metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m666-m667

Dicarbon­yl[4-(2,6-di­methyl­phenyl­amino)­pent-3-en-2-onato-κ2N,O]rhodium(I)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: truidie@hotmail.com

(Received 11 April 2012; accepted 18 April 2012; online 25 April 2012)

In the title compound, [Rh(C13H16NO)(CO)2], a square-planar coordination geometry is observed around the RhI atom, formed by the N and O atoms of the bidentate ligand and two C atoms from two carbonyl ligands. The RhI atom is displaced from the plane through these surrounding atoms by 0.0085 (2) Å. The dihedral angle between the benzene ring and the N—C—C—C—O plane is 89.82 (6)°, and the N—Rh—O bite angle for the bidentate ligand is 90.53 (6)°. An inter­molecular C—H⋯O inter­action is observed between a methyl group of the benzene ring and a carbonyl O atom.

Related literature

For background to the ligand preparation, see: Shaheen et al. (2006[Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873-o874.]); Venter et al. (2010a[Venter, G. J. S., Steyl, G. & Roodt, A. (2010a). Acta Cryst. E66, o1593-o1594.],b[Venter, G. J. S., Steyl, G. & Roodt, A. (2010b). Acta Cryst. E66, o3011-o3012.]). For applications of rhodium compounds containing bidentate ligand systems, see: Cornils & Herrmann (1996[Cornils, B. & Herrmann, W. A. (1996). In Applied Homogeneous Catalysis with Organometallic Compounds. A Comprehensive Handbook. Weinheim: VCH.]); Steyn et al. (1997[Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536-537, 197-205.]); Trzeciak & Ziolkowski (1994[Trzeciak, A. M. & Ziolkowski, J. J. (1994). J. Organomet. Chem. 464, 107-111.]); Van Rooy et al. (1995[Van Rooy, A., Orji, E. N., Kramer, P. G. J. & Van Leeuwen, P. W. M. N. (1995). Organometallics, 14, 34-43.]). For related rhodium enamino­ketonato complexes, see: Brink et al. (2010[Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572-5578.]); Damoense et al. (1994[Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10-13.]); Otto et al. (1998[Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447-2453.]); Roodt et al. (2011[Roodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 17, 241-280.]); Steyn et al. (1992[Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477-3481.]); Varshavsky et al. (2001[Varshavsky, Y. S., Galding, M. R., Cherkasova, T. G., Podkorytov, I. S., Nikol'skii, A. B., Trzeciak, A. M., Olejnik, Z., Lis, T. & Ziółkowski, J. J. (2001). J. Organomet. Chem. 628, 195-210.]); Venter et al. (2009a[Venter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321-m1322.],b[Venter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606-m1607.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C13H16NO)(CO)2]

  • Mr = 361.2

  • Orthorhombic, P 21 21 21

  • a = 7.9191 (7) Å

  • b = 12.3873 (5) Å

  • c = 15.393 (6) Å

  • V = 1510.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 100 K

  • 0.34 × 0.20 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.699, Tmax = 0.885

  • 20802 measured reflections

  • 3767 independent reflections

  • 3746 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.042

  • S = 1.07

  • 3767 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1605 Friedel pairs

  • Flack parameter: −0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C118—H11D⋯O12i 0.98 2.51 3.441 (2) 159
Symmetry code: (i) x-1, y, z.

Table 2
Comparative geometrical parameters for the title complex with [Rh(N,O-bid)(CO)(PPh3)]a complexes (Å, °)

Parameters I II III IV V
Rh1—N11 2.048 (2) 2.077 (2) 2.069 (2) 2.045 (4) 2.045 (3)
Rh1—O12 2.021 (1) 2.027 (2) 2.028 (2) 2.044 (3) 2.045 (2)
Rh1—C13b 1.880 (2) 2.2704 (7) 2.2635 (6) 2.275 (1) 2.281 (2)
Rh1—C14 1.852 (2) 1.812 (3) 1.807 (2) 1.784 (5) 1.804 (3)
N11⋯O12 2.890 (2) 2.885 (3) 2.885 (3) 2.826 (6) 2.841 (3)
N11—Rh1—O12 90.53 (6) 89.31 (9) 89.54 (8) 87.4 (1) 87.95 (8)
O12—Rh1—C13b 87.25 (8) 85.95 (6) 84.97 (5) 89.7 (1) 89.91 (5)
C13b—Rh1—C14 89.8 (1) 91.57 (9) 91.87 (7) 90.3 (2) 89.48 (9)
N11—Rh1—C14 92.41 (8) 93.1 (1) 93.6 (1) 92.6 (2) 92.6 (1)
N11—C2—C4—O12 1.6 (2) −2.6 (2) 4.1 (2) 1.2 (4) 1.5 (2)
(I) This work. (II) Carbon­yl[4-(2,6-dimethyl­phenyl­amino)­pent-3-en-2-onato- κ2N,O](triphenyl­phosphine-κP)rhodium(I) (Venter et al., 2009b[Venter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606-m1607.]). (III) Carbon­yl[4-(2,3-dimeth­yl­phenyl­amino)­pent-3-en-2-onato-κ2N,O](triphenyl­phosphine-κP)rhodium(I) (Venter et al., 2009a[Venter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321-m1322.]). (IV) Carbon­yl(4-amino­pent-3-en-2-onato-κ2N,O)(triphenyl­phosphine-κP)rhodium(I) (Damoense et al., 1994[Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10-13.]). (V) Carbon­yl(4-amino-1,1,1-trifluoro-pent-3-en-2-onato-κ2N,O)(triphenyl­phosphine-κP)rhodium(I) (Varshavsky et al., 2001[Varshavsky, Y. S., Galding, M. R., Cherkasova, T. G., Podkorytov, I. S., Nikol'skii, A. B., Trzeciak, A. M., Olejnik, Z., Lis, T. & Ziółkowski, J. J. (2001). J. Organomet. Chem. 628, 195-210.]). (a) N,O-bid is a mono-anionic bidentate ligand coordinated to a metal via (N,O) donor atoms. (b) P13 atom is used in comparative complexes instead of C13 atom.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Rhodium(I) dicarbonyl complexes of the type [Rh(L,L')(CO)2], where L,L' is a chelating mono-anionic bidentate ligand coordinated to rhodium via (O, O') donor atoms, have been studied as catalyst precursors (Cornils & Herrmann, 1996; Trzeciak & Ziolkowski, 1994; Van Rooy et al., 1995). In this study the investigation of these complexes is followed by complexes containing bidentate β-enaminoketonato ligands such as 4-(phenylamino)pent-3-en-2-onato (Phony) (Shaheen et al., 2006; Venter et al., 2010a,b) coordinated to rhodium via (N, O) donor atoms. Studies have also been conducted involving complexes of the type [Rh(L,L')(CO)(PPh3)], where one of the CO-ligands in the [Rh(L,L')(CO)2] complex is substituted by a PPh3 ligand (Brink et al., 2010; Otto et al., 1998; Roodt et al., 2011; Steyn et al., 1992), as well as the mechanism of oxidative addition of methyl iodide to complexes of this type (Steyn et al., 1997).

Bond distances involving the RhI atom in the title complex differ from complexes in literature involving triphenylphosphine as ligand, with especially the Rh1—C14 distance that is significantly longer (Table 2). The title complex displays similar Rh—N distances to complexes containing a hydrogen atom instead of an aryl moiety, but is more closely related to complexes containing similar aryl moieties when comparing the Rh—O distance. Complexes containing a bulky substituent on the nitrogen atom also display larger N—Rh—O bite angles than complexes containing a hydrogen atom. Due to the trans influence of the nitrogen atom, the Rh1—C13 distance is significantly longer than the Rh1—C14 distance [1.880 (2) and 1.852 (2) Å].

Intermolecular C—H···O interaction is observed between a methyl group on the aryl moiety and oxygen of the bidentate ligand. The dihedral angle between the plane formed by the N, O and C atoms of the pentenone backbone and the aryl ring moiety is 89.82 (6) °. This angle is distorted from the ideal value of 0° for delocalized electron due to the steric interference of the aryl ring, and is exacerbated by the presence of the methyl groups on the ring.

Related literature top

For background to the ligand preparation, see: Shaheen et al. (2006); Venter et al. (2010a,b). For applications of rhodium compounds containing bidentate ligand systems, see: Cornils & Herrmann (1996); Steyn et al. (1997); Trzeciak & Ziolkowski (1994); Van Rooy et al. (1995). For related rhodium enaminoketonato complexes, see: Brink et al. (2010); Damoense et al. (1994); Otto et al. (1998); Roodt et al. (2011); Steyn et al. (1992); Varshavsky et al. (2001); Venter et al. (2009a,b).

Experimental top

[RhCl(CO)2]2 was prepared in situ by heating RhCl3.3H2O (0.1014 g, 0.385 mmol) in 2 ml DMF under reflux for 30 min. 2,6-diMe-PhonyH (0.0892 g, 0.439 mmol) was added to the cooled DMF solution of [RhCl(CO)2]2. The product was precipitated by ice-water and centrifuge, and recrystallized from acetone. Yellow crystals suitable for X-Ray diffraction were collected in 80.09% yield (0.1114 g). IR (KBr, cm-1): νCO, sym 2064.5 s, νCO, asym 1985.8 s.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å and Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Dicarbonyl[4-(2,6-dimethylphenylamino)pent-3-en-2-onato- κ2N,O]rhodium(I) top
Crystal data top
[Rh(C13H16NO)(CO)2]F(000) = 728
Mr = 361.2Dx = 1.589 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9513 reflections
a = 7.9191 (7) Åθ = 2.9–28.3°
b = 12.3873 (5) ŵ = 1.14 mm1
c = 15.393 (6) ÅT = 100 K
V = 1510.0 (6) Å3Cuboid, yellow
Z = 40.34 × 0.20 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
3767 independent reflections
Radiation source: fine-focus sealed tube3746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 910
Tmin = 0.699, Tmax = 0.885k = 1616
20802 measured reflectionsl = 1720
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0159P)2 + 0.9823P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.002
S = 1.07Δρmax = 0.79 e Å3
3767 reflectionsΔρmin = 0.57 e Å3
174 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0163 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1605 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (2)
Crystal data top
[Rh(C13H16NO)(CO)2]V = 1510.0 (6) Å3
Mr = 361.2Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.9191 (7) ŵ = 1.14 mm1
b = 12.3873 (5) ÅT = 100 K
c = 15.393 (6) Å0.34 × 0.20 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
3767 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3746 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.885Rint = 0.029
20802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.042Δρmax = 0.79 e Å3
S = 1.07Δρmin = 0.57 e Å3
3767 reflectionsAbsolute structure: Flack (1983), 1605 Friedel pairs
174 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Special details top

Experimental. The intensity data was collected on a Bruker X8 APEXII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 1033 frames were collected with a frame width of 0.5° covering up to θ = 28.31° with 99.8% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1665 (3)0.74776 (15)0.96601 (14)0.0256 (4)
H1A0.28530.73230.95320.038*
H1B0.13890.8210.94650.038*
H1C0.14720.74211.02870.038*
C20.0554 (2)0.66732 (14)0.91901 (11)0.0172 (3)
C30.0594 (3)0.71073 (13)0.85745 (11)0.0192 (3)
H30.05980.7870.85120.023*
C40.1704 (2)0.65405 (15)0.80574 (12)0.0182 (3)
C50.2854 (3)0.71425 (17)0.74432 (13)0.0261 (4)
H5A0.40330.70060.76020.039*
H5B0.26210.79180.74810.039*
H5C0.26540.68940.68480.039*
C130.1968 (3)0.33435 (18)0.82539 (16)0.0315 (3)
C140.0362 (4)0.33708 (18)0.94754 (18)0.0431 (4)
C1110.2003 (2)0.53224 (12)0.99790 (11)0.0155 (3)
C1120.1618 (3)0.52091 (15)1.08635 (12)0.0202 (4)
C1130.2906 (3)0.48830 (15)1.14235 (12)0.0247 (4)
H1130.26690.47991.20250.03*
C1140.4521 (3)0.46795 (14)1.11235 (13)0.0251 (4)
H1140.53850.44731.15180.03*
C1150.4876 (2)0.47775 (14)1.02404 (13)0.0214 (4)
H1150.5980.46241.00330.026*
C1160.3627 (2)0.50984 (14)0.96590 (12)0.0169 (3)
C1170.0141 (3)0.54302 (18)1.11936 (14)0.0295 (4)
H11A0.0230.51941.180.044*
H11B0.03750.62061.11570.044*
H11C0.0960.50341.08390.044*
C1180.3997 (2)0.51770 (16)0.87001 (12)0.0229 (4)
H11D0.52150.51010.86040.034*
H11E0.33970.46010.83910.034*
H11F0.3620.5880.84820.034*
N110.0694 (2)0.56317 (11)0.93686 (9)0.0153 (2)
O120.18814 (16)0.55013 (11)0.80425 (8)0.0188 (2)
O130.2774 (2)0.27212 (12)0.79070 (11)0.0315 (3)
O140.0990 (3)0.27211 (12)0.98856 (13)0.0431 (4)
Rh10.066650 (17)0.441740 (10)0.879887 (8)0.01597 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (10)0.0145 (8)0.0327 (10)0.0009 (8)0.0099 (8)0.0002 (7)
C20.0171 (8)0.0171 (7)0.0172 (7)0.0007 (7)0.0010 (7)0.0001 (6)
C30.0205 (8)0.0153 (7)0.0219 (8)0.0015 (7)0.0008 (8)0.0029 (6)
C40.0163 (8)0.0216 (8)0.0168 (8)0.0042 (7)0.0036 (6)0.0030 (6)
C50.0250 (10)0.0264 (9)0.0268 (10)0.0043 (8)0.0051 (8)0.0059 (8)
C130.0282 (6)0.0244 (6)0.0419 (7)0.0026 (5)0.0101 (5)0.0036 (5)
C140.0567 (10)0.0183 (5)0.0543 (8)0.0045 (6)0.0297 (8)0.0040 (5)
C1110.0197 (8)0.0119 (7)0.0150 (7)0.0013 (6)0.0022 (6)0.0002 (5)
C1120.0263 (10)0.0169 (8)0.0175 (8)0.0014 (7)0.0018 (7)0.0000 (6)
C1130.0384 (12)0.0210 (8)0.0147 (8)0.0045 (8)0.0017 (8)0.0010 (6)
C1140.0343 (10)0.0196 (8)0.0215 (8)0.0060 (7)0.0098 (9)0.0005 (6)
C1150.0211 (9)0.0168 (8)0.0263 (9)0.0024 (7)0.0038 (7)0.0015 (7)
C1160.0193 (8)0.0138 (7)0.0177 (8)0.0006 (6)0.0010 (7)0.0006 (6)
C1170.0315 (9)0.0357 (10)0.0213 (8)0.0033 (8)0.0078 (8)0.0027 (9)
C1180.0196 (8)0.0301 (9)0.0191 (9)0.0017 (7)0.0023 (7)0.0030 (7)
N110.0160 (6)0.0149 (6)0.0150 (6)0.0030 (7)0.0004 (6)0.0005 (5)
O120.0171 (6)0.0194 (6)0.0198 (6)0.0009 (6)0.0010 (5)0.0001 (5)
O130.0282 (6)0.0244 (6)0.0419 (7)0.0026 (5)0.0101 (5)0.0036 (5)
O140.0567 (10)0.0183 (5)0.0543 (8)0.0045 (6)0.0297 (8)0.0040 (5)
Rh10.01566 (6)0.01375 (6)0.01848 (7)0.00045 (5)0.00126 (5)0.00015 (5)
Geometric parameters (Å, º) top
C1—C21.514 (3)C111—N111.451 (2)
C1—H1A0.98C112—C1131.395 (3)
C1—H1B0.98C112—C1171.508 (3)
C1—H1C0.98C113—C1141.383 (3)
C2—N111.324 (2)C113—H1130.95
C2—C31.419 (3)C114—C1151.393 (3)
C3—C41.378 (3)C114—H1140.95
C3—H30.95C115—C1161.392 (3)
C4—O121.295 (2)C115—H1150.95
C4—C51.510 (3)C116—C1181.508 (3)
C5—H5A0.98C117—H11A0.98
C5—H5B0.98C117—H11B0.98
C5—H5C0.98C117—H11C0.98
C13—O131.134 (3)C118—H11D0.98
C13—Rh11.880 (2)C118—H11E0.98
C14—O141.138 (3)C118—H11F0.98
C14—Rh11.852 (2)N11—Rh12.0476 (15)
C111—C1121.402 (3)O12—Rh12.0209 (13)
C111—C1161.405 (3)
C2—C1—H1A109.5C113—C114—C115119.77 (18)
C2—C1—H1B109.5C113—C114—H114120.1
H1A—C1—H1B109.5C115—C114—H114120.1
C2—C1—H1C109.5C116—C115—C114120.58 (19)
H1A—C1—H1C109.5C116—C115—H115119.7
H1B—C1—H1C109.5C114—C115—H115119.7
N11—C2—C3124.18 (16)C115—C116—C111118.78 (17)
N11—C2—C1119.57 (16)C115—C116—C118120.65 (17)
C3—C2—C1116.24 (15)C111—C116—C118120.55 (16)
C4—C3—C2126.95 (16)C112—C117—H11A109.5
C4—C3—H3116.5C112—C117—H11B109.5
C2—C3—H3116.5H11A—C117—H11B109.5
O12—C4—C3125.86 (17)C112—C117—H11C109.5
O12—C4—C5114.49 (17)H11A—C117—H11C109.5
C3—C4—C5119.65 (17)H11B—C117—H11C109.5
C4—C5—H5A109.5C116—C118—H11D109.5
C4—C5—H5B109.5C116—C118—H11E109.5
H5A—C5—H5B109.5H11D—C118—H11E109.5
C4—C5—H5C109.5C116—C118—H11F109.5
H5A—C5—H5C109.5H11D—C118—H11F109.5
H5B—C5—H5C109.5H11E—C118—H11F109.5
O13—C13—Rh1177.7 (2)C2—N11—C111116.87 (15)
O14—C14—Rh1179.4 (2)C2—N11—Rh1125.65 (12)
C112—C111—C116121.30 (17)C111—N11—Rh1117.35 (10)
C112—C111—N11120.00 (17)C4—O12—Rh1126.77 (12)
C116—C111—N11118.64 (15)C14—Rh1—C1389.80 (11)
C113—C112—C111118.04 (18)C14—Rh1—O12176.97 (9)
C113—C112—C117121.31 (17)C13—Rh1—O1287.25 (8)
C111—C112—C117120.65 (18)C14—Rh1—N1192.41 (8)
C114—C113—C112121.50 (18)C13—Rh1—N11177.76 (9)
C114—C113—H113119.2O12—Rh1—N1190.53 (6)
C112—C113—H113119.2
N11—C2—C3—C41.4 (3)N11—C111—C116—C1180.1 (2)
C1—C2—C3—C4178.66 (18)C3—C2—N11—C111176.47 (16)
C2—C3—C4—O120.4 (3)C1—C2—N11—C1113.6 (2)
C2—C3—C4—C5179.26 (18)C3—C2—N11—Rh10.8 (3)
C116—C111—C112—C1131.1 (3)C1—C2—N11—Rh1179.31 (13)
N11—C111—C112—C113178.36 (15)C112—C111—N11—C294.1 (2)
C116—C111—C112—C117178.70 (17)C116—C111—N11—C288.55 (19)
N11—C111—C112—C1171.4 (3)C112—C111—N11—Rh189.86 (16)
C111—C112—C113—C1140.3 (3)C116—C111—N11—Rh187.51 (17)
C117—C112—C113—C114180.00 (18)C3—C4—O12—Rh12.7 (3)
C112—C113—C114—C1151.4 (3)C5—C4—O12—Rh1177.03 (12)
C113—C114—C115—C1161.2 (3)C4—O12—Rh1—C13177.21 (16)
C114—C115—C116—C1110.1 (3)C4—O12—Rh1—N112.46 (14)
C114—C115—C116—C118178.41 (17)C2—N11—Rh1—C14178.50 (18)
C112—C111—C116—C1151.2 (3)C111—N11—Rh1—C145.83 (15)
N11—C111—C116—C115178.54 (15)C2—N11—Rh1—O120.78 (15)
C112—C111—C116—C118177.26 (17)C111—N11—Rh1—O12174.89 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C118—H11D···O12i0.982.513.441 (2)159
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Rh(C13H16NO)(CO)2]
Mr361.2
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.9191 (7), 12.3873 (5), 15.393 (6)
V3)1510.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.34 × 0.20 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.699, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
20802, 3767, 3746
Rint0.029
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.042, 1.07
No. of reflections3767
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.57
Absolute structureFlack (1983), 1605 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C118—H11D···O12i0.982.513.441 (2)159
Symmetry code: (i) x1, y, z.
Comparative geometrical parameters for the title complex with [Rh(N,O-bid)(CO)(PPh3)]a complexes (Å, °). top
ParametersIIIIIIIVV
Rh1—N112.048 (2)2.077 (2)2.069 (2)2.045 (4)2.045 (3)
Rh1—O122.021 (1)2.027 (2)2.028 (2)2.044 (3)2.045 (2)
Rh1—C13b1.880 (2)2.2704 (7)2.2635 (6)2.275 (1)2.281 (2)
Rh1—C141.852 (2)1.812 (3)1.807 (2)1.784 (5)1.804 (3)
N11···O122.890 (2)2.885 (3)2.885 (3)2.826 (6)2.841 (3)
N11—Rh1—O1290.53 (6)89.31 (9)89.54 (8)87.4 (1)87.95 (8)
O12—Rh1—C13b87.25 (8)85.95 (6)84.97 (5)89.7 (1)89.91 (5)
C13b—Rh1—C1489.8 (1)91.57 (9)91.87 (7)90.3 (2)89.48 (9)
N11—Rh1—C1492.41 (8)93.1 (1)93.6 (1)92.6 (2)92.6 (1)
N11—C2—C4—O121.6 (2)-2.6 (2)4.1 (2)1.2 (4)1.5 (2)
(I) This work. (II) Carbonyl[4-(2,6-dimethylphenylamino)pent-3-en-2-onato- κ2N,O](triphenylphosphine-κP)rhodium(I) (Venter et al., 2009b). (III) Carbonyl[4-(2,3-dimethylphenylamino)pent -3-en-2-onato-κ2N,O](triphenylphosphine-κP)rhodium(I) (Venter et al., 2009a). (IV) Carbonyl(4-aminopent-3-en-2-onato-κ2N,O) (triphenylphosphine-κP)rhodium(I) (Damoense et al., 1994). (V) Carbonyl(4-amino-1,1,1-trifluoro-pent-3-en-2-onato-κ2N,O) (triphenylphosphine-κP)rhodium(I) (Varshavsky et al., 2001). (a) N,O-bid is a mono-anionic bidentate ligand coordinated to a metal via (N,O) donor atoms. (b) P13 atom is used in comparative complexes instead of C13 atom.
 

Acknowledgements

Ms Carla Pretorius is thanked for the data collection. Financial assistance from the University of the Free State Strategic Academic Cluster Initiative, SASOL, the South African National Research Foundation (SA-NRF/THRIP) and the Inkaba yeAfrika Research Initiative is gratefully acknowledged. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

References

First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572–5578.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCornils, B. & Herrmann, W. A. (1996). In Applied Homogeneous Catalysis with Organometallic Compounds. A Comprehensive Handbook. Weinheim: VCH.  Google Scholar
First citationDamoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10–13.  CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447–2453.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 17, 241–280.  Web of Science CrossRef CAS Google Scholar
First citationShaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481.  CSD CrossRef CAS Web of Science Google Scholar
First citationSteyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536-537, 197–205.  CSD CrossRef Web of Science Google Scholar
First citationTrzeciak, A. M. & Ziolkowski, J. J. (1994). J. Organomet. Chem. 464, 107–111.  CrossRef CAS Web of Science Google Scholar
First citationVan Rooy, A., Orji, E. N., Kramer, P. G. J. & Van Leeuwen, P. W. M. N. (1995). Organometallics, 14, 34–43.  CrossRef CAS Google Scholar
First citationVarshavsky, Y. S., Galding, M. R., Cherkasova, T. G., Podkorytov, I. S., Nikol'skii, A. B., Trzeciak, A. M., Olejnik, Z., Lis, T. & Ziółkowski, J. J. (2001). J. Organomet. Chem. 628, 195–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321–m1322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606–m1607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2010a). Acta Cryst. E66, o1593–o1594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2010b). Acta Cryst. E66, o3011–o3012.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m666-m667
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds