organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1557-o1558

(E)-2-[2-(4-Chloro­benzyl­­idene)hydrazin-1-yl]-4-{[3-(di­methyl­aza­nium­yl)prop­yl]amino}­quinazolin-1-ium bis­­(perchlorate)

aKey Laboratory of Original New Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China, and bKey Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
*Correspondence e-mail: leixinjia@126.com

(Received 6 March 2012; accepted 24 April 2012; online 28 April 2012)

In the title compound, C20H25ClN62+·2ClO4, the organic cation is roughly planar, as shown by the dihedral angle of 3.78 (3)° between the quinazoline and chloro­phenyl rings. The quinazoline ring is itself approximately planar, with an average deviation of 0.018 (4) Å. The organic cation adopts an E configuration with respect to the C= N double bond of the hyrazinyl group. The (dimethyl­aza­nium­yl)propyl­amino side chain is disordered over two sets of sites with occupancies of 0.768 (10) and 0.232 (10). In the crystal, two cations and four anions are linked by strong N—H⋯O hydrogen bonds. Weak C—H⋯O hydrogen bonds exist among these aggregates.

Related literature

For anti­tumor background to the title compound, see: Abouzid & Shouman (2008[Abouzid, K. & Shouman, S. (2008). Bioorg. Med. Chem. 16, 7543-7551.]); Zhang et al. (2008[Zhang, H. W., Solomon, V. R., Hu, C. K., Ulibarri, G. & Lee, H. Y. (2008). Biomed. Pharmacother. 62, 65-69.]); An et al. (2010[An, Z. Y., Yan, Y. Y., Peng, D., Ou, T. M., Tan, J. H., Huang, S. L., An, L. K., Gu, L. Q. & Huang, Z. S. (2010). Eur. J. Med. Chem. 45, 3895-3903.]); Horiuchi et al. (2009)[Horiuchi, T., Nagata, M., Kitagawa, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 119-132.]. For the structures of closely related compounds, see: Fun et al. (2010[Fun, H.-K., Loh, W.-S. & Nayak, S. P. (2010). Acta Cryst. E66, o2467.]); Ferreira et al. (2009[Ferreira, M. L. de, Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3239-o3240.]); de Souza et al. (2010[Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o152-o153.]); Loh et al. (2011[Loh, W.-S., Fun, H.-K., Kayarmar, R., Viveka, S. & Nagaraja, G. K. (2011). Acta Cryst. E67, o407-o408.]).

[Scheme 1]

Experimental

Crystal data
  • C20H25ClN62+·2ClO4

  • Mr = 583.81

  • Triclinic, [P \overline 1]

  • a = 10.4533 (18) Å

  • b = 10.5018 (18) Å

  • c = 12.626 (2) Å

  • α = 104.745 (9)°

  • β = 91.146 (10)°

  • γ = 96.21 (1)°

  • V = 1330.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.18 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.907, Tmax = 0.932

  • 12435 measured reflections

  • 4889 independent reflections

  • 3979 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.219

  • S = 1.09

  • 4889 reflections

  • 371 parameters

  • 62 restraints

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.91 2.19 2.990 (5) 147
N5—H5C⋯O2 0.86 2.11 2.922 (4) 157
N4—H4C⋯O1i 0.86 2.14 2.964 (4) 160
N2—H2D⋯O7 0.86 2.10 2.873 (5) 149
C19—H19⋯O2ii 0.93 2.48 3.316 (5) 150
C1—H1D⋯O6iii 0.96 2.56 3.445 (8) 153
C1—H1C⋯O6iv 0.96 2.62 3.555 (10) 166
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+2, -z; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The target compound was designed and synthesized as part of on-going studies aimed at developing antitumor agents based on 4-aminoquinazoline and 4-aminoquinoline nuclei. These have aroused increasing attentions for excellent antitumor potency in recent years, such as gefitinib, the traditional immunostimulatory agents CQ and their derivatives (Abouzid et al., 2008; Zhang et al., 2008; An et al., 2010). With the aim to improve the electron affinity and better biological interactions, a hydrazone fragment was introduced (Horiuchi et al., 2009).

The crystal structure of the title compound is given in Fig. 1. The quinazoline ring is approximately planar, with an average deviation of 0.018 (4) Å. The dihedral angle between the quinazoline ring and the chlorophenyl ring is 3.78 (3) °. The (dimethylazaniumyl)propylamino side chain of the compound is disordered over two sites with occupancies of 0.768 (10) and 0.232 (10), respectively. The cationic part of the compound establishes strong N–H···O hydrogen bonds (N5—H5C–O2, N2—H2D–O7, N1—H1A–O3, N4—H4C–O1, Table 1) with the perchlorate anions. The resulting aggregates of two cations and four anions are linked by weak C–H···O hydrogen bonds (C1—H1C–O6, C1—H1D–O6, C19—H19–O2, Table 1) in the crystal structure (Fig. 2).

Related literature top

For antitumor background to the title compound, see: Abouzid & Shouman (2008); Zhang et al. (2008); An et al. (2010); Horiuchi et al. (2009). For the structures of very closely related compounds, see: Fun et al. (2010); Ferreira et al. (2009); de Souza et al. (2010); Loh et al. (2011).

Experimental top

Using 2-aminobenzoic acid and urea as the starting materials, (E)-N-(2-(2-(4-chlorobenzylidene)hydrazinyl) quinazolin-4-yl)-N',N'-dimethylpropane-1,3-diamine was prepared according to literature methods (Abouzid et al., 2008; Horiuchi et al., 2009). The compound was purified by silica gel column chromatography (CH2Cl2/Methanol 15:1). 70% Perchloric acid (24 mmol, 1.96 ml) was added to a solution of the compound (20 mmol, 7.7 g) in acetone (50 ml) at room temperature. Then the reaction mixture was stirred at 313 K for 3 h. After cooling to ambient temperature, the resulting precipitate was filtered and washed with acetone. The resulting solids were dissolved in methanol for 15 days to yield the title compound as colorless single crystals (70% yield).

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å (methyl), C—H = 0.97 Å (methylene), 0.93 Å (aromatic), N—H = 0.86 Å (amine and aromatic), and Uiso(H) =1.2Ueq(C,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of the title compound.
(E)-2-[2-(4-Chlorobenzylidene)hydrazin-1-yl]- 4-{[3-(dimethylazaniumyl)propyl]amino}quinazolin-1-ium bis(perchlorate) top
Crystal data top
C20H25ClN62+·2ClO4Z = 2
Mr = 583.81F(000) = 604
Triclinic, P1Dx = 1.457 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4533 (18) ÅCell parameters from 4829 reflections
b = 10.5018 (18) Åθ = 2.5–30.1°
c = 12.626 (2) ŵ = 0.40 mm1
α = 104.745 (9)°T = 293 K
β = 91.146 (10)°Block, colorless
γ = 96.21 (1)°0.25 × 0.23 × 0.18 mm
V = 1330.9 (4) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
4889 independent reflections
Radiation source: fine-focus sealed tube3979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.907, Tmax = 0.932k = 1212
12435 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1339P)2 + 1.0689P]
where P = (Fo2 + 2Fc2)/3
4889 reflections(Δ/σ)max < 0.001
371 parametersΔρmax = 0.69 e Å3
62 restraintsΔρmin = 0.92 e Å3
Crystal data top
C20H25ClN62+·2ClO4γ = 96.21 (1)°
Mr = 583.81V = 1330.9 (4) Å3
Triclinic, P1Z = 2
a = 10.4533 (18) ÅMo Kα radiation
b = 10.5018 (18) ŵ = 0.40 mm1
c = 12.626 (2) ÅT = 293 K
α = 104.745 (9)°0.25 × 0.23 × 0.18 mm
β = 91.146 (10)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4889 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3979 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.932Rint = 0.023
12435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07162 restraints
wR(F2) = 0.219H-atom parameters constrained
S = 1.09Δρmax = 0.69 e Å3
4889 reflectionsΔρmin = 0.92 e Å3
371 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.32941 (8)0.74253 (8)0.10002 (7)0.0433 (3)
Cl20.26374 (10)0.25136 (12)0.61278 (8)0.0638 (4)
Cl30.49702 (12)0.78162 (13)0.25924 (10)0.0702 (4)
N20.2182 (3)0.4226 (3)0.3840 (3)0.0455 (7)
H2D0.22130.36020.41660.055*
N30.1121 (3)0.5197 (3)0.2718 (2)0.0391 (6)
N40.0771 (3)0.4117 (3)0.1697 (2)0.0380 (6)
H4C0.13790.41350.12340.046*
N50.0158 (3)0.6172 (3)0.1555 (2)0.0399 (6)
H5C0.07810.68060.17100.048*
N60.0855 (3)0.6209 (3)0.0851 (2)0.0369 (6)
O10.3001 (3)0.6543 (3)0.0088 (2)0.0553 (7)
O20.2245 (3)0.8192 (3)0.1395 (3)0.0617 (8)
O30.3692 (3)0.6777 (3)0.1811 (2)0.0582 (7)
O40.4611 (4)0.8581 (4)0.0865 (4)0.1015 (14)
O50.1324 (4)0.2708 (10)0.6082 (4)0.201 (4)
O60.2930 (6)0.1273 (4)0.6352 (4)0.123 (2)
O70.3248 (4)0.2711 (4)0.5170 (3)0.0731 (9)
O80.3333 (5)0.3762 (5)0.7247 (4)0.1072 (14)
C10.3790 (6)0.9314 (8)0.3904 (6)0.094 (3)0.768 (10)
H1B0.35510.96630.33060.141*0.768 (10)
H1C0.46120.89870.37830.141*0.768 (10)
H1D0.38421.00010.45760.141*0.768 (10)
C20.1534 (15)0.8623 (13)0.3983 (9)0.054 (3)0.768 (10)
H2A0.08940.79150.40330.081*0.768 (10)
H2B0.13730.88770.33180.081*0.768 (10)
H2C0.14930.93700.46010.081*0.768 (10)
N10.2784 (4)0.8189 (4)0.3980 (3)0.0711 (11)0.768 (10)
H1A0.28180.75000.33790.085*0.768 (10)
C30.3380 (7)0.7866 (6)0.4925 (5)0.071 (2)0.768 (10)
H3A0.32520.85260.55960.085*0.768 (10)
H3B0.42970.78390.48410.085*0.768 (10)
C40.2729 (9)0.6522 (6)0.4957 (5)0.079 (3)0.768 (10)
H4A0.18070.65040.48360.095*0.768 (10)
H4B0.28810.63970.56830.095*0.768 (10)
C50.3222 (4)0.5303 (4)0.4057 (4)0.0635 (12)0.768 (10)
H5A0.34230.55630.33900.076*0.768 (10)
H5B0.39900.50330.43400.076*0.768 (10)
C1'0.4014 (16)0.885 (3)0.438 (2)0.081 (7)0.232 (10)
H1'B0.46120.82060.43390.121*0.232 (10)
H1'C0.39720.93460.51240.121*0.232 (10)
H1'D0.42970.94370.39360.121*0.232 (10)
C2'0.156 (4)0.896 (4)0.397 (4)0.059 (11)0.232 (10)
H2'A0.16760.95180.34780.089*0.232 (10)
H2'B0.14520.94920.46970.089*0.232 (10)
H2'C0.08050.83310.37340.089*0.232 (10)
N1'0.2784 (4)0.8189 (4)0.3980 (3)0.0711 (11)0.232 (10)
H1'A0.28440.76280.33070.085*0.232 (10)
C3'0.2400 (10)0.7379 (10)0.4811 (8)0.027 (4)0.232 (10)
H3'A0.22590.79830.55080.032*0.232 (10)
H3'B0.15940.68250.45520.032*0.232 (10)
C4'0.3425 (12)0.6497 (11)0.4986 (10)0.033 (4)0.232 (10)
H4'A0.42830.69540.49920.040*0.232 (10)
H4'B0.33200.62610.56760.040*0.232 (10)
C5'0.3222 (4)0.5303 (4)0.4057 (4)0.0635 (12)0.232 (10)
H5'A0.32290.56340.34070.076*0.232 (10)
H5'B0.40030.48810.40560.076*0.232 (10)
C60.1190 (3)0.4168 (3)0.3162 (3)0.0377 (7)
C70.0215 (3)0.3013 (3)0.2901 (3)0.0377 (7)
C80.0235 (4)0.1903 (4)0.3319 (3)0.0476 (8)
H80.08810.18910.38330.057*
C90.0688 (4)0.0830 (4)0.2980 (3)0.0523 (9)
H90.06630.00930.32580.063*
C100.1655 (4)0.0850 (4)0.2224 (3)0.0535 (9)
H100.22790.01210.19980.064*
C110.1714 (4)0.1935 (4)0.1798 (3)0.0491 (9)
H110.23750.19400.12970.059*
C120.0763 (3)0.3026 (3)0.2132 (3)0.0384 (7)
C130.0161 (3)0.5139 (3)0.1994 (3)0.0353 (7)
C140.0831 (3)0.7243 (3)0.0498 (3)0.0398 (7)
H140.01540.79180.07220.048*
C150.1847 (3)0.7380 (3)0.0249 (3)0.0376 (7)
C160.2904 (3)0.6397 (3)0.0569 (3)0.0425 (8)
H160.29630.56540.02920.051*
C170.3850 (4)0.6532 (4)0.1289 (3)0.0478 (9)
H170.45470.58800.15060.057*
C180.3756 (3)0.7649 (4)0.1690 (3)0.0440 (8)
C190.2739 (4)0.8635 (4)0.1393 (3)0.0464 (8)
H190.26890.93740.16760.056*
C200.1798 (3)0.8500 (3)0.0664 (3)0.0437 (8)
H200.11130.91680.04420.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0423 (5)0.0379 (5)0.0468 (5)0.0048 (3)0.0039 (3)0.0099 (4)
Cl20.0543 (6)0.0819 (8)0.0474 (6)0.0141 (5)0.0011 (4)0.0116 (5)
Cl30.0688 (7)0.0759 (8)0.0666 (7)0.0096 (6)0.0302 (5)0.0216 (6)
N20.0436 (16)0.0429 (16)0.0513 (17)0.0030 (12)0.0128 (13)0.0165 (13)
N30.0363 (14)0.0390 (15)0.0406 (15)0.0044 (11)0.0049 (11)0.0086 (12)
N40.0353 (14)0.0420 (15)0.0369 (14)0.0026 (11)0.0058 (11)0.0119 (12)
N50.0338 (14)0.0432 (16)0.0436 (15)0.0020 (11)0.0071 (11)0.0144 (12)
N60.0329 (13)0.0410 (15)0.0375 (14)0.0041 (11)0.0051 (11)0.0119 (12)
O10.0659 (17)0.0486 (15)0.0455 (14)0.0049 (13)0.0153 (12)0.0072 (12)
O20.0433 (15)0.0480 (16)0.090 (2)0.0004 (12)0.0120 (14)0.0124 (15)
O30.0685 (18)0.0532 (16)0.0528 (16)0.0003 (13)0.0138 (13)0.0178 (13)
O40.081 (3)0.082 (3)0.126 (3)0.016 (2)0.024 (2)0.008 (2)
O50.042 (2)0.408 (12)0.098 (4)0.007 (4)0.017 (2)0.026 (5)
O60.222 (6)0.058 (2)0.084 (3)0.029 (3)0.009 (3)0.029 (2)
O70.092 (2)0.086 (2)0.0534 (17)0.0278 (19)0.0155 (16)0.0313 (16)
O80.091 (3)0.111 (3)0.102 (3)0.006 (2)0.008 (2)0.001 (3)
C10.047 (3)0.133 (7)0.067 (4)0.006 (4)0.015 (3)0.034 (4)
C20.064 (5)0.042 (8)0.051 (4)0.011 (5)0.003 (3)0.002 (4)
N10.096 (3)0.074 (2)0.0416 (18)0.044 (2)0.0082 (17)0.0013 (16)
C30.078 (5)0.075 (4)0.054 (3)0.008 (4)0.011 (3)0.006 (3)
C40.095 (6)0.089 (5)0.037 (3)0.045 (5)0.012 (3)0.011 (3)
C50.064 (3)0.056 (2)0.072 (3)0.012 (2)0.034 (2)0.031 (2)
C1'0.094 (11)0.083 (10)0.079 (10)0.007 (8)0.001 (8)0.048 (9)
C2'0.037 (11)0.009 (12)0.12 (2)0.001 (8)0.015 (11)0.005 (10)
N1'0.096 (3)0.074 (2)0.0416 (18)0.044 (2)0.0082 (17)0.0013 (16)
C3'0.026 (7)0.016 (6)0.029 (6)0.008 (5)0.003 (5)0.009 (5)
C4'0.016 (6)0.052 (7)0.028 (6)0.018 (5)0.016 (5)0.013 (5)
C5'0.064 (3)0.056 (2)0.072 (3)0.012 (2)0.034 (2)0.031 (2)
C60.0398 (17)0.0392 (17)0.0345 (16)0.0077 (13)0.0010 (13)0.0095 (13)
C70.0377 (17)0.0405 (18)0.0348 (16)0.0041 (13)0.0003 (13)0.0100 (13)
C80.050 (2)0.049 (2)0.049 (2)0.0068 (16)0.0018 (16)0.0198 (16)
C90.055 (2)0.048 (2)0.057 (2)0.0001 (17)0.0010 (18)0.0220 (18)
C100.054 (2)0.046 (2)0.059 (2)0.0074 (17)0.0009 (18)0.0162 (18)
C110.0455 (19)0.054 (2)0.047 (2)0.0047 (16)0.0081 (15)0.0169 (17)
C120.0374 (16)0.0400 (18)0.0375 (17)0.0020 (13)0.0027 (13)0.0102 (14)
C130.0353 (16)0.0379 (17)0.0333 (15)0.0085 (13)0.0006 (12)0.0088 (13)
C140.0372 (17)0.0385 (18)0.0428 (18)0.0018 (13)0.0055 (13)0.0102 (14)
C150.0394 (17)0.0347 (17)0.0379 (16)0.0065 (13)0.0014 (13)0.0073 (13)
C160.0475 (19)0.0337 (17)0.0449 (18)0.0031 (14)0.0054 (15)0.0091 (14)
C170.049 (2)0.0392 (19)0.049 (2)0.0010 (15)0.0108 (16)0.0037 (15)
C180.0437 (18)0.051 (2)0.0357 (17)0.0128 (15)0.0069 (14)0.0059 (15)
C190.052 (2)0.0432 (19)0.050 (2)0.0102 (16)0.0016 (16)0.0206 (16)
C200.0400 (18)0.0367 (18)0.056 (2)0.0017 (14)0.0035 (15)0.0155 (15)
Geometric parameters (Å, º) top
Cl1—O31.444 (3)C5—H5A0.9700
Cl1—O21.452 (3)C5—H5B0.9700
Cl1—O11.454 (3)C1'—H1'B0.9600
Cl1—O41.775 (4)C1'—H1'C0.9600
Cl2—O51.412 (5)C1'—H1'D0.9600
Cl2—O71.430 (3)C2'—H2'A0.9600
Cl2—O61.464 (5)C2'—H2'B0.9600
Cl2—O81.747 (5)C2'—H2'C0.9600
Cl3—C181.741 (4)C3'—C4'1.538 (10)
N2—C61.318 (4)C3'—H3'A0.9700
N2—C51.450 (5)C3'—H3'B0.9700
N2—H2D0.8600C4'—H4'A0.9700
N3—C131.330 (4)C4'—H4'B0.9700
N3—C61.346 (4)C6—C71.461 (5)
N4—C131.341 (4)C7—C121.398 (5)
N4—C121.392 (4)C7—C81.400 (5)
N4—H4C0.8600C8—C91.374 (5)
N5—C131.338 (4)C8—H80.9300
N5—N61.379 (4)C9—C101.382 (6)
N5—H5C0.8600C9—H90.9300
N6—C141.272 (4)C10—C111.384 (6)
C1—N11.517 (7)C10—H100.9300
C1—H1B0.9600C11—C121.404 (5)
C1—H1C0.9600C11—H110.9300
C1—H1D0.9600C14—C151.450 (5)
C2—N11.430 (16)C14—H140.9300
C2—H2A0.9600C15—C201.400 (5)
C2—H2B0.9600C15—C161.404 (5)
C2—H2C0.9600C16—C171.372 (5)
N1—C31.465 (6)C16—H160.9300
N1—H1A0.9100C17—C181.386 (5)
C3—C41.510 (7)C17—H170.9300
C3—H3A0.9700C18—C191.375 (5)
C3—H3B0.9700C19—C201.378 (5)
C4—C51.620 (7)C19—H190.9300
C4—H4A0.9700C20—H200.9300
C4—H4B0.9700
O3—Cl1—O2110.00 (19)H5A—C5—H5B108.6
O3—Cl1—O1114.28 (17)H1'B—C1'—H1'C109.5
O2—Cl1—O1112.44 (19)H1'B—C1'—H1'D109.5
O3—Cl1—O4107.1 (2)H1'C—C1'—H1'D109.5
O2—Cl1—O4106.45 (18)H2'A—C2'—H2'B109.5
O1—Cl1—O4106.02 (19)H2'A—C2'—H2'C109.5
O5—Cl2—O7110.7 (3)H2'B—C2'—H2'C109.5
O5—Cl2—O6116.7 (5)C4'—C3'—H3'A109.0
O7—Cl2—O6110.9 (3)C4'—C3'—H3'B109.0
O5—Cl2—O8105.3 (3)H3'A—C3'—H3'B107.8
O7—Cl2—O8107.5 (2)C3'—C4'—H4'A110.6
O6—Cl2—O8105.0 (3)C3'—C4'—H4'B110.6
C6—N2—C5122.3 (3)H4'A—C4'—H4'B108.7
C6—N2—H2D118.8N2—C6—N3117.7 (3)
C5—N2—H2D118.8N2—C6—C7120.5 (3)
C13—N3—C6119.0 (3)N3—C6—C7121.8 (3)
C13—N4—C12120.5 (3)C12—C7—C8119.3 (3)
C13—N4—H4C119.7C12—C7—C6115.8 (3)
C12—N4—H4C119.7C8—C7—C6124.8 (3)
C13—N5—N6119.2 (3)C9—C8—C7120.7 (4)
C13—N5—H5C120.4C9—C8—H8119.6
N6—N5—H5C120.4C7—C8—H8119.6
C14—N6—N5116.2 (3)C8—C9—C10119.7 (4)
N1—C1—H1B109.5C8—C9—H9120.1
N1—C1—H1C109.5C10—C9—H9120.1
H1B—C1—H1C109.5C9—C10—C11121.2 (4)
N1—C1—H1D109.5C9—C10—H10119.4
H1B—C1—H1D109.5C11—C10—H10119.4
H1C—C1—H1D109.5C10—C11—C12119.2 (4)
N1—C2—H2A109.5C10—C11—H11120.4
N1—C2—H2B109.5C12—C11—H11120.4
H2A—C2—H2B109.5N4—C12—C7119.5 (3)
N1—C2—H2C109.5N4—C12—C11120.8 (3)
H2A—C2—H2C109.5C7—C12—C11119.8 (3)
H2B—C2—H2C109.5N3—C13—N5116.5 (3)
C2—N1—C3123.2 (6)N3—C13—N4123.4 (3)
C2—N1—C1109.2 (6)N5—C13—N4120.1 (3)
C3—N1—C197.5 (5)N6—C14—C15120.7 (3)
C2—N1—H1A108.6N6—C14—H14119.6
C3—N1—H1A108.6C15—C14—H14119.6
C1—N1—H1A108.6C20—C15—C16118.6 (3)
N1—C3—C4106.3 (5)C20—C15—C14120.6 (3)
N1—C3—H3A110.5C16—C15—C14120.8 (3)
C4—C3—H3A110.5C17—C16—C15120.1 (3)
N1—C3—H3B110.5C17—C16—H16119.9
C4—C3—H3B110.5C15—C16—H16119.9
H3A—C3—H3B108.7C16—C17—C18119.4 (3)
C3—C4—C5113.7 (5)C16—C17—H17120.3
C3—C4—H4A108.8C18—C17—H17120.3
C5—C4—H4A108.8C19—C18—C17122.2 (3)
C3—C4—H4B108.8C19—C18—Cl3118.9 (3)
C5—C4—H4B108.8C17—C18—Cl3119.0 (3)
H4A—C4—H4B107.7C18—C19—C20118.2 (3)
N2—C5—C4106.7 (4)C18—C19—H19120.9
N2—C5—H5A110.4C20—C19—H19120.9
C4—C5—H5A110.4C19—C20—C15121.5 (3)
N2—C5—H5B110.4C19—C20—H20119.3
C4—C5—H5B110.4C15—C20—H20119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.912.192.990 (5)147
N5—H5C···O20.862.112.922 (4)157
N4—H4C···O1i0.862.142.964 (4)160
N2—H2D···O70.862.102.873 (5)149
C19—H19···O2ii0.932.483.316 (5)150
C1—H1D···O6iii0.962.563.445 (8)153
C1—H1C···O6iv0.962.623.555 (10)166
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H25ClN62+·2ClO4
Mr583.81
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.4533 (18), 10.5018 (18), 12.626 (2)
α, β, γ (°)104.745 (9), 91.146 (10), 96.21 (1)
V3)1330.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.25 × 0.23 × 0.18
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.907, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
12435, 4889, 3979
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.219, 1.09
No. of reflections4889
No. of parameters371
No. of restraints62
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.92

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.912.192.990 (5)146.7
N5—H5C···O20.862.112.922 (4)156.8
N4—H4C···O1i0.862.142.964 (4)159.6
N2—H2D···O70.862.102.873 (5)148.9
C19—H19···O2ii0.932.483.316 (5)149.7
C1—H1D···O6iii0.962.563.445 (8)153.1
C1—H1C···O6iv0.962.623.555 (10)165.6
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Dalian University of Technology for providing research facilities. This work was supported by the National S & T Major Project of China (No. 2009ZX09301–012) and the S & T Project of Liaoning Province (No. LJQ201107).

References

First citationAbouzid, K. & Shouman, S. (2008). Bioorg. Med. Chem. 16, 7543–7551.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAn, Z. Y., Yan, Y. Y., Peng, D., Ou, T. M., Tan, J. H., Huang, S. L., An, L. K., Gu, L. Q. & Huang, Z. S. (2010). Eur. J. Med. Chem. 45, 3895–3903.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFerreira, M. L. de, Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3239–o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S. & Nayak, S. P. (2010). Acta Cryst. E66, o2467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoriuchi, T., Nagata, M., Kitagawa, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 119–132.  Web of Science CrossRef PubMed Google Scholar
First citationLoh, W.-S., Fun, H.-K., Kayarmar, R., Viveka, S. & Nagaraja, G. K. (2011). Acta Cryst. E67, o407–o408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSouza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o152–o153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H. W., Solomon, V. R., Hu, C. K., Ulibarri, G. & Lee, H. Y. (2008). Biomed. Pharmacother. 62, 65–69.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1557-o1558
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds