepted 5 April 2012; online 18 April 2012)

The CoII ion in the title mononuclear compound, [Co(C11H7N6)2(H2O)2]·2CH3OH, is located on an inversion center and is six-coordinated in a distorted octa­hedral geometry defined by four N atoms from two deprotonated 5-(pyrazin-2-yl-κN)-3-(pyridin-4-yl)-1H-1,2,4-triazol-1-ide (ppt) ligands and two water mol­ecules. In the crystal, the complex mol­ecules and lattice methanol mol­ecules are linked via O—H⋯N and O—H⋯O hydrogen bonds, generating a two-dimensional supra­molecular network parallel to (001). ππ inter­actions between the triazole and pyrazine rings and between the pyridine rings are present [centroid–centroid distances = 3.686 (3) and 3.929 (4) Å, respectively].

Related literature

For coordination complexes based on N-involved polydentate ligands, see: Guo et al. (2010[Guo, W., Yang, Y.-Y. & Du, M. (2010). Inorg. Chem. Commun. 13, 863-866.]); Ha (2011[Ha, K. (2011). Acta Cryst. E67, m1655.]); Sun et al. (2011[Sun, Y., Guo, W. & Du, M. (2011). Inorg. Chem. Commun. 14, 873-876.]); Tang et al. (2011[Tang, M., Guo, W., Zhang, S.-Z. & Du, M. (2011). Inorg. Chem. Commun. 14, 1217-1220.]); Yang et al. (2010[Yang, Y.-Y., Guo, W. & Du, M. (2010). Inorg. Chem. Commun. 13, 1195-1198.]). For related structures based on 5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazole, see: Liu et al. (2009[Liu, D., Li, M. & Li, D. (2009). Chem. Commun. pp. 6943-6945.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C11H7N6)2(H2O)2]·2CH4O

  • Mr = 605.50

  • Monoclinic, P 21 /n

  • a = 11.462 (9) Å

  • b = 7.121 (5) Å

  • c = 16.116 (12) Å

  • β = 95.418 (14)°

  • V = 1309.6 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 296 K

  • 0.36 × 0.22 × 0.10 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.783, Tmax = 0.932

  • 6377 measured reflections

  • 2307 independent reflections

  • 1685 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.03

  • 2307 reflections

  • 189 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N6i 0.82 1.97 2.760 (4) 163
O1—H1B⋯N5ii 0.85 1.94 2.785 (3) 176
O1—H1A⋯O2iii 0.85 1.81 2.660 (3) 173
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The selection of organic ligands is generally considered as the critical factor for constructing metallosupramolecular complexes. In this connection, nitrogen-involved polydentate ligands have attracted special attentions because of their preference and reliability for coordinating to transition metal ions in versatile fashions (Guo et al., 2010; Ha, 2011; Sun et al., 2011; Tang et al., 2011; Yang et al., 2010). For example, 5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazole (Hppt) has been recently used to prepare two Cu(II) complexes with the observation of unique structural transformations (Liu et al., 2009). Herein, the reaction of Hppt with Co(NO3)2.6H2O produces the title mononuclear complex.

The asymmetric unit of the title complex consists of a CoII ion that lies on an inversion center, one deprotonated ppt anion, one water ligand and one lattice methanol molecule. As shown in Fig. 1, the CoII ion takes a distorted octahedral geometry, coordinating to four N atoms from two ppt ligands [Co—N = 2.076 (2) and 2.130 (2) Å] in the equatorial plane and to two axial water ligands [Co—O = 2.087 (2) Å]. The deprotonated ppt ligand adopts a chelating mode through both the pyrazinyl and triazolyl N donors.

As shown in Fig. 2, the lattice methanol molecule is bonded to the water ligand via O1—H1A···O2iii and the uncoordinated pyridyl group of the ppt ligand via O2—H2···N6i hydrogen bonds [symmetry codes: (i) x, -1+y, z; (iii) -1+x, y, z], linking the adjacent mononuclear complexes into a two-dimensional network. O1—H1B···N5ii hydrogen bond [symmetry code: (ii) -x, 1-y, -z] between the coordinated water and triazole ring is also observed to reinforce this two-dimensional network. In addition, aromatic stacking interactions between the triazolyl (N3—N5, C5, C6) and pyrazinyl (N1, N2, C1—C4) rings as well as between the parallel pyridyl groups (N6, C7—C11) are also found within this supramolecular layer, with centroid–centroid distances and dihedral angles of 3.686 (3)/3.929 (4) Å and 4.2/0.0°.

Related literature top

For coordination complexes based on N-involved polydentate ligands, see: Guo et al. (2010); Ha (2011); Sun et al. (2011); Tang et al. (2011); Yang et al. (2010). For related structures based on 5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazole, see: Liu et al. (2009).

Experimental top

A CH3OH solution (3 ml) of Hppt (11.2 mg, 0.05 mmol) was carefully layered onto an aqueous solution (5 ml) of Co(NO3)2.6H2O (29.1 mg, 0.1 mmol) in a straight glass tube. After evaporating the solvents slowly for ca 1 week, yellow block single crystals suitable for X-ray diffraction analysis were obtained in ca 40% yield. Analysis, calculated for C24H26CoN12O4: C 47.61, H 4.33, N 27.76%; found: C 48.02, H 4.19, N 27.89%.

Refinement top

All H atoms were initially located in a difference Fourier map, then constrained to an ideal geometry and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and O—H = 0.85 (water) and 0.82 (methanol) Å and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex, showing displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (iv) -x, -y, -z.]
[Figure 2] Fig. 2. View of the two-dimensional supramolecular network linked via O—H···O and O—H···N hydrogen bonds (red dashed lines).
Diaquabis[5-(pyrazin-2-yl-κN1)-3-(pyridin-4-yl)-1H-1,2,4- triazol-1-ido-κN1]cobalt(II) methanol disolvate top
Crystal data top
[Co(C11H7N6)2(H2O)2]·2CH4OF(000) = 626
Mr = 605.50Dx = 1.536 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1325 reflections
a = 11.462 (9) Åθ = 2.5–22.3°
b = 7.121 (5) ŵ = 0.71 mm1
c = 16.116 (12) ÅT = 296 K
β = 95.418 (14)°Block, yellow
V = 1309.6 (17) Å30.36 × 0.22 × 0.10 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
2307 independent reflections
Radiation source: fine-focus sealed tube1685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.783, Tmax = 0.932k = 87
6377 measured reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.3583P]
where P = (Fo2 + 2Fc2)/3
2307 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Co(C11H7N6)2(H2O)2]·2CH4OV = 1309.6 (17) Å3
Mr = 605.50Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.462 (9) ŵ = 0.71 mm1
b = 7.121 (5) ÅT = 296 K
c = 16.116 (12) Å0.36 × 0.22 × 0.10 mm
β = 95.418 (14)°
Data collection top
Bruker APEX CCD
diffractometer
2307 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1685 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.932Rint = 0.039
6377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
2307 reflectionsΔρmin = 0.31 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.00000.03537 (19)
O10.09917 (17)0.1407 (3)0.08265 (12)0.0466 (5)
H1A0.14890.07890.10750.070*
H1B0.12140.24960.06630.070*
O20.7363 (2)0.0266 (4)0.16227 (19)0.0799 (8)
H20.69060.11500.15570.120*
N10.06613 (19)0.1782 (3)0.09975 (14)0.0354 (6)
N20.1322 (2)0.4390 (4)0.22262 (17)0.0549 (8)
N30.1212 (2)0.2174 (3)0.00719 (14)0.0375 (6)
N40.2220 (2)0.2651 (3)0.05380 (15)0.0414 (6)
N50.1735 (2)0.4979 (3)0.03782 (14)0.0364 (5)
N60.5474 (3)0.7349 (5)0.1316 (2)0.0752 (10)
C10.1573 (3)0.1507 (4)0.15428 (18)0.0438 (8)
H10.20120.04150.15120.053*
C20.1893 (3)0.2791 (4)0.2156 (2)0.0527 (9)
H2A0.25350.25300.25360.063*
C30.0408 (3)0.4681 (4)0.16709 (19)0.0454 (8)
H30.00090.57970.16930.055*
C40.0058 (2)0.3391 (4)0.10655 (17)0.0353 (7)
C50.0967 (2)0.3570 (4)0.04610 (17)0.0333 (7)
C60.2498 (2)0.4331 (4)0.02493 (18)0.0371 (7)
C70.3528 (3)0.5369 (4)0.06056 (19)0.0422 (8)
C80.4329 (3)0.4564 (5)0.1186 (2)0.0639 (10)
H80.42350.33280.13540.077*
C90.5269 (3)0.5597 (6)0.1513 (3)0.0807 (13)
H90.58010.50180.19030.097*
C100.4694 (4)0.8116 (6)0.0775 (3)0.0824 (13)
H100.48020.93670.06360.099*
C110.3724 (3)0.7207 (5)0.0397 (2)0.0663 (11)
H110.32110.78260.00080.080*
C120.6909 (4)0.1064 (7)0.2107 (3)0.1041 (16)
H12A0.68490.05630.26540.156*
H12B0.61450.14220.18630.156*
H12C0.74130.21430.21450.156*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0389 (3)0.0217 (3)0.0427 (3)0.0062 (2)0.0105 (2)0.0049 (2)
O10.0551 (13)0.0266 (11)0.0577 (14)0.0033 (9)0.0037 (11)0.0067 (9)
O20.0714 (18)0.0657 (18)0.104 (2)0.0281 (14)0.0175 (17)0.0126 (16)
N10.0378 (13)0.0258 (12)0.0405 (14)0.0034 (11)0.0076 (11)0.0018 (10)
N20.0617 (18)0.0399 (15)0.0577 (18)0.0012 (13)0.0231 (15)0.0110 (13)
N30.0373 (13)0.0268 (12)0.0457 (14)0.0045 (10)0.0106 (11)0.0061 (11)
N40.0371 (13)0.0325 (13)0.0516 (15)0.0061 (11)0.0122 (12)0.0037 (12)
N50.0380 (13)0.0237 (12)0.0460 (14)0.0063 (11)0.0038 (11)0.0025 (11)
N60.060 (2)0.064 (2)0.096 (2)0.0251 (17)0.0236 (18)0.0072 (19)
C10.0445 (17)0.0324 (16)0.0510 (19)0.0083 (14)0.0149 (15)0.0006 (14)
C20.054 (2)0.0427 (19)0.057 (2)0.0076 (16)0.0208 (17)0.0035 (16)
C30.0520 (19)0.0308 (17)0.0499 (19)0.0047 (14)0.0138 (16)0.0088 (14)
C40.0387 (16)0.0270 (14)0.0385 (17)0.0004 (12)0.0058 (13)0.0007 (13)
C50.0351 (15)0.0249 (14)0.0383 (17)0.0041 (12)0.0053 (13)0.0008 (12)
C60.0376 (16)0.0281 (14)0.0437 (18)0.0043 (12)0.0052 (14)0.0010 (13)
C70.0377 (17)0.0366 (18)0.0510 (19)0.0062 (13)0.0030 (14)0.0005 (14)
C80.050 (2)0.049 (2)0.087 (3)0.0112 (16)0.021 (2)0.0122 (19)
C90.056 (2)0.064 (3)0.113 (3)0.0139 (19)0.038 (2)0.009 (2)
C100.086 (3)0.060 (3)0.095 (3)0.040 (2)0.022 (3)0.020 (2)
C110.065 (2)0.052 (2)0.076 (2)0.0246 (18)0.024 (2)0.0138 (19)
C120.085 (3)0.096 (4)0.134 (4)0.010 (3)0.023 (3)0.029 (3)
Geometric parameters (Å, º) top
Co1—N3i2.076 (2)N6—C91.314 (5)
Co1—N32.076 (2)C1—C21.370 (4)
Co1—O1i2.087 (2)C1—H10.9300
Co1—O12.087 (2)C2—H2A0.9300
Co1—N1i2.130 (2)C3—C41.372 (4)
Co1—N12.130 (2)C3—H30.9300
O1—H1A0.8502C4—C51.460 (4)
O1—H1B0.8501C6—C71.464 (4)
O2—C121.361 (5)C7—C81.373 (4)
O2—H20.8200C7—C111.375 (4)
N1—C11.315 (3)C8—C91.369 (5)
N1—C41.348 (3)C8—H80.9300
N2—C21.324 (4)C9—H90.9300
N2—C31.328 (4)C10—C111.378 (5)
N3—C51.326 (3)C10—H100.9300
N3—N41.361 (3)C11—H110.9300
N4—C61.333 (4)C12—H12A0.9600
N5—C51.332 (3)C12—H12B0.9600
N5—C61.354 (3)C12—H12C0.9600
N6—C101.307 (5)
N3i—Co1—N3180.00 (12)C1—C2—H2A118.8
N3i—Co1—O1i90.47 (10)N2—C3—C4122.3 (3)
N3—Co1—O1i89.53 (10)N2—C3—H3118.9
N3i—Co1—O189.53 (10)C4—C3—H3118.9
N3—Co1—O190.47 (10)N1—C4—C3120.6 (3)
O1i—Co1—O1180.00 (14)N1—C4—C5114.0 (2)
N3i—Co1—N1i77.67 (9)C3—C4—C5125.3 (3)
N3—Co1—N1i102.33 (9)N3—C5—N5113.7 (2)
O1i—Co1—N1i91.11 (10)N3—C5—C4118.3 (2)
O1—Co1—N1i88.89 (10)N5—C5—C4128.0 (2)
N3i—Co1—N1102.33 (9)N4—C6—N5114.1 (2)
N3—Co1—N177.67 (9)N4—C6—C7121.8 (3)
O1i—Co1—N188.89 (10)N5—C6—C7124.2 (2)
O1—Co1—N191.11 (10)C8—C7—C11116.7 (3)
N1i—Co1—N1180.00 (17)C8—C7—C6121.3 (3)
Co1—O1—H1A118.9C11—C7—C6122.0 (3)
Co1—O1—H1B113.9C9—C8—C7119.3 (3)
H1A—O1—H1B115.1C9—C8—H8120.4
C12—O2—H2109.5C7—C8—H8120.4
C1—N1—C4117.0 (2)N6—C9—C8124.7 (4)
C1—N1—Co1128.27 (19)N6—C9—H9117.6
C4—N1—Co1114.77 (18)C8—C9—H9117.6
C2—N2—C3116.2 (3)N6—C10—C11124.8 (4)
C5—N3—N4106.7 (2)N6—C10—H10117.6
C5—N3—Co1115.07 (17)C11—C10—H10117.6
N4—N3—Co1138.23 (18)C7—C11—C10118.9 (3)
C6—N4—N3104.4 (2)C7—C11—H11120.6
C5—N5—C6101.1 (2)C10—C11—H11120.6
C10—N6—C9115.5 (3)O2—C12—H12A109.5
N1—C1—C2121.6 (3)O2—C12—H12B109.5
N1—C1—H1119.2H12A—C12—H12B109.5
C2—C1—H1119.2O2—C12—H12C109.5
N2—C2—C1122.3 (3)H12A—C12—H12C109.5
N2—C2—H2A118.8H12B—C12—H12C109.5
N3i—Co1—N1—C13.1 (3)N2—C3—C4—C5176.9 (3)
N3—Co1—N1—C1176.9 (3)N4—N3—C5—N51.0 (3)
O1i—Co1—N1—C187.1 (3)Co1—N3—C5—N5177.47 (18)
O1—Co1—N1—C192.9 (3)N4—N3—C5—C4177.7 (2)
N3i—Co1—N1—C4176.62 (19)Co1—N3—C5—C43.9 (3)
N3—Co1—N1—C43.38 (19)C6—N5—C5—N30.8 (3)
O1i—Co1—N1—C493.1 (2)C6—N5—C5—C4177.7 (3)
O1—Co1—N1—C486.9 (2)N1—C4—C5—N30.9 (4)
O1i—Co1—N3—C592.8 (2)C3—C4—C5—N3178.0 (3)
O1—Co1—N3—C587.2 (2)N1—C4—C5—N5179.4 (3)
N1i—Co1—N3—C5176.2 (2)C3—C4—C5—N50.4 (5)
N1—Co1—N3—C53.8 (2)N3—N4—C6—N50.2 (3)
O1i—Co1—N3—N489.4 (3)N3—N4—C6—C7178.5 (3)
O1—Co1—N3—N490.6 (3)C5—N5—C6—N40.4 (3)
N1i—Co1—N3—N41.7 (3)C5—N5—C6—C7179.0 (3)
N1—Co1—N3—N4178.3 (3)N4—C6—C7—C87.8 (5)
C5—N3—N4—C60.7 (3)N5—C6—C7—C8173.7 (3)
Co1—N3—N4—C6177.3 (2)N4—C6—C7—C11170.2 (3)
C4—N1—C1—C20.4 (4)N5—C6—C7—C118.3 (5)
Co1—N1—C1—C2179.9 (2)C11—C7—C8—C90.8 (6)
C3—N2—C2—C10.6 (5)C6—C7—C8—C9178.9 (4)
N1—C1—C2—N21.3 (5)C10—N6—C9—C81.1 (7)
C2—N2—C3—C41.1 (5)C7—C8—C9—N60.2 (7)
C1—N1—C4—C31.2 (4)C9—N6—C10—C111.9 (7)
Co1—N1—C4—C3178.6 (2)C8—C7—C11—C100.0 (6)
C1—N1—C4—C5177.8 (3)C6—C7—C11—C10178.1 (3)
Co1—N1—C4—C52.4 (3)N6—C10—C11—C71.5 (7)
N2—C3—C4—N12.0 (5)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N6ii0.821.972.760 (4)163
O1—H1B···N5iii0.851.942.785 (3)176
O1—H1A···O2iv0.851.812.660 (3)173
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C11H7N6)2(H2O)2]·2CH4O
Mr605.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.462 (9), 7.121 (5), 16.116 (12)
β (°) 95.418 (14)
V3)1309.6 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.36 × 0.22 × 0.10
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.783, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
6377, 2307, 1685
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.03
No. of reflections2307
No. of parameters189
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.31

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N6i0.821.972.760 (4)163
O1—H1B···N5ii0.851.942.785 (3)176
O1—H1A···O2iii0.851.812.660 (3)173
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x1, y, z.
 

Acknowledgements

This work was supported financially by Tianjin Normal University (No. 52XQ1104).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, W., Yang, Y.-Y. & Du, M. (2010). Inorg. Chem. Commun. 13, 863–866.  Web of Science CSD CrossRef CAS Google Scholar
First citationHa, K. (2011). Acta Cryst. E67, m1655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, D., Li, M. & Li, D. (2009). Chem. Commun. pp. 6943–6945.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Guo, W. & Du, M. (2011). Inorg. Chem. Commun. 14, 873–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationTang, M., Guo, W., Zhang, S.-Z. & Du, M. (2011). Inorg. Chem. Commun. 14, 1217–1220.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Y.-Y., Guo, W. & Du, M. (2010). Inorg. Chem. Commun. 13, 1195–1198.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds