metal-organic compounds
Dicarbonyl[4-(2,6-dimethylphenylamino)pent-3-en-2-onato-κ2N,O]rhodium(I)
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: truidie@hotmail.com
In the title compound, [Rh(C13H16NO)(CO)2], a square-planar coordination geometry is observed around the RhI atom, formed by the N and O atoms of the bidentate ligand and two C atoms from two carbonyl ligands. The RhI atom is displaced from the plane through these surrounding atoms by 0.0085 (2) Å. The dihedral angle between the benzene ring and the N—C—C—C—O plane is 89.82 (6)°, and the N—Rh—O bite angle for the bidentate ligand is 90.53 (6)°. An intermolecular C—H⋯O interaction is observed between a methyl group of the benzene ring and a carbonyl O atom.
Related literature
For background to the ligand preparation, see: Shaheen et al. (2006); Venter et al. (2010a,b). For applications of rhodium compounds containing bidentate ligand systems, see: Cornils & Herrmann (1996); Steyn et al. (1997); Trzeciak & Ziolkowski (1994); Van Rooy et al. (1995). For related rhodium enaminoketonato complexes, see: Brink et al. (2010); Damoense et al. (1994); Otto et al. (1998); Roodt et al. (2011); Steyn et al. (1992); Varshavsky et al. (2001); Venter et al. (2009a,b).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812017175/hy2537sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812017175/hy2537Isup2.hkl
[RhCl(CO)2]2 was prepared in situ by heating RhCl3.3H2O (0.1014 g, 0.385 mmol) in 2 ml DMF under reflux for 30 min. 2,6-diMe-PhonyH (0.0892 g, 0.439 mmol) was added to the cooled DMF solution of [RhCl(CO)2]2. The product was precipitated by ice-water and centrifuge, and recrystallized from acetone. Yellow crystals suitable for X-Ray diffraction were collected in 80.09% yield (0.1114 g). IR (KBr, cm-1): νCO, sym 2064.5 s, νCO, asym 1985.8 s.
H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å and Uiso(H) = 1.2(1.5 for methyl)Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. |
[Rh(C13H16NO)(CO)2] | F(000) = 728 |
Mr = 361.2 | Dx = 1.589 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 9513 reflections |
a = 7.9191 (7) Å | θ = 2.9–28.3° |
b = 12.3873 (5) Å | µ = 1.14 mm−1 |
c = 15.393 (6) Å | T = 100 K |
V = 1510.0 (6) Å3 | Cuboid, yellow |
Z = 4 | 0.34 × 0.20 × 0.11 mm |
Bruker APEXII CCD diffractometer | 3767 independent reflections |
Radiation source: fine-focus sealed tube | 3746 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −9→10 |
Tmin = 0.699, Tmax = 0.885 | k = −16→16 |
20802 measured reflections | l = −17→20 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.017 | w = 1/[σ2(Fo2) + (0.0159P)2 + 0.9823P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.042 | (Δ/σ)max = 0.002 |
S = 1.07 | Δρmax = 0.79 e Å−3 |
3767 reflections | Δρmin = −0.57 e Å−3 |
174 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008) |
0 restraints | Extinction coefficient: 0.0163 (5) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1605 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.01 (2) |
[Rh(C13H16NO)(CO)2] | V = 1510.0 (6) Å3 |
Mr = 361.2 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.9191 (7) Å | µ = 1.14 mm−1 |
b = 12.3873 (5) Å | T = 100 K |
c = 15.393 (6) Å | 0.34 × 0.20 × 0.11 mm |
Bruker APEXII CCD diffractometer | 3767 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 3746 reflections with I > 2σ(I) |
Tmin = 0.699, Tmax = 0.885 | Rint = 0.029 |
20802 measured reflections |
R[F2 > 2σ(F2)] = 0.017 | H-atom parameters constrained |
wR(F2) = 0.042 | Δρmax = 0.79 e Å−3 |
S = 1.07 | Δρmin = −0.57 e Å−3 |
3767 reflections | Absolute structure: Flack (1983), 1605 Friedel pairs |
174 parameters | Absolute structure parameter: −0.01 (2) |
0 restraints |
Experimental. The intensity data was collected on a Bruker X8 APEXII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 1033 frames were collected with a frame width of 0.5° covering up to θ = 28.31° with 99.8% completeness accomplished. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.1665 (3) | 0.74776 (15) | 0.96601 (14) | 0.0256 (4) | |
H1A | −0.2853 | 0.7323 | 0.9532 | 0.038* | |
H1B | −0.1389 | 0.821 | 0.9465 | 0.038* | |
H1C | −0.1472 | 0.7421 | 1.0287 | 0.038* | |
C2 | −0.0554 (2) | 0.66732 (14) | 0.91901 (11) | 0.0172 (3) | |
C3 | 0.0594 (3) | 0.71073 (13) | 0.85745 (11) | 0.0192 (3) | |
H3 | 0.0598 | 0.787 | 0.8512 | 0.023* | |
C4 | 0.1704 (2) | 0.65405 (15) | 0.80574 (12) | 0.0182 (3) | |
C5 | 0.2854 (3) | 0.71425 (17) | 0.74432 (13) | 0.0261 (4) | |
H5A | 0.4033 | 0.7006 | 0.7602 | 0.039* | |
H5B | 0.2621 | 0.7918 | 0.7481 | 0.039* | |
H5C | 0.2654 | 0.6894 | 0.6848 | 0.039* | |
C13 | 0.1968 (3) | 0.33435 (18) | 0.82539 (16) | 0.0315 (3) | |
C14 | −0.0362 (4) | 0.33708 (18) | 0.94754 (18) | 0.0431 (4) | |
C111 | −0.2003 (2) | 0.53224 (12) | 0.99790 (11) | 0.0155 (3) | |
C112 | −0.1618 (3) | 0.52091 (15) | 1.08635 (12) | 0.0202 (4) | |
C113 | −0.2906 (3) | 0.48830 (15) | 1.14235 (12) | 0.0247 (4) | |
H113 | −0.2669 | 0.4799 | 1.2025 | 0.03* | |
C114 | −0.4521 (3) | 0.46795 (14) | 1.11235 (13) | 0.0251 (4) | |
H114 | −0.5385 | 0.4473 | 1.1518 | 0.03* | |
C115 | −0.4876 (2) | 0.47775 (14) | 1.02404 (13) | 0.0214 (4) | |
H115 | −0.598 | 0.4624 | 1.0033 | 0.026* | |
C116 | −0.3627 (2) | 0.50984 (14) | 0.96590 (12) | 0.0169 (3) | |
C117 | 0.0141 (3) | 0.54302 (18) | 1.11936 (14) | 0.0295 (4) | |
H11A | 0.023 | 0.5194 | 1.18 | 0.044* | |
H11B | 0.0375 | 0.6206 | 1.1157 | 0.044* | |
H11C | 0.096 | 0.5034 | 1.0839 | 0.044* | |
C118 | −0.3997 (2) | 0.51770 (16) | 0.87001 (12) | 0.0229 (4) | |
H11D | −0.5215 | 0.5101 | 0.8604 | 0.034* | |
H11E | −0.3397 | 0.4601 | 0.8391 | 0.034* | |
H11F | −0.362 | 0.588 | 0.8482 | 0.034* | |
N11 | −0.0694 (2) | 0.56317 (11) | 0.93686 (9) | 0.0153 (2) | |
O12 | 0.18814 (16) | 0.55013 (11) | 0.80425 (8) | 0.0188 (2) | |
O13 | 0.2774 (2) | 0.27212 (12) | 0.79070 (11) | 0.0315 (3) | |
O14 | −0.0990 (3) | 0.27211 (12) | 0.98856 (13) | 0.0431 (4) | |
Rh1 | 0.066650 (17) | 0.441740 (10) | 0.879887 (8) | 0.01597 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0296 (10) | 0.0145 (8) | 0.0327 (10) | 0.0009 (8) | 0.0099 (8) | 0.0002 (7) |
C2 | 0.0171 (8) | 0.0171 (7) | 0.0172 (7) | 0.0007 (7) | −0.0010 (7) | −0.0001 (6) |
C3 | 0.0205 (8) | 0.0153 (7) | 0.0219 (8) | −0.0015 (7) | −0.0008 (8) | 0.0029 (6) |
C4 | 0.0163 (8) | 0.0216 (8) | 0.0168 (8) | −0.0042 (7) | −0.0036 (6) | 0.0030 (6) |
C5 | 0.0250 (10) | 0.0264 (9) | 0.0268 (10) | −0.0043 (8) | 0.0051 (8) | 0.0059 (8) |
C13 | 0.0282 (6) | 0.0244 (6) | 0.0419 (7) | 0.0026 (5) | 0.0101 (5) | −0.0036 (5) |
C14 | 0.0567 (10) | 0.0183 (5) | 0.0543 (8) | 0.0045 (6) | 0.0297 (8) | 0.0040 (5) |
C111 | 0.0197 (8) | 0.0119 (7) | 0.0150 (7) | 0.0013 (6) | 0.0022 (6) | 0.0002 (5) |
C112 | 0.0263 (10) | 0.0169 (8) | 0.0175 (8) | −0.0014 (7) | −0.0018 (7) | 0.0000 (6) |
C113 | 0.0384 (12) | 0.0210 (8) | 0.0147 (8) | −0.0045 (8) | 0.0017 (8) | 0.0010 (6) |
C114 | 0.0343 (10) | 0.0196 (8) | 0.0215 (8) | −0.0060 (7) | 0.0098 (9) | 0.0005 (6) |
C115 | 0.0211 (9) | 0.0168 (8) | 0.0263 (9) | −0.0024 (7) | 0.0038 (7) | −0.0015 (7) |
C116 | 0.0193 (8) | 0.0138 (7) | 0.0177 (8) | 0.0006 (6) | 0.0010 (7) | 0.0006 (6) |
C117 | 0.0315 (9) | 0.0357 (10) | 0.0213 (8) | −0.0033 (8) | −0.0078 (8) | 0.0027 (9) |
C118 | 0.0196 (8) | 0.0301 (9) | 0.0191 (9) | −0.0017 (7) | −0.0023 (7) | 0.0030 (7) |
N11 | 0.0160 (6) | 0.0149 (6) | 0.0150 (6) | −0.0030 (7) | 0.0004 (6) | 0.0005 (5) |
O12 | 0.0171 (6) | 0.0194 (6) | 0.0198 (6) | −0.0009 (6) | 0.0010 (5) | 0.0001 (5) |
O13 | 0.0282 (6) | 0.0244 (6) | 0.0419 (7) | 0.0026 (5) | 0.0101 (5) | −0.0036 (5) |
O14 | 0.0567 (10) | 0.0183 (5) | 0.0543 (8) | 0.0045 (6) | 0.0297 (8) | 0.0040 (5) |
Rh1 | 0.01566 (6) | 0.01375 (6) | 0.01848 (7) | 0.00045 (5) | 0.00126 (5) | −0.00015 (5) |
C1—C2 | 1.514 (3) | C111—N11 | 1.451 (2) |
C1—H1A | 0.98 | C112—C113 | 1.395 (3) |
C1—H1B | 0.98 | C112—C117 | 1.508 (3) |
C1—H1C | 0.98 | C113—C114 | 1.383 (3) |
C2—N11 | 1.324 (2) | C113—H113 | 0.95 |
C2—C3 | 1.419 (3) | C114—C115 | 1.393 (3) |
C3—C4 | 1.378 (3) | C114—H114 | 0.95 |
C3—H3 | 0.95 | C115—C116 | 1.392 (3) |
C4—O12 | 1.295 (2) | C115—H115 | 0.95 |
C4—C5 | 1.510 (3) | C116—C118 | 1.508 (3) |
C5—H5A | 0.98 | C117—H11A | 0.98 |
C5—H5B | 0.98 | C117—H11B | 0.98 |
C5—H5C | 0.98 | C117—H11C | 0.98 |
C13—O13 | 1.134 (3) | C118—H11D | 0.98 |
C13—Rh1 | 1.880 (2) | C118—H11E | 0.98 |
C14—O14 | 1.138 (3) | C118—H11F | 0.98 |
C14—Rh1 | 1.852 (2) | N11—Rh1 | 2.0476 (15) |
C111—C112 | 1.402 (3) | O12—Rh1 | 2.0209 (13) |
C111—C116 | 1.405 (3) | ||
C2—C1—H1A | 109.5 | C113—C114—C115 | 119.77 (18) |
C2—C1—H1B | 109.5 | C113—C114—H114 | 120.1 |
H1A—C1—H1B | 109.5 | C115—C114—H114 | 120.1 |
C2—C1—H1C | 109.5 | C116—C115—C114 | 120.58 (19) |
H1A—C1—H1C | 109.5 | C116—C115—H115 | 119.7 |
H1B—C1—H1C | 109.5 | C114—C115—H115 | 119.7 |
N11—C2—C3 | 124.18 (16) | C115—C116—C111 | 118.78 (17) |
N11—C2—C1 | 119.57 (16) | C115—C116—C118 | 120.65 (17) |
C3—C2—C1 | 116.24 (15) | C111—C116—C118 | 120.55 (16) |
C4—C3—C2 | 126.95 (16) | C112—C117—H11A | 109.5 |
C4—C3—H3 | 116.5 | C112—C117—H11B | 109.5 |
C2—C3—H3 | 116.5 | H11A—C117—H11B | 109.5 |
O12—C4—C3 | 125.86 (17) | C112—C117—H11C | 109.5 |
O12—C4—C5 | 114.49 (17) | H11A—C117—H11C | 109.5 |
C3—C4—C5 | 119.65 (17) | H11B—C117—H11C | 109.5 |
C4—C5—H5A | 109.5 | C116—C118—H11D | 109.5 |
C4—C5—H5B | 109.5 | C116—C118—H11E | 109.5 |
H5A—C5—H5B | 109.5 | H11D—C118—H11E | 109.5 |
C4—C5—H5C | 109.5 | C116—C118—H11F | 109.5 |
H5A—C5—H5C | 109.5 | H11D—C118—H11F | 109.5 |
H5B—C5—H5C | 109.5 | H11E—C118—H11F | 109.5 |
O13—C13—Rh1 | 177.7 (2) | C2—N11—C111 | 116.87 (15) |
O14—C14—Rh1 | 179.4 (2) | C2—N11—Rh1 | 125.65 (12) |
C112—C111—C116 | 121.30 (17) | C111—N11—Rh1 | 117.35 (10) |
C112—C111—N11 | 120.00 (17) | C4—O12—Rh1 | 126.77 (12) |
C116—C111—N11 | 118.64 (15) | C14—Rh1—C13 | 89.80 (11) |
C113—C112—C111 | 118.04 (18) | C14—Rh1—O12 | 176.97 (9) |
C113—C112—C117 | 121.31 (17) | C13—Rh1—O12 | 87.25 (8) |
C111—C112—C117 | 120.65 (18) | C14—Rh1—N11 | 92.41 (8) |
C114—C113—C112 | 121.50 (18) | C13—Rh1—N11 | 177.76 (9) |
C114—C113—H113 | 119.2 | O12—Rh1—N11 | 90.53 (6) |
C112—C113—H113 | 119.2 | ||
N11—C2—C3—C4 | 1.4 (3) | N11—C111—C116—C118 | 0.1 (2) |
C1—C2—C3—C4 | −178.66 (18) | C3—C2—N11—C111 | −176.47 (16) |
C2—C3—C4—O12 | 0.4 (3) | C1—C2—N11—C111 | 3.6 (2) |
C2—C3—C4—C5 | −179.26 (18) | C3—C2—N11—Rh1 | −0.8 (3) |
C116—C111—C112—C113 | −1.1 (3) | C1—C2—N11—Rh1 | 179.31 (13) |
N11—C111—C112—C113 | −178.36 (15) | C112—C111—N11—C2 | −94.1 (2) |
C116—C111—C112—C117 | 178.70 (17) | C116—C111—N11—C2 | 88.55 (19) |
N11—C111—C112—C117 | 1.4 (3) | C112—C111—N11—Rh1 | 89.86 (16) |
C111—C112—C113—C114 | −0.3 (3) | C116—C111—N11—Rh1 | −87.51 (17) |
C117—C112—C113—C114 | 180.00 (18) | C3—C4—O12—Rh1 | −2.7 (3) |
C112—C113—C114—C115 | 1.4 (3) | C5—C4—O12—Rh1 | 177.03 (12) |
C113—C114—C115—C116 | −1.2 (3) | C4—O12—Rh1—C13 | −177.21 (16) |
C114—C115—C116—C111 | −0.1 (3) | C4—O12—Rh1—N11 | 2.46 (14) |
C114—C115—C116—C118 | 178.41 (17) | C2—N11—Rh1—C14 | 178.50 (18) |
C112—C111—C116—C115 | 1.2 (3) | C111—N11—Rh1—C14 | −5.83 (15) |
N11—C111—C116—C115 | 178.54 (15) | C2—N11—Rh1—O12 | −0.78 (15) |
C112—C111—C116—C118 | −177.26 (17) | C111—N11—Rh1—O12 | 174.89 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C118—H11D···O12i | 0.98 | 2.51 | 3.441 (2) | 159 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Rh(C13H16NO)(CO)2] |
Mr | 361.2 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 7.9191 (7), 12.3873 (5), 15.393 (6) |
V (Å3) | 1510.0 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.14 |
Crystal size (mm) | 0.34 × 0.20 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.699, 0.885 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20802, 3767, 3746 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.017, 0.042, 1.07 |
No. of reflections | 3767 |
No. of parameters | 174 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.79, −0.57 |
Absolute structure | Flack (1983), 1605 Friedel pairs |
Absolute structure parameter | −0.01 (2) |
Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C118—H11D···O12i | 0.98 | 2.51 | 3.441 (2) | 159 |
Symmetry code: (i) x−1, y, z. |
Parameters | I | II | III | IV | V |
Rh1—N11 | 2.048 (2) | 2.077 (2) | 2.069 (2) | 2.045 (4) | 2.045 (3) |
Rh1—O12 | 2.021 (1) | 2.027 (2) | 2.028 (2) | 2.044 (3) | 2.045 (2) |
Rh1—C13b | 1.880 (2) | 2.2704 (7) | 2.2635 (6) | 2.275 (1) | 2.281 (2) |
Rh1—C14 | 1.852 (2) | 1.812 (3) | 1.807 (2) | 1.784 (5) | 1.804 (3) |
N11···O12 | 2.890 (2) | 2.885 (3) | 2.885 (3) | 2.826 (6) | 2.841 (3) |
N11—Rh1—O12 | 90.53 (6) | 89.31 (9) | 89.54 (8) | 87.4 (1) | 87.95 (8) |
O12—Rh1—C13b | 87.25 (8) | 85.95 (6) | 84.97 (5) | 89.7 (1) | 89.91 (5) |
C13b—Rh1—C14 | 89.8 (1) | 91.57 (9) | 91.87 (7) | 90.3 (2) | 89.48 (9) |
N11—Rh1—C14 | 92.41 (8) | 93.1 (1) | 93.6 (1) | 92.6 (2) | 92.6 (1) |
N11—C2—C4—O12 | 1.6 (2) | -2.6 (2) | 4.1 (2) | 1.2 (4) | 1.5 (2) |
(I) This work. (II) Carbonyl[4-(2,6-dimethylphenylamino)pent-3-en-2-onato- κ2N,O](triphenylphosphine-κP)rhodium(I) (Venter et al., 2009b). (III) Carbonyl[4-(2,3-dimethylphenylamino)pent -3-en-2-onato-κ2N,O](triphenylphosphine-κP)rhodium(I) (Venter et al., 2009a). (IV) Carbonyl(4-aminopent-3-en-2-onato-κ2N,O) (triphenylphosphine-κP)rhodium(I) (Damoense et al., 1994). (V) Carbonyl(4-amino-1,1,1-trifluoro-pent-3-en-2-onato-κ2N,O) (triphenylphosphine-κP)rhodium(I) (Varshavsky et al., 2001). (a) N,O-bid is a mono-anionic bidentate ligand coordinated to a metal via (N,O) donor atoms. (b) P13 atom is used in comparative complexes instead of C13 atom. |
Acknowledgements
Ms Carla Pretorius is thanked for the data collection. Financial assistance from the University of the Free State Strategic Academic Cluster Initiative, SASOL, the South African National Research Foundation (SA-NRF/THRIP) and the Inkaba yeAfrika Research Initiative is gratefully acknowledged. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.
References
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572–5578. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cornils, B. & Herrmann, W. A. (1996). In Applied Homogeneous Catalysis with Organometallic Compounds. A Comprehensive Handbook. Weinheim: VCH. Google Scholar
Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10–13. CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447–2453. Web of Science CSD CrossRef CAS Google Scholar
Roodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 17, 241–280. Web of Science CrossRef CAS Google Scholar
Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481. CSD CrossRef CAS Web of Science Google Scholar
Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536-537, 197–205. CSD CrossRef Web of Science Google Scholar
Trzeciak, A. M. & Ziolkowski, J. J. (1994). J. Organomet. Chem. 464, 107–111. CrossRef CAS Web of Science Google Scholar
Van Rooy, A., Orji, E. N., Kramer, P. G. J. & Van Leeuwen, P. W. M. N. (1995). Organometallics, 14, 34–43. CrossRef CAS Google Scholar
Varshavsky, Y. S., Galding, M. R., Cherkasova, T. G., Podkorytov, I. S., Nikol'skii, A. B., Trzeciak, A. M., Olejnik, Z., Lis, T. & Ziółkowski, J. J. (2001). J. Organomet. Chem. 628, 195–210. Web of Science CSD CrossRef CAS Google Scholar
Venter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321–m1322. Web of Science CSD CrossRef IUCr Journals Google Scholar
Venter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606–m1607. Web of Science CSD CrossRef IUCr Journals Google Scholar
Venter, G. J. S., Steyl, G. & Roodt, A. (2010a). Acta Cryst. E66, o1593–o1594. Web of Science CSD CrossRef IUCr Journals Google Scholar
Venter, G. J. S., Steyl, G. & Roodt, A. (2010b). Acta Cryst. E66, o3011–o3012. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rhodium(I) dicarbonyl complexes of the type [Rh(L,L')(CO)2], where L,L' is a chelating mono-anionic bidentate ligand coordinated to rhodium via (O, O') donor atoms, have been studied as catalyst precursors (Cornils & Herrmann, 1996; Trzeciak & Ziolkowski, 1994; Van Rooy et al., 1995). In this study the investigation of these complexes is followed by complexes containing bidentate β-enaminoketonato ligands such as 4-(phenylamino)pent-3-en-2-onato (Phony) (Shaheen et al., 2006; Venter et al., 2010a,b) coordinated to rhodium via (N, O) donor atoms. Studies have also been conducted involving complexes of the type [Rh(L,L')(CO)(PPh3)], where one of the CO-ligands in the [Rh(L,L')(CO)2] complex is substituted by a PPh3 ligand (Brink et al., 2010; Otto et al., 1998; Roodt et al., 2011; Steyn et al., 1992), as well as the mechanism of oxidative addition of methyl iodide to complexes of this type (Steyn et al., 1997).
Bond distances involving the RhI atom in the title complex differ from complexes in literature involving triphenylphosphine as ligand, with especially the Rh1—C14 distance that is significantly longer (Table 2). The title complex displays similar Rh—N distances to complexes containing a hydrogen atom instead of an aryl moiety, but is more closely related to complexes containing similar aryl moieties when comparing the Rh—O distance. Complexes containing a bulky substituent on the nitrogen atom also display larger N—Rh—O bite angles than complexes containing a hydrogen atom. Due to the trans influence of the nitrogen atom, the Rh1—C13 distance is significantly longer than the Rh1—C14 distance [1.880 (2) and 1.852 (2) Å].
Intermolecular C—H···O interaction is observed between a methyl group on the aryl moiety and oxygen of the bidentate ligand. The dihedral angle between the plane formed by the N, O and C atoms of the pentenone backbone and the aryl ring moiety is 89.82 (6) °. This angle is distorted from the ideal value of 0° for delocalized electron due to the steric interference of the aryl ring, and is exacerbated by the presence of the methyl groups on the ring.