metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m685-m686

Poly[[dodeca­aqua­bis­­(μ3-pyridine-2,6-di­carboxyl­ato)tetra­kis­(μ2-pyridine-2,6-di­carboxyl­ato)tri­calciumdieuropium(III)] 10.5-hydrate]

aLaboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: hxdai@bjut.edu.cn

(Received 29 March 2012; accepted 23 April 2012; online 28 April 2012)

In the title compound, {[Ca3Eu2(C7H3NO4)6(H2O)12]·10.5H2O}n, the EuIII ion is nine-coordinated by three tridentate pyridine-2,6-dicarboxyl­ate (PDA) ligands, forming a [Eu(PDA)3]3− building block. The Ca2+ ions adopt two types of coordination geometries. One Ca2+ ion, lying on a twofold rotation axis, is eight-coordinated by four carboxyl­ate O atoms from four PDA ligands and four water mol­ecules, and the other two Ca2+ ions, each lying on an inversion center, are six-coordinated by two carboxyl­ate O atoms from two PDA ligands and four water mol­ecules. The carboxyl­ate groups bridge the EuIII and Ca2+ ions into a three-dimensional porous framework, with channels extending along [010] and [001] in which lattice water mol­ecules are located. Two of the lattice water mol­ecules are disordered over two sets of sites with equal occupancy and one water mol­ecule is 0.25-occupied. Numerous O—H⋯O hydrogen bonds involving the water mol­ecules and carboxyl­ate O atoms are present.

Related literature

For 3d–4f and 4d–4f metal complexes with pyridine-2,6-dicarboxyl­ate ligands, see: Zhao et al. (2006[Zhao, B., Gao, H.-L., Chen, X.-Y., Cheng, P., Shi, W., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2006). Chem. Eur. J. 12, 149-158.], 2007[Zhao, X.-Q., Zhao, B., Ma, Y., Shi, W., Cheng, P., Jiang, Z.-H., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 46, 5832-5834.], 2011[Zhao, X.-Q., Cui, P., Zhao, B., Shi, W. & Cheng, P. (2011). Dalton Trans. 40, 805-819.]); Zhao, Zhao et al. (2009[Zhao, X.-Q., Zhao, B., Shi, W. & Cheng, P. (2009). CrystEngComm, 11, 1261-1269.]). For Ln–Ba (Ln = lanthanide) complexes with pyridine-2,6-dicarboxyl­ate ligands, see: Zhao, Zuo et al. (2009[Zhao, X.-Q., Zuo, Y., Gao, D.-L., Zhao, B., Shi, W. & Cheng, P. (2009). Cryst. Growth Des. 9, 3948-3957.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca3Eu2(C7H3NO4)6(H2O)12]·10.5H2O

  • Mr = 1820.14

  • Monoclinic, P 2/c

  • a = 16.070 (4) Å

  • b = 9.471 (2) Å

  • c = 23.540 (6) Å

  • β = 107.685 (4)°

  • V = 3413.5 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.16 mm−1

  • T = 113 K

  • 0.20 × 0.19 × 0.16 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.672, Tmax = 0.724

  • 27531 measured reflections

  • 6015 independent reflections

  • 4964 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.094

  • S = 1.14

  • 6015 reflections

  • 531 parameters

  • 30 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.31 e Å−3

  • Δρmin = −1.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O10i 0.85 (1) 1.97 (2) 2.796 (6) 163 (5)
O13—H13B⋯O20ii 0.85 (1) 1.85 (1) 2.696 (6) 175 (6)
O14—H14A⋯O16iii 0.85 (1) 1.96 (2) 2.774 (6) 160 (5)
O14—H14B⋯O9iii 0.85 (1) 1.91 (2) 2.723 (5) 160 (5)
O15—H15A⋯O21iv 0.85 (1) 1.99 (1) 2.839 (6) 172 (6)
O15—H15B⋯O5 0.85 (1) 1.90 (1) 2.734 (5) 165 (5)
O16—H16A⋯O13iv 0.78 (6) 2.38 (7) 3.079 (6) 150 (6)
O16—H16B⋯O1iv 0.84 (6) 1.88 (7) 2.704 (6) 169 (6)
O17—H17A⋯O3iii 0.85 (1) 1.91 (1) 2.745 (6) 167 (5)
O17—H17B⋯O19v 0.85 (1) 1.93 (3) 2.722 (7) 155 (6)
O18—H18A⋯O22′vi 0.85 (1) 2.37 (6) 2.990 (15) 130 (6)
O18—H18A⋯O22vi 0.85 (1) 2.16 (7) 2.657 (14) 117 (6)
O18—H18B⋯O4iii 0.85 (1) 1.98 (2) 2.772 (6) 155 (5)
O19—H19A⋯O24vii 0.86 (1) 2.31 (3) 3.12 (2) 159 (6)
O19—H19B⋯O7viii 0.85 (1) 2.07 (4) 2.828 (6) 148 (6)
O20—H20A⋯O15 0.85 (1) 2.04 (2) 2.862 (6) 161 (6)
O20—H20B⋯O23 0.85 (1) 2.03 (4) 2.758 (10) 143 (6)
O20—H20B⋯O22′ix 0.85 (1) 2.32 (4) 3.042 (13) 143 (5)
O21—H21A⋯O11 0.85 (1) 1.94 (2) 2.774 (6) 167 (6)
O21—H21B⋯O17 0.85 (1) 2.42 (4) 3.113 (7) 138 (5)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y-1, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) x, y+1, z; (v) x, y, z-1; (vi) -x, -y+1, -z+1; (vii) -x+1, -y+1, -z+1; (viii) x, y, z+1; (ix) [x, -y+2, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridine-2,6-dicarboxylic acid (H2PDA), as a chelating or bridging ligand, has been proven to be an efficient multidentate ligand to construct multidimensional heterometal-organic frameworks with porous structures. Especially, the lanthanide complexes based on H2PDA show variable structure characters. The PDA anion chelating to a lanthanide ion possesses free carboxylate oxygen atoms, which can coordinate with transition metals. A systematic study of 3d–4f and 4d–4f complexes based on pyridine-2,6-dicarboxylic acid ligand has been undertaken, such as Ln–Mn (Zhao et al., 2006), Ln–Co (Zhao et al., 2007), Ln–Fe (Zhao et al., 2011) and Ln–Ag (Zhao, Zhao et al., 2009). However, the reports of heterometal-organic frameworks associated with lanthanide and alkaline earth ions are rather rare, only Ln–Ba complexes based on pyridine-2,6-dicarboxylic acid ligand were reported (Zhao, Zuo et al., 2009). In this paper, we report the synthesis and crystal structure of the title compound, using the hydrothermal method with pyridine-2,6-dicarboxylic acid.

In the title compound, the EuIII ion coordinates with three PDA ligands in a tridentate mode, forming a [Eu(PDA)3]3- building block. The remaining coordination sites in the [Eu(PDA)3]3- unit coordinate with Ca2+ ions. The Ca2+ ions adopt two types of coordination geometry, as shown in Fig. 1. The coordination environments of Ca1 and Ca3 atoms are similar, each located on an inversion center and coordinated by two carboxylate O atoms and four water molecules, forming [CaO2(H2O)4] building blocks. Ca2 atom lies on a twofold rotation axis and is coordinated by four carboxylate O atoms from four PDA ligands and four water molecules, forming an eight-coordinated [CaO4(H2O)4] building block. Furthermore, Ca2 and Ca1 atoms are bridged by the same PDA ligand. The overall framework can be viewed as the self-assembly of three types of building blocks, [Eu(PDA)3], [CaO2(H2O)4] and [CaO4(H2O)4]. Each [Eu(PDA)3] is surrounded by two [CaO2(H2O)4] units and one [CaO4(H2O)4] unit in its vicinity, while each [CaO2(H2O)4] or [CaO4(H2O)4] unit has two [Eu(PDA)3] and four [Eu(PDA)3] units as the nearest neighbors. The linkers are carboxylate groups. As a result of this connection, the [CaO2(H2O)4], [CaO4(H2O)4] and [Eu(PDA)3] building blocks are connected alternately by carboxylate groups, forming a three-dimensional porous framework, with channels extending along [0 1 0] and [0 0 1] (Fig. 2).

Related literature top

For 3d–4f and 4d–4f metal complexes with pyridine-2,6-dicarboxylate ligands, see: Zhao et al. (2006, 2007, 2011); Zhao, Zhao et al. (2009). For Ln–Ba complexes with pyridine-2,6-dicarboxylate ligands, see: Zhao, Zuo et al. (2009).

Experimental top

A mixture of pyridine-2,6-dicarboxylic acid (134 mg, 0.8 mmol), calcium hydroxide (52 mg, 0.7 mmol), europium nitrate hexahydrate (89 mg, 0.2 mmol) and deionized water (10 ml) was placed in a 25 ml Teflon-lined stainless steel autoclave, which was kept at 433 K for 3 days. The resuling colorless block-shaped crystals suitable for X-ray diffraction experiment were collected and washed with deionized water and diethyl ether (yield: 170 mg).

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). H atorms of water molecules were found from difference Fourier maps and refined with a distance restraint of O—H = 0.85 (1) Å and with Uiso(H) = 1.2Ueq(O). O22 and O23 atoms were disordered over two sets of positions with occupancy factors of 0.5:0.5, respectively. The occupancy factor of the lattice water O24 was set to 0.25. H atorms of disordered water molecules O22, O23 and O24 were not included. The highest residual electron density was found 2.36 Å from H5 atom and the deepest hole 0.78 Å from Eu1 atom.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2009); cell refinement: CrystalClear (Rigaku/MSC, 2009); data reduction: CrystalClear (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Lattice water molecules and H atoms are omitted and C atoms are not labeled for clarity. [Symmetry codes: (i) x, y+1, z; (ii) -x+1, y+1, -z+1/2; (iii) -x+1, y, -z+1/2; (iv) -x+1, -y, -z; (v) -x, -y, -z.]
[Figure 2] Fig. 2. The three-dimensional structure of the title compound viewed along the b axis. Lattice water molecules and H atoms are omitted for clarity.
Poly[[dodecaaquabis(µ3-pyridine-2,6-dicarboxylato)tetrakis(µ2-pyridine- 2,6-dicarboxylato)tricalciumdieuropium(III)] 10.5-hydrate] top
Crystal data top
[Ca3Eu2(C7H3NO4)6(H2O)12]·10.5H2OF(000) = 1830
Mr = 1820.14Dx = 1.771 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 11834 reflections
a = 16.070 (4) Åθ = 1.3–27.9°
b = 9.471 (2) ŵ = 2.16 mm1
c = 23.540 (6) ÅT = 113 K
β = 107.685 (4)°Prism, colorless
V = 3413.5 (14) Å30.20 × 0.19 × 0.16 mm
Z = 2
Data collection top
Rigaku Saturn724 CCD
diffractometer
6015 independent reflections
Radiation source: rotating anode4964 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.054
Detector resolution: 14.22 pixels mm-1θmax = 25.0°, θmin = 1.3°
ω and ϕ scansh = 1819
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
k = 1011
Tmin = 0.672, Tmax = 0.724l = 2828
27531 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0212P)2 + 16.8621P]
where P = (Fo2 + 2Fc2)/3
6015 reflections(Δ/σ)max = 0.002
531 parametersΔρmax = 1.31 e Å3
30 restraintsΔρmin = 1.29 e Å3
Crystal data top
[Ca3Eu2(C7H3NO4)6(H2O)12]·10.5H2OV = 3413.5 (14) Å3
Mr = 1820.14Z = 2
Monoclinic, P2/cMo Kα radiation
a = 16.070 (4) ŵ = 2.16 mm1
b = 9.471 (2) ÅT = 113 K
c = 23.540 (6) Å0.20 × 0.19 × 0.16 mm
β = 107.685 (4)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
6015 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
4964 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.724Rint = 0.054
27531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04230 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0212P)2 + 16.8621P]
where P = (Fo2 + 2Fc2)/3
6015 reflectionsΔρmax = 1.31 e Å3
531 parametersΔρmin = 1.29 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Eu10.296251 (16)0.50554 (3)0.097315 (11)0.00952 (9)
Ca10.50000.00000.00000.0113 (3)
Ca20.50001.00350 (17)0.25000.0138 (3)
Ca30.00000.00000.00000.0198 (4)
O10.3736 (2)0.3233 (4)0.16621 (16)0.0151 (8)
O20.4013 (3)0.2000 (4)0.25127 (16)0.0182 (9)
O30.1929 (2)0.6789 (4)0.11297 (16)0.0174 (9)
O40.1130 (3)0.7722 (5)0.16683 (18)0.0282 (11)
O50.3886 (2)0.6872 (4)0.15705 (16)0.0149 (8)
O60.5155 (2)0.8058 (4)0.18919 (16)0.0158 (9)
O70.3344 (2)0.3313 (4)0.03339 (16)0.0140 (8)
O80.4335 (2)0.2095 (4)0.00428 (16)0.0169 (9)
O90.2999 (2)0.6871 (4)0.02212 (16)0.0162 (9)
O100.2495 (3)0.7858 (4)0.06830 (18)0.0243 (10)
O110.1823 (2)0.3273 (4)0.08688 (16)0.0159 (9)
O120.0604 (3)0.2142 (4)0.03527 (18)0.0205 (9)
O130.6116 (2)0.0662 (4)0.08852 (17)0.0185 (9)
H13A0.647 (2)0.113 (5)0.075 (2)0.022*
H13B0.639 (3)0.012 (5)0.1167 (18)0.022*
O140.4145 (3)0.0939 (4)0.05348 (17)0.0222 (10)
H14A0.419 (4)0.043 (5)0.0840 (16)0.027*
H14B0.380 (3)0.162 (4)0.052 (2)0.027*
O150.3478 (3)0.9194 (4)0.21233 (17)0.0204 (9)
H15A0.306 (3)0.974 (5)0.194 (2)0.025*
H15B0.354 (4)0.854 (4)0.1894 (18)0.025*
O160.4648 (3)1.0983 (4)0.14661 (18)0.0165 (9)
H16A0.504 (4)1.121 (7)0.135 (3)0.020*
H16B0.437 (4)1.172 (7)0.148 (3)0.020*
O170.1405 (3)0.0914 (5)0.0396 (2)0.0314 (11)
H17A0.164 (3)0.161 (4)0.061 (3)0.038*
H17B0.179 (3)0.033 (5)0.036 (3)0.038*
O180.0140 (3)0.0554 (5)0.0933 (2)0.0391 (12)
H18A0.0678 (13)0.048 (7)0.090 (3)0.047*
H18B0.011 (3)0.118 (6)0.118 (3)0.047*
N10.2624 (3)0.4885 (5)0.19488 (18)0.0125 (9)
N20.4526 (3)0.5088 (4)0.09633 (18)0.0106 (9)
N30.1693 (3)0.5085 (5)0.00041 (19)0.0132 (9)
C10.3627 (4)0.2941 (6)0.2164 (2)0.0140 (12)
C20.2960 (4)0.3823 (6)0.2330 (2)0.0158 (12)
C30.2680 (4)0.3533 (7)0.2820 (2)0.0227 (14)
H30.29160.27650.30780.027*
C40.2045 (4)0.4396 (8)0.2922 (3)0.0292 (16)
H40.18380.42230.32530.035*
C50.1711 (4)0.5518 (7)0.2539 (3)0.0281 (16)
H50.12830.61280.26080.034*
C60.2015 (4)0.5727 (6)0.2057 (2)0.0184 (13)
C70.1659 (4)0.6849 (6)0.1585 (2)0.0170 (13)
C80.4686 (4)0.7088 (6)0.1610 (2)0.0124 (12)
C90.5084 (3)0.6070 (5)0.1267 (2)0.0119 (12)
C100.5932 (4)0.6158 (6)0.1249 (2)0.0169 (12)
H100.63110.68760.14640.020*
C110.6218 (4)0.5190 (6)0.0915 (2)0.0182 (13)
H110.68000.52330.08960.022*
C120.5646 (4)0.4142 (6)0.0603 (2)0.0165 (12)
H120.58320.34580.03720.020*
C130.4797 (3)0.4130 (5)0.0640 (2)0.0116 (12)
C140.4114 (4)0.3098 (6)0.0316 (2)0.0134 (12)
C150.2437 (4)0.7017 (6)0.0285 (3)0.0172 (13)
C160.1646 (4)0.6081 (6)0.0416 (2)0.0147 (12)
C170.0927 (4)0.6196 (6)0.0923 (2)0.0192 (13)
H170.08980.69200.12070.023*
C180.0254 (4)0.5236 (7)0.1002 (3)0.0258 (15)
H180.02430.52850.13460.031*
C190.0312 (4)0.4197 (6)0.0574 (3)0.0207 (14)
H190.01420.35240.06220.025*
C200.1038 (3)0.4157 (6)0.0079 (2)0.0137 (12)
C210.1156 (4)0.3100 (6)0.0415 (2)0.0149 (12)
O190.2379 (3)0.0820 (5)0.9928 (2)0.0386 (12)
H19A0.211 (4)0.121 (6)0.9594 (17)0.046*
H19B0.282 (3)0.132 (6)1.011 (2)0.046*
O200.2972 (3)0.9062 (5)0.3187 (2)0.0351 (12)
H20A0.314 (4)0.890 (7)0.2883 (16)0.042*
H20B0.253 (3)0.960 (6)0.309 (2)0.042*
O210.1986 (3)0.0862 (5)0.15634 (18)0.0290 (11)
H21A0.196 (4)0.152 (4)0.1311 (18)0.035*
H21B0.176 (4)0.011 (3)0.139 (2)0.035*
O220.1015 (10)0.9136 (14)0.8459 (6)0.049 (4)0.50
O230.1373 (5)0.9971 (10)0.2459 (3)0.030 (2)0.50
O22'0.1367 (9)0.9633 (14)0.8406 (7)0.049 (4)0.50
O23'0.0826 (8)1.1594 (14)0.2299 (5)0.066 (4)0.50
O240.8088 (12)0.744 (2)0.1251 (9)0.039 (5)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.00769 (14)0.00855 (14)0.01199 (14)0.00043 (12)0.00250 (10)0.00100 (12)
Ca10.0110 (7)0.0095 (7)0.0141 (7)0.0012 (7)0.0049 (6)0.0014 (7)
Ca20.0153 (8)0.0103 (8)0.0120 (7)0.0000.0018 (6)0.000
Ca30.0147 (8)0.0103 (8)0.0264 (9)0.0014 (7)0.0059 (7)0.0002 (7)
O10.015 (2)0.014 (2)0.016 (2)0.0042 (16)0.0041 (16)0.0006 (16)
O20.021 (2)0.014 (2)0.015 (2)0.0040 (17)0.0005 (17)0.0014 (17)
O30.014 (2)0.018 (2)0.020 (2)0.0036 (17)0.0044 (17)0.0012 (17)
O40.023 (2)0.036 (3)0.025 (2)0.016 (2)0.0068 (19)0.003 (2)
O50.009 (2)0.014 (2)0.021 (2)0.0012 (16)0.0038 (16)0.0036 (16)
O60.010 (2)0.013 (2)0.022 (2)0.0035 (16)0.0008 (16)0.0036 (17)
O70.012 (2)0.013 (2)0.018 (2)0.0009 (16)0.0071 (16)0.0035 (16)
O80.023 (2)0.013 (2)0.017 (2)0.0045 (17)0.0090 (17)0.0017 (16)
O90.014 (2)0.016 (2)0.018 (2)0.0002 (17)0.0050 (17)0.0032 (16)
O100.021 (2)0.026 (2)0.027 (2)0.0012 (19)0.0096 (19)0.0131 (19)
O110.010 (2)0.015 (2)0.020 (2)0.0034 (16)0.0012 (17)0.0025 (16)
O120.015 (2)0.013 (2)0.032 (2)0.0064 (17)0.0043 (18)0.0052 (17)
O130.015 (2)0.021 (2)0.018 (2)0.0004 (18)0.0024 (17)0.0034 (17)
O140.033 (3)0.018 (2)0.019 (2)0.0128 (19)0.014 (2)0.0057 (17)
O150.019 (2)0.013 (2)0.023 (2)0.0057 (18)0.0025 (18)0.0045 (17)
O160.019 (2)0.010 (2)0.020 (2)0.0020 (18)0.0057 (18)0.0018 (17)
O170.015 (2)0.016 (2)0.061 (3)0.0024 (18)0.007 (2)0.014 (2)
O180.042 (3)0.028 (3)0.046 (3)0.007 (2)0.012 (3)0.005 (2)
N10.010 (2)0.013 (2)0.014 (2)0.001 (2)0.0023 (18)0.005 (2)
N20.012 (2)0.006 (2)0.014 (2)0.001 (2)0.0042 (18)0.0029 (19)
N30.011 (2)0.013 (2)0.017 (2)0.000 (2)0.0055 (18)0.004 (2)
C10.017 (3)0.012 (3)0.011 (3)0.008 (2)0.001 (2)0.003 (2)
C20.011 (3)0.018 (3)0.015 (3)0.003 (2)0.002 (2)0.006 (2)
C30.019 (3)0.034 (4)0.014 (3)0.003 (3)0.003 (3)0.003 (3)
C40.017 (3)0.052 (4)0.019 (3)0.004 (3)0.008 (3)0.005 (3)
C50.016 (3)0.052 (4)0.019 (3)0.001 (3)0.009 (3)0.010 (3)
C60.009 (3)0.023 (3)0.019 (3)0.001 (2)0.003 (2)0.007 (2)
C70.010 (3)0.022 (3)0.017 (3)0.001 (3)0.001 (2)0.007 (2)
C80.014 (3)0.010 (3)0.011 (3)0.000 (2)0.001 (2)0.002 (2)
C90.010 (3)0.009 (3)0.016 (3)0.002 (2)0.002 (2)0.005 (2)
C100.013 (3)0.018 (3)0.020 (3)0.001 (2)0.004 (2)0.005 (2)
C110.012 (3)0.020 (3)0.022 (3)0.005 (2)0.005 (2)0.008 (2)
C120.015 (3)0.015 (3)0.021 (3)0.004 (2)0.009 (2)0.003 (2)
C130.012 (3)0.008 (3)0.015 (3)0.004 (2)0.005 (2)0.006 (2)
C140.017 (3)0.010 (3)0.013 (3)0.002 (2)0.006 (2)0.005 (2)
C150.020 (3)0.012 (3)0.023 (3)0.007 (2)0.010 (3)0.001 (2)
C160.015 (3)0.014 (3)0.019 (3)0.006 (2)0.012 (2)0.001 (2)
C170.015 (3)0.025 (3)0.020 (3)0.004 (3)0.008 (3)0.003 (3)
C180.014 (3)0.039 (4)0.020 (3)0.007 (3)0.002 (2)0.002 (3)
C190.013 (3)0.018 (3)0.025 (3)0.000 (3)0.002 (3)0.009 (3)
C200.011 (3)0.013 (3)0.019 (3)0.000 (2)0.006 (2)0.006 (2)
C210.013 (3)0.010 (3)0.023 (3)0.000 (2)0.008 (3)0.004 (2)
O190.032 (3)0.038 (3)0.048 (3)0.013 (2)0.014 (2)0.013 (2)
O200.038 (3)0.035 (3)0.031 (3)0.010 (2)0.008 (2)0.011 (2)
O210.029 (3)0.016 (2)0.031 (3)0.002 (2)0.007 (2)0.0055 (19)
O220.070 (11)0.046 (9)0.048 (7)0.012 (7)0.041 (7)0.017 (6)
O230.023 (5)0.048 (6)0.017 (4)0.007 (5)0.003 (4)0.005 (4)
O22'0.040 (8)0.041 (8)0.071 (9)0.001 (6)0.025 (6)0.026 (6)
O23'0.068 (8)0.085 (10)0.045 (7)0.036 (7)0.018 (6)0.015 (6)
O240.034 (6)0.040 (6)0.043 (6)0.003 (5)0.013 (5)0.003 (5)
Geometric parameters (Å, º) top
Eu1—O52.423 (4)O14—H14A0.85 (1)
Eu1—O72.434 (4)O14—H14B0.85 (1)
Eu1—O12.435 (4)O15—H15A0.85 (1)
Eu1—O32.441 (4)O15—H15B0.85 (1)
Eu1—O112.447 (4)O16—H16A0.78 (6)
Eu1—O92.481 (4)O16—H16B0.84 (6)
Eu1—N22.520 (4)O17—H17A0.85 (1)
Eu1—N12.521 (4)O17—H17B0.85 (1)
Eu1—N32.557 (4)O18—H18A0.85 (1)
Ca1—O8i2.270 (4)O18—H18B0.85 (1)
Ca1—O82.270 (4)N1—C61.345 (7)
Ca1—O14i2.305 (4)N1—C21.347 (7)
Ca1—O142.305 (4)N2—C91.338 (7)
Ca1—O13i2.383 (4)N2—C131.340 (7)
Ca1—O132.383 (4)N3—C201.339 (7)
Ca1—H13A2.70 (5)N3—C161.353 (7)
Ca1—H14A2.70 (4)C1—C21.501 (8)
Ca2—O6ii2.415 (4)C2—C31.387 (8)
Ca2—O62.415 (4)C3—C41.383 (9)
Ca2—O2iii2.451 (4)C3—H30.9500
Ca2—O2iv2.451 (4)C4—C51.391 (9)
Ca2—O15ii2.466 (4)C4—H40.9500
Ca2—O152.466 (4)C5—C61.379 (8)
Ca2—O16ii2.493 (4)C5—H50.9500
Ca2—O162.493 (4)C6—C71.519 (8)
Ca2—H15B2.74 (5)C8—C91.519 (7)
Ca3—O122.292 (4)C9—C101.378 (8)
Ca3—O12v2.292 (4)C10—C111.375 (8)
Ca3—O17v2.332 (4)C10—H100.9500
Ca3—O172.332 (4)C11—C121.400 (8)
Ca3—O182.334 (5)C11—H110.9500
Ca3—O18v2.334 (5)C12—C131.392 (8)
Ca3—H17B2.76 (4)C12—H120.9500
Ca3—H18A2.70 (5)C13—C141.495 (8)
O1—C11.276 (6)C15—C161.502 (8)
O2—C11.243 (6)C16—C171.390 (8)
O2—Ca2vi2.451 (4)C17—C181.381 (8)
O3—C71.274 (7)C17—H170.9500
O4—C71.243 (7)C18—C191.392 (9)
O5—C81.277 (6)C18—H180.9500
O6—C81.244 (6)C19—C201.375 (8)
O7—C141.267 (6)C19—H190.9500
O8—C141.257 (6)C20—C211.501 (8)
O9—C151.266 (7)O19—H19A0.86 (1)
O10—C151.254 (7)O19—H19B0.85 (1)
O11—C211.274 (6)O20—H20A0.85 (1)
O12—C211.247 (7)O20—H20B0.85 (1)
O13—H13A0.85 (1)O21—H21A0.85 (1)
O13—H13B0.85 (1)O21—H21B0.85 (1)
O5—Eu1—O7127.97 (12)O12v—Ca3—H17B107.2 (11)
O5—Eu1—O191.03 (12)O17v—Ca3—H17B163.3 (7)
O7—Eu1—O175.97 (12)O17—Ca3—H17B16.7 (7)
O5—Eu1—O376.07 (12)O18—Ca3—H17B94.3 (12)
O7—Eu1—O3149.31 (12)O18v—Ca3—H17B85.7 (12)
O1—Eu1—O3127.54 (13)O12—Ca3—H18A95.3 (15)
O5—Eu1—O11148.83 (13)O12v—Ca3—H18A84.7 (15)
O7—Eu1—O1177.98 (12)O17v—Ca3—H18A78.7 (7)
O1—Eu1—O1178.07 (12)O17—Ca3—H18A101.3 (7)
O3—Eu1—O1187.52 (13)O18—Ca3—H18A17.5 (8)
O5—Eu1—O977.22 (12)O18v—Ca3—H18A162.5 (8)
O7—Eu1—O987.93 (12)H17B—Ca3—H18A111.7 (14)
O1—Eu1—O9148.04 (13)C1—O1—Eu1125.7 (3)
O3—Eu1—O978.80 (13)C1—O2—Ca2vi137.0 (4)
O11—Eu1—O9125.83 (12)C7—O3—Eu1125.3 (3)
O5—Eu1—N263.91 (13)C8—O5—Eu1125.6 (3)
O7—Eu1—N264.10 (13)C8—O6—Ca2137.2 (4)
O1—Eu1—N272.89 (13)C14—O7—Eu1124.2 (3)
O3—Eu1—N2135.96 (13)C14—O8—Ca1153.3 (3)
O11—Eu1—N2136.48 (13)C15—O9—Eu1125.7 (4)
O9—Eu1—N275.26 (13)C21—O11—Eu1125.9 (3)
O5—Eu1—N177.31 (13)C21—O12—Ca3153.5 (4)
O7—Eu1—N1133.20 (13)Ca1—O13—H13A103 (4)
O1—Eu1—N163.64 (13)Ca1—O13—H13B127 (4)
O3—Eu1—N163.93 (13)H13A—O13—H13B111 (4)
O11—Eu1—N171.66 (13)Ca1—O14—H14A109 (3)
O9—Eu1—N1138.80 (13)Ca1—O14—H14B141 (3)
N2—Eu1—N1120.06 (13)H14A—O14—H14B111 (5)
O5—Eu1—N3133.78 (14)Ca2—O15—H15A122 (4)
O7—Eu1—N374.84 (13)Ca2—O15—H15B99 (4)
O1—Eu1—N3135.19 (13)H15A—O15—H15B110 (5)
O3—Eu1—N374.49 (13)Ca2—O16—H16A118 (5)
O11—Eu1—N363.13 (13)Ca2—O16—H16B103 (4)
O9—Eu1—N362.70 (13)H16A—O16—H16B106 (6)
N2—Eu1—N3121.28 (13)Ca3—O17—H17A137 (4)
N1—Eu1—N3118.61 (14)Ca3—O17—H17B111 (4)
O8i—Ca1—O8179.999 (2)H17A—O17—H17B111 (5)
O8i—Ca1—O14i86.94 (14)Ca3—O18—H18A107 (4)
O8—Ca1—O14i93.06 (14)Ca3—O18—H18B131 (5)
O8i—Ca1—O1493.07 (14)H18A—O18—H18B112 (6)
O8—Ca1—O1486.93 (14)C6—N1—C2119.0 (5)
O14i—Ca1—O14180.0C6—N1—Eu1120.3 (4)
O8i—Ca1—O13i88.30 (14)C2—N1—Eu1120.0 (4)
O8—Ca1—O13i91.70 (14)C9—N2—C13119.5 (5)
O14i—Ca1—O13i92.24 (14)C9—N2—Eu1120.8 (3)
O14—Ca1—O13i87.76 (14)C13—N2—Eu1119.7 (3)
O8i—Ca1—O1391.70 (14)C20—N3—C16119.0 (5)
O8—Ca1—O1388.30 (14)C20—N3—Eu1120.1 (3)
O14i—Ca1—O1387.76 (14)C16—N3—Eu1120.8 (3)
O14—Ca1—O1392.24 (14)O2—C1—O1125.8 (5)
O13i—Ca1—O13180.0O2—C1—C2118.6 (5)
O8i—Ca1—H13A92.6 (12)O1—C1—C2115.5 (5)
O8—Ca1—H13A87.4 (12)N1—C2—C3122.4 (5)
O14i—Ca1—H13A70.1 (6)N1—C2—C1114.5 (5)
O14—Ca1—H13A109.9 (6)C3—C2—C1123.0 (5)
O13i—Ca1—H13A162.2 (6)C4—C3—C2118.0 (6)
O13—Ca1—H13A17.8 (6)C4—C3—H3121.0
O8i—Ca1—H14A103.8 (11)C2—C3—H3121.0
O8—Ca1—H14A76.2 (11)C3—C4—C5119.9 (6)
O14i—Ca1—H14A162.7 (6)C3—C4—H4120.0
O14—Ca1—H14A17.3 (6)C5—C4—H4120.0
O13i—Ca1—H14A101.5 (10)C6—C5—C4118.6 (6)
O13—Ca1—H14A78.5 (10)C6—C5—H5120.7
H13A—Ca1—H14A95.5 (12)C4—C5—H5120.7
O6ii—Ca2—O678.34 (19)N1—C6—C5122.0 (6)
O6ii—Ca2—O2iii113.44 (13)N1—C6—C7114.2 (5)
O6—Ca2—O2iii141.21 (12)C5—C6—C7123.6 (5)
O6ii—Ca2—O2iv141.21 (12)O4—C7—O3126.0 (5)
O6—Ca2—O2iv113.44 (13)O4—C7—C6118.2 (5)
O2iii—Ca2—O2iv81.20 (19)O3—C7—C6115.8 (5)
O6ii—Ca2—O15ii78.83 (13)O6—C8—O5126.2 (5)
O6—Ca2—O15ii72.14 (13)O6—C8—C9117.9 (5)
O2iii—Ca2—O15ii144.61 (14)O5—C8—C9115.9 (5)
O2iv—Ca2—O15ii71.03 (13)N2—C9—C10122.3 (5)
O6ii—Ca2—O1572.14 (13)N2—C9—C8113.8 (5)
O6—Ca2—O1578.83 (13)C10—C9—C8123.9 (5)
O2iii—Ca2—O1571.03 (13)C11—C10—C9118.8 (5)
O2iv—Ca2—O15144.61 (14)C11—C10—H10120.6
O15ii—Ca2—O15142.3 (2)C9—C10—H10120.6
O6ii—Ca2—O16ii74.59 (13)C10—C11—C12119.5 (5)
O6—Ca2—O16ii145.52 (14)C10—C11—H11120.3
O2iii—Ca2—O16ii70.74 (13)C12—C11—H11120.3
O2iv—Ca2—O16ii77.45 (14)C13—C12—C11118.2 (5)
O15ii—Ca2—O16ii81.92 (14)C13—C12—H12120.9
O15—Ca2—O16ii111.92 (14)C11—C12—H12120.9
O6ii—Ca2—O16145.52 (14)N2—C13—C12121.6 (5)
O6—Ca2—O1674.59 (13)N2—C13—C14114.7 (5)
O2iii—Ca2—O1677.45 (14)C12—C13—C14123.7 (5)
O2iv—Ca2—O1670.74 (13)O8—C14—O7124.7 (5)
O15ii—Ca2—O16111.91 (14)O8—C14—C13118.5 (5)
O15—Ca2—O1681.92 (14)O7—C14—C13116.8 (5)
O16ii—Ca2—O16137.8 (2)O10—C15—O9125.4 (5)
O6ii—Ca2—H15B71.4 (11)O10—C15—C16118.1 (5)
O6—Ca2—H15B61.0 (6)O9—C15—C16116.5 (5)
O2iii—Ca2—H15B86.9 (6)N3—C16—C17121.9 (5)
O2iv—Ca2—H15B147.2 (11)N3—C16—C15114.0 (5)
O15ii—Ca2—H15B128.1 (6)C17—C16—C15124.1 (5)
O15—Ca2—H15B17.9 (6)C18—C17—C16118.5 (6)
O16ii—Ca2—H15B126.9 (9)C18—C17—H17120.7
O16—Ca2—H15B76.9 (12)C16—C17—H17120.7
O12—Ca3—O12v180.00 (9)C17—C18—C19119.3 (5)
O12—Ca3—O17v93.91 (15)C17—C18—H18120.3
O12v—Ca3—O17v86.09 (15)C19—C18—H18120.3
O12—Ca3—O1786.09 (15)C20—C19—C18119.1 (6)
O12v—Ca3—O1793.91 (15)C20—C19—H19120.5
O17v—Ca3—O17180.0 (3)C18—C19—H19120.5
O12—Ca3—O1890.53 (16)N3—C20—C19122.1 (5)
O12v—Ca3—O1889.48 (16)N3—C20—C21114.6 (5)
O17v—Ca3—O1895.84 (18)C19—C20—C21123.3 (5)
O17—Ca3—O1884.16 (18)O12—C21—O11125.4 (5)
O12—Ca3—O18v89.47 (16)O12—C21—C20118.5 (5)
O12v—Ca3—O18v90.53 (16)O11—C21—C20116.1 (5)
O17v—Ca3—O18v84.16 (18)H19A—O19—H19B109 (5)
O17—Ca3—O18v95.84 (18)H20A—O20—H20B110 (5)
O18—Ca3—O18v180.0H21A—O21—H21B111 (4)
O12—Ca3—H17B72.8 (11)
O5—Eu1—O1—C178.5 (4)O11—Eu1—N3—C201.3 (4)
O7—Eu1—O1—C1152.5 (4)O9—Eu1—N3—C20179.1 (4)
O3—Eu1—O1—C15.4 (5)N2—Eu1—N3—C20131.3 (4)
O11—Eu1—O1—C172.0 (4)N1—Eu1—N3—C2046.0 (4)
O9—Eu1—O1—C1145.6 (4)O5—Eu1—N3—C1630.0 (5)
N2—Eu1—O1—C1140.8 (4)O7—Eu1—N3—C1698.5 (4)
N1—Eu1—O1—C13.2 (4)O1—Eu1—N3—C16149.5 (4)
N3—Eu1—O1—C1101.8 (4)O3—Eu1—N3—C1682.3 (4)
O5—Eu1—O3—C784.6 (4)O11—Eu1—N3—C16177.5 (4)
O7—Eu1—O3—C7129.9 (4)O9—Eu1—N3—C162.9 (4)
O1—Eu1—O3—C74.2 (5)N2—Eu1—N3—C1652.5 (4)
O11—Eu1—O3—C768.7 (4)N1—Eu1—N3—C16130.2 (4)
O9—Eu1—O3—C7164.0 (4)Ca2vi—O2—C1—O18.5 (9)
N2—Eu1—O3—C7109.3 (4)Ca2vi—O2—C1—C2170.7 (3)
N1—Eu1—O3—C72.1 (4)Eu1—O1—C1—O2179.0 (4)
N3—Eu1—O3—C7131.4 (4)Eu1—O1—C1—C20.2 (6)
O7—Eu1—O5—C80.5 (5)C6—N1—C2—C32.3 (8)
O1—Eu1—O5—C872.5 (4)Eu1—N1—C2—C3168.5 (4)
O3—Eu1—O5—C8159.0 (4)C6—N1—C2—C1179.4 (5)
O11—Eu1—O5—C8140.8 (4)Eu1—N1—C2—C18.6 (6)
O9—Eu1—O5—C877.5 (4)O2—C1—C2—N1175.2 (5)
N2—Eu1—O5—C82.1 (4)O1—C1—C2—N15.5 (7)
N1—Eu1—O5—C8135.1 (4)O2—C1—C2—C37.8 (8)
N3—Eu1—O5—C8107.2 (4)O1—C1—C2—C3171.5 (5)
O6ii—Ca2—O6—C866.7 (5)N1—C2—C3—C41.5 (9)
O2iii—Ca2—O6—C846.3 (6)C1—C2—C3—C4178.3 (5)
O2iv—Ca2—O6—C8152.2 (5)C2—C3—C4—C50.2 (9)
O15ii—Ca2—O6—C8148.6 (5)C3—C4—C5—C61.1 (10)
O15—Ca2—O6—C87.1 (5)C2—N1—C6—C51.3 (8)
O16ii—Ca2—O6—C8105.5 (5)Eu1—N1—C6—C5169.5 (4)
O16—Ca2—O6—C891.7 (5)C2—N1—C6—C7177.7 (5)
O5—Eu1—O7—C149.2 (4)Eu1—N1—C6—C77.0 (6)
O1—Eu1—O7—C1471.0 (4)C4—C5—C6—N10.4 (9)
O3—Eu1—O7—C14145.0 (4)C4—C5—C6—C7175.7 (6)
O11—Eu1—O7—C14151.5 (4)Eu1—O3—C7—O4179.7 (4)
O9—Eu1—O7—C1481.2 (4)Eu1—O3—C7—C60.5 (7)
N2—Eu1—O7—C146.6 (4)N1—C6—C7—O4175.9 (5)
N1—Eu1—O7—C14101.4 (4)C5—C6—C7—O47.8 (9)
N3—Eu1—O7—C14143.4 (4)N1—C6—C7—O34.9 (7)
O14i—Ca1—O8—C14123.5 (8)C5—C6—C7—O3171.4 (5)
O14—Ca1—O8—C1456.5 (8)Ca2—O6—C8—O50.2 (9)
O13i—Ca1—O8—C14144.1 (8)Ca2—O6—C8—C9178.4 (3)
O13—Ca1—O8—C1435.9 (8)Eu1—O5—C8—O6176.3 (4)
O5—Eu1—O9—C15157.9 (4)Eu1—O5—C8—C92.3 (6)
O7—Eu1—O9—C1572.4 (4)C13—N2—C9—C101.6 (8)
O1—Eu1—O9—C15131.3 (4)Eu1—N2—C9—C10176.9 (4)
O3—Eu1—O9—C1579.8 (4)C13—N2—C9—C8179.7 (4)
O11—Eu1—O9—C151.2 (5)Eu1—N2—C9—C81.2 (6)
N2—Eu1—O9—C15136.1 (4)O6—C8—C9—N2178.1 (4)
N1—Eu1—O9—C15104.8 (4)O5—C8—C9—N20.6 (7)
N3—Eu1—O9—C151.6 (4)O6—C8—C9—C100.1 (8)
O5—Eu1—O11—C21133.3 (4)O5—C8—C9—C10178.7 (5)
O7—Eu1—O11—C2177.0 (4)N2—C9—C10—C111.0 (8)
O1—Eu1—O11—C21155.0 (4)C8—C9—C10—C11178.9 (5)
O3—Eu1—O11—C2175.8 (4)C9—C10—C11—C120.1 (8)
O9—Eu1—O11—C211.5 (5)C10—C11—C12—C130.6 (8)
N2—Eu1—O11—C21106.3 (4)C9—N2—C13—C121.0 (7)
N1—Eu1—O11—C21139.1 (4)Eu1—N2—C13—C12177.5 (4)
N3—Eu1—O11—C211.9 (4)C9—N2—C13—C14179.4 (4)
O17v—Ca3—O12—C21129.5 (8)Eu1—N2—C13—C140.9 (6)
O17—Ca3—O12—C2150.5 (8)C11—C12—C13—N20.0 (8)
O18—Ca3—O12—C21134.6 (8)C11—C12—C13—C14178.2 (5)
O18v—Ca3—O12—C2145.4 (8)Ca1—O8—C14—O7107.4 (8)
O5—Eu1—N1—C685.5 (4)Ca1—O8—C14—C1373.3 (9)
O7—Eu1—N1—C6143.7 (4)Eu1—O7—C14—O8171.1 (4)
O1—Eu1—N1—C6176.9 (4)Eu1—O7—C14—C139.5 (6)
O3—Eu1—N1—C64.9 (4)N2—C13—C14—O8174.2 (5)
O11—Eu1—N1—C691.5 (4)C12—C13—C14—O87.5 (8)
O9—Eu1—N1—C632.4 (5)N2—C13—C14—O76.5 (7)
N2—Eu1—N1—C6134.8 (4)C12—C13—C14—O7171.9 (5)
N3—Eu1—N1—C647.8 (4)Eu1—O9—C15—O10173.7 (4)
O5—Eu1—N1—C2103.9 (4)Eu1—O9—C15—C165.3 (7)
O7—Eu1—N1—C226.9 (5)C20—N3—C16—C172.0 (8)
O1—Eu1—N1—C26.3 (4)Eu1—N3—C16—C17174.3 (4)
O3—Eu1—N1—C2175.6 (4)C20—N3—C16—C15177.5 (5)
O11—Eu1—N1—C279.2 (4)Eu1—N3—C16—C156.3 (6)
O9—Eu1—N1—C2156.9 (3)O10—C15—C16—N3171.7 (5)
N2—Eu1—N1—C254.5 (4)O9—C15—C16—N37.4 (7)
N3—Eu1—N1—C2122.9 (4)O10—C15—C16—C177.7 (8)
O5—Eu1—N2—C91.6 (3)O9—C15—C16—C17173.2 (5)
O7—Eu1—N2—C9176.1 (4)N3—C16—C17—C181.8 (9)
O1—Eu1—N2—C9101.5 (4)C15—C16—C17—C18177.6 (5)
O3—Eu1—N2—C925.3 (4)C16—C17—C18—C190.6 (9)
O11—Eu1—N2—C9151.8 (3)C17—C18—C19—C200.4 (9)
O9—Eu1—N2—C981.1 (4)C16—N3—C20—C191.0 (8)
N1—Eu1—N2—C957.2 (4)Eu1—N3—C20—C19175.3 (4)
N3—Eu1—N2—C9125.5 (4)C16—N3—C20—C21180.0 (5)
O5—Eu1—N2—C13179.9 (4)Eu1—N3—C20—C213.7 (6)
O7—Eu1—N2—C132.4 (3)C18—C19—C20—N30.2 (9)
O1—Eu1—N2—C1380.0 (4)C18—C19—C20—C21178.7 (5)
O3—Eu1—N2—C13153.2 (3)Ca3—O12—C21—O1198.7 (9)
O11—Eu1—N2—C1329.7 (4)Ca3—O12—C21—C2081.6 (9)
O9—Eu1—N2—C1397.3 (4)Eu1—O11—C21—O12175.9 (4)
N1—Eu1—N2—C13124.4 (4)Eu1—O11—C21—C204.4 (7)
N3—Eu1—N2—C1353.0 (4)N3—C20—C21—O12175.2 (5)
O5—Eu1—N3—C20146.2 (4)C19—C20—C21—O125.8 (8)
O7—Eu1—N3—C2085.3 (4)N3—C20—C21—O115.1 (7)
O1—Eu1—N3—C2034.3 (5)C19—C20—C21—O11173.9 (5)
O3—Eu1—N3—C2093.9 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1, z+1/2; (v) x, y, z; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O10vii0.85 (1)1.97 (2)2.796 (6)163 (5)
O13—H13B···O20viii0.85 (1)1.85 (1)2.696 (6)175 (6)
O14—H14A···O16vi0.85 (1)1.96 (2)2.774 (6)160 (5)
O14—H14B···O9vi0.85 (1)1.91 (2)2.723 (5)160 (5)
O15—H15A···O21iii0.85 (1)1.99 (1)2.839 (6)172 (6)
O15—H15B···O50.85 (1)1.90 (1)2.734 (5)165 (5)
O16—H16A···O13iii0.78 (6)2.38 (7)3.079 (6)150 (6)
O16—H16B···O1iii0.84 (6)1.88 (7)2.704 (6)169 (6)
O17—H17A···O3vi0.85 (1)1.91 (1)2.745 (6)167 (5)
O17—H17B···O19ix0.85 (1)1.93 (3)2.722 (7)155 (6)
O18—H18A···O22x0.85 (1)2.37 (6)2.990 (15)130 (6)
O18—H18A···O22x0.85 (1)2.16 (7)2.657 (14)117 (6)
O18—H18B···O4vi0.85 (1)1.98 (2)2.772 (6)155 (5)
O19—H19A···O24xi0.86 (1)2.31 (3)3.12 (2)159 (6)
O19—H19B···O7xii0.85 (1)2.07 (4)2.828 (6)148 (6)
O20—H20A···O150.85 (1)2.04 (2)2.862 (6)161 (6)
O20—H20B···O230.85 (1)2.03 (4)2.758 (10)143 (6)
O20—H20B···O22xiii0.85 (1)2.32 (4)3.042 (13)143 (5)
O21—H21A···O110.85 (1)1.94 (2)2.774 (6)167 (6)
O21—H21B···O170.85 (1)2.42 (4)3.113 (7)138 (5)
Symmetry codes: (iii) x, y+1, z; (vi) x, y1, z; (vii) x+1, y+1, z; (viii) x+1, y1, z+1/2; (ix) x, y, z1; (x) x, y+1, z+1; (xi) x+1, y+1, z+1; (xii) x, y, z+1; (xiii) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Ca3Eu2(C7H3NO4)6(H2O)12]·10.5H2O
Mr1820.14
Crystal system, space groupMonoclinic, P2/c
Temperature (K)113
a, b, c (Å)16.070 (4), 9.471 (2), 23.540 (6)
β (°) 107.685 (4)
V3)3413.5 (14)
Z2
Radiation typeMo Kα
µ (mm1)2.16
Crystal size (mm)0.20 × 0.19 × 0.16
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2009)
Tmin, Tmax0.672, 0.724
No. of measured, independent and
observed [I > 2σ(I)] reflections
27531, 6015, 4964
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.094, 1.14
No. of reflections6015
No. of parameters531
No. of restraints30
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0212P)2 + 16.8621P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.31, 1.29

Computer programs: CrystalClear (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O10i0.85 (1)1.97 (2)2.796 (6)163 (5)
O13—H13B···O20ii0.85 (1)1.85 (1)2.696 (6)175 (6)
O14—H14A···O16iii0.85 (1)1.96 (2)2.774 (6)160 (5)
O14—H14B···O9iii0.85 (1)1.91 (2)2.723 (5)160 (5)
O15—H15A···O21iv0.85 (1)1.99 (1)2.839 (6)172 (6)
O15—H15B···O50.85 (1)1.90 (1)2.734 (5)165 (5)
O16—H16A···O13iv0.78 (6)2.38 (7)3.079 (6)150 (6)
O16—H16B···O1iv0.84 (6)1.88 (7)2.704 (6)169 (6)
O17—H17A···O3iii0.85 (1)1.91 (1)2.745 (6)167 (5)
O17—H17B···O19v0.85 (1)1.93 (3)2.722 (7)155 (6)
O18—H18A···O22'vi0.85 (1)2.37 (6)2.990 (15)130 (6)
O18—H18A···O22vi0.85 (1)2.16 (7)2.657 (14)117 (6)
O18—H18B···O4iii0.85 (1)1.98 (2)2.772 (6)155 (5)
O19—H19A···O24vii0.86 (1)2.31 (3)3.12 (2)159 (6)
O19—H19B···O7viii0.85 (1)2.07 (4)2.828 (6)148 (6)
O20—H20A···O150.85 (1)2.04 (2)2.862 (6)161 (6)
O20—H20B···O230.85 (1)2.03 (4)2.758 (10)143 (6)
O20—H20B···O22'ix0.85 (1)2.32 (4)3.042 (13)143 (5)
O21—H21A···O110.85 (1)1.94 (2)2.774 (6)167 (6)
O21—H21B···O170.85 (1)2.42 (4)3.113 (7)138 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1, z+1/2; (iii) x, y1, z; (iv) x, y+1, z; (v) x, y, z1; (vi) x, y+1, z+1; (vii) x+1, y+1, z+1; (viii) x, y, z+1; (ix) x, y+2, z1/2.
 

Acknowledgements

This work was supported by the National High Technology Research and Development (863) Key Program of the Ministry of Science and Technology of China (grant No. 2009AA063201).

References

First citationRigaku/MSC (2009). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, X.-Q., Cui, P., Zhao, B., Shi, W. & Cheng, P. (2011). Dalton Trans. 40, 805–819.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhao, B., Gao, H.-L., Chen, X.-Y., Cheng, P., Shi, W., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2006). Chem. Eur. J. 12, 149–158.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, X.-Q., Zhao, B., Ma, Y., Shi, W., Cheng, P., Jiang, Z.-H., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 46, 5832–5834.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, X.-Q., Zhao, B., Shi, W. & Cheng, P. (2009). CrystEngComm, 11, 1261–1269.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, X.-Q., Zuo, Y., Gao, D.-L., Zhao, B., Shi, W. & Cheng, P. (2009). Cryst. Growth Des. 9, 3948–3957.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m685-m686
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds