organic compounds
2-Amino-6-(dimethylamino)pyridine-3,5-dicarbonitrile
aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bDepartment of Chemistry, Faculty of Science, Sohag University, Egypt, cDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and dDepartment of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, People's Republic of China
*Correspondence e-mail: sohail262001@yahoo.com
The title compound, C9H9N5, is slightly twisted from planarity, with a maximum deviation of 0.0285 (13) Å from the pyridine plane for the C atom bearing the amino group. The cyano groups are on different sides of the pyridine plane, with C- and N-atom deviations of 0.072 (3)/0.124 (4) and −0.228 (4)/−0.409 (5) Å from the pyridine plane. In the crystal, N—H⋯N and C—H⋯N hydrogen bonds connect the molecules into zigzag chains running along the c axis.
Related literature
For the synthesis of similar structures, see: Horton et al. (2012a,b); Soliman et al. (2012). For the biological significance of cyanoamino pyridines, see: Al-Haiza et al. (2003); Bhalerao & Krishnaiah (1995); Deo et al. (1990); Murata et al. (2003); Konda et al. (2010); Altomare et al. (2000); Hosni & Abdulla (2008); Shishoo et al. (1983).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812017278/im2369sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812017278/im2369Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812017278/im2369Isup3.cml
The title compound (1) was obtained as a by-product from the reaction of 2-amino-6-chloropyridine-3,5-dicarbonitrile (1 mmol; 179 mg) with amino guanidine (1 mmol; 74 mg) in dimethylformamide. The reaction mixture was refluxed for 4 h at 426 K and then poured on cold water. A solid product was filtered off, dried and recrystallized from ethanol to afford cupric needles which were suitable for X-Ray diffraction without further recrystallization. Yield 45% and m.p. 453 K.
The structure was solved by
(SHELXS97, Sheldrick, 2008) and expanded using Fourier techniques. All non-H atoms were refined anisotropically.C-bound H atoms are all placed at geometrical positions with C—H = 0.93 and 0.96 Å for phenyl and methyl H-atoms, respectively. C-bound phenyl hydrogen atoms are refined using a riding model with Uiso(H) = 1.2Ueq(C), methyl H-atoms are refined using a riding model with Uiso(H) = 1.5Ueq(C). N-bound H atoms were located from the difference Fourier map and were refined isotropically.
Highest peak is 0.16 at (0.1967, 0.2214, 0.0041) [1.04 Å from H8C] Deepest hole is -0.19 at (0.1226, 0.1471, 0.2613) [1.01 Å from C5]
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound showing thermal ellipsoids on the 50% probability level. |
C9H9N5 | F(000) = 784 |
Mr = 187.21 | Dx = 1.322 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 4846 reflections |
a = 28.667 (7) Å | θ = 3.1–25.0° |
b = 3.9702 (10) Å | µ = 0.09 mm−1 |
c = 17.950 (4) Å | T = 296 K |
β = 112.920 (3)° | Plate, yellow |
V = 1881.7 (8) Å3 | 0.32 × 0.21 × 0.03 mm |
Z = 8 |
Bruker SMART 1000 CCD diffractometer | 1658 independent reflections |
Radiation source: fine-focus sealed tube | 1173 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω and ϕ scans | θmax = 25.0°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −33→34 |
Tmin = 0.972, Tmax = 0.997 | k = −4→4 |
4846 measured reflections | l = −21→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0915P)2 + 0.1839P] where P = (Fo2 + 2Fc2)/3 |
1658 reflections | (Δ/σ)max < 0.001 |
138 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C9H9N5 | V = 1881.7 (8) Å3 |
Mr = 187.21 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 28.667 (7) Å | µ = 0.09 mm−1 |
b = 3.9702 (10) Å | T = 296 K |
c = 17.950 (4) Å | 0.32 × 0.21 × 0.03 mm |
β = 112.920 (3)° |
Bruker SMART 1000 CCD diffractometer | 1658 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 1173 reflections with I > 2σ(I) |
Tmin = 0.972, Tmax = 0.997 | Rint = 0.025 |
4846 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.16 e Å−3 |
1658 reflections | Δρmin = −0.19 e Å−3 |
138 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.07712 (6) | 0.0877 (4) | 0.27256 (9) | 0.0417 (5) | |
N2 | 0.00997 (6) | 0.2230 (6) | 0.15638 (13) | 0.0573 (6) | |
H1 | −0.0050 (9) | 0.284 (6) | 0.1053 (17) | 0.068 (8)* | |
H2 | −0.0096 (12) | 0.128 (8) | 0.1777 (19) | 0.094 (9)* | |
N3 | 0.05670 (8) | 0.6406 (6) | 0.02533 (12) | 0.0669 (6) | |
N4 | 0.25896 (8) | 0.0677 (9) | 0.35083 (15) | 0.1042 (10) | |
N5 | 0.14100 (6) | −0.0606 (5) | 0.39210 (10) | 0.0488 (5) | |
C1 | 0.06018 (7) | 0.2187 (5) | 0.19854 (12) | 0.0415 (5) | |
C2 | 0.09339 (7) | 0.3580 (5) | 0.16489 (12) | 0.0431 (5) | |
C3 | 0.14482 (7) | 0.3269 (6) | 0.20982 (13) | 0.0499 (6) | |
H3 | 0.1676 | 0.4079 | 0.1887 | 0.060* | |
C4 | 0.16300 (7) | 0.1796 (5) | 0.28473 (13) | 0.0463 (5) | |
C5 | 0.12699 (7) | 0.0699 (5) | 0.31732 (12) | 0.0413 (5) | |
C6 | 0.07369 (8) | 0.5132 (6) | 0.08746 (14) | 0.0498 (6) | |
C7 | 0.21622 (9) | 0.1175 (7) | 0.32283 (15) | 0.0673 (7) | |
C8 | 0.18827 (9) | 0.0208 (8) | 0.45832 (15) | 0.0782 (8) | |
H8A | 0.1828 | 0.0356 | 0.5077 | 0.117* | |
H8B | 0.2006 | 0.2328 | 0.4478 | 0.117* | |
H8C | 0.2127 | −0.1520 | 0.4634 | 0.117* | |
C9 | 0.10351 (8) | −0.2200 (6) | 0.41700 (13) | 0.0561 (6) | |
H9A | 0.1197 | −0.3882 | 0.4572 | 0.084* | |
H9B | 0.0778 | −0.3238 | 0.3710 | 0.084* | |
H9C | 0.0884 | −0.0530 | 0.4392 | 0.084* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0341 (9) | 0.0539 (10) | 0.0397 (10) | −0.0009 (7) | 0.0172 (7) | −0.0014 (8) |
N2 | 0.0344 (10) | 0.0948 (16) | 0.0427 (12) | −0.0056 (9) | 0.0150 (9) | 0.0117 (11) |
N3 | 0.0644 (13) | 0.0872 (15) | 0.0559 (13) | −0.0010 (11) | 0.0308 (11) | 0.0131 (12) |
N4 | 0.0412 (12) | 0.175 (3) | 0.0971 (19) | 0.0216 (15) | 0.0270 (12) | −0.0016 (19) |
N5 | 0.0376 (9) | 0.0639 (11) | 0.0435 (10) | 0.0045 (8) | 0.0142 (8) | 0.0037 (9) |
C1 | 0.0364 (10) | 0.0501 (12) | 0.0411 (12) | −0.0021 (8) | 0.0186 (9) | −0.0048 (9) |
C2 | 0.0404 (11) | 0.0522 (12) | 0.0425 (12) | −0.0026 (9) | 0.0224 (9) | −0.0020 (10) |
C3 | 0.0419 (12) | 0.0610 (13) | 0.0572 (14) | −0.0054 (9) | 0.0307 (11) | −0.0060 (11) |
C4 | 0.0332 (11) | 0.0580 (13) | 0.0515 (13) | 0.0009 (9) | 0.0205 (9) | −0.0041 (11) |
C5 | 0.0348 (10) | 0.0455 (11) | 0.0449 (12) | 0.0010 (8) | 0.0169 (9) | −0.0067 (9) |
C6 | 0.0468 (12) | 0.0611 (14) | 0.0509 (14) | −0.0040 (10) | 0.0292 (11) | −0.0023 (12) |
C7 | 0.0445 (14) | 0.0956 (19) | 0.0682 (17) | 0.0067 (12) | 0.0288 (12) | −0.0019 (14) |
C8 | 0.0492 (14) | 0.108 (2) | 0.0642 (17) | 0.0041 (14) | 0.0074 (12) | 0.0105 (16) |
C9 | 0.0532 (13) | 0.0662 (14) | 0.0575 (14) | 0.0078 (11) | 0.0310 (12) | 0.0106 (12) |
N1—C1 | 1.330 (2) | C2—C6 | 1.421 (3) |
N1—C5 | 1.341 (2) | C3—C4 | 1.370 (3) |
N2—C1 | 1.340 (3) | C3—H3 | 0.9300 |
N2—H1 | 0.88 (3) | C4—C7 | 1.429 (3) |
N2—H2 | 0.88 (3) | C4—C5 | 1.438 (3) |
N3—C6 | 1.146 (3) | C8—H8A | 0.9600 |
N4—C7 | 1.146 (3) | C8—H8B | 0.9600 |
N5—C5 | 1.346 (3) | C8—H8C | 0.9600 |
N5—C8 | 1.449 (3) | C9—H9A | 0.9600 |
N5—C9 | 1.459 (3) | C9—H9B | 0.9600 |
C1—C2 | 1.423 (3) | C9—H9C | 0.9600 |
C2—C3 | 1.383 (3) | ||
C1—N1—C5 | 120.56 (16) | C7—C4—C5 | 123.7 (2) |
C1—N2—H1 | 124.9 (15) | N1—C5—N5 | 116.88 (16) |
C1—N2—H2 | 118 (2) | N1—C5—C4 | 120.45 (18) |
H1—N2—H2 | 116 (3) | N5—C5—C4 | 122.66 (18) |
C5—N5—C8 | 123.56 (19) | N3—C6—C2 | 178.3 (2) |
C5—N5—C9 | 120.21 (17) | N4—C7—C4 | 177.7 (3) |
C8—N5—C9 | 114.24 (18) | N5—C8—H8A | 109.5 |
N1—C1—N2 | 117.60 (18) | N5—C8—H8B | 109.5 |
N1—C1—C2 | 122.11 (18) | H8A—C8—H8B | 109.5 |
N2—C1—C2 | 120.28 (19) | N5—C8—H8C | 109.5 |
C3—C2—C6 | 122.45 (17) | H8A—C8—H8C | 109.5 |
C3—C2—C1 | 117.08 (19) | H8B—C8—H8C | 109.5 |
C6—C2—C1 | 120.45 (17) | N5—C9—H9A | 109.5 |
C4—C3—C2 | 121.48 (18) | N5—C9—H9B | 109.5 |
C4—C3—H3 | 119.3 | H9A—C9—H9B | 109.5 |
C2—C3—H3 | 119.3 | N5—C9—H9C | 109.5 |
C3—C4—C7 | 118.05 (19) | H9A—C9—H9C | 109.5 |
C3—C4—C5 | 118.02 (18) | H9B—C9—H9C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···N3i | 0.88 (3) | 2.25 (3) | 3.119 (3) | 167 (2) |
N2—H2···N1ii | 0.88 (3) | 2.43 (3) | 3.260 (3) | 158 (3) |
C3—H3···N4iii | 0.93 | 2.55 | 3.471 (4) | 170 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H9N5 |
Mr | 187.21 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 28.667 (7), 3.9702 (10), 17.950 (4) |
β (°) | 112.920 (3) |
V (Å3) | 1881.7 (8) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.32 × 0.21 × 0.03 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.972, 0.997 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4846, 1658, 1173 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.147, 1.03 |
No. of reflections | 1658 |
No. of parameters | 138 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.16, −0.19 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···N3i | 0.88 (3) | 2.25 (3) | 3.119 (3) | 167 (2) |
N2—H2···N1ii | 0.88 (3) | 2.43 (3) | 3.260 (3) | 158 (3) |
C3—H3···N4iii | 0.93 | 2.55 | 3.471 (4) | 170 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
The authors are thankful to the University of Hong Kong for providing the single-crystal X-ray crystallography facility.
References
Al-Haiza, M. A., Mostafa, M. S. & El-Kady, M. Y. (2003). Molecules, 8, 275–286. CAS Google Scholar
Altomare, C., Cellamare, S., Summo, L., Fossa, P., Mosti, L. & Carotti, A. (2000). Bioorg. Med. Chem. 8, 909–916. Web of Science CrossRef PubMed CAS Google Scholar
Bhalerao, U. T. & Krishnaiah, A. (1995). Indian J. Chem. Sect. B, 34, 587–590. Google Scholar
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deo, K., Avasthi, K., Pratap, R., Bhakuni, D. S. & Joshi, M. N. (1990). Indian J. Chem. Sect. B, 29, 459–463. Google Scholar
Horton, P. N., Mohamed, S. K., Soliman, A. M., Abdel-Raheem, E. M. M. & Akkurt, M. (2012a). Acta Cryst. E68, o938. CSD CrossRef IUCr Journals Google Scholar
Horton, P. N., Mohamed, S. K., Soliman, A. M., Abdel-Raheem, E. M. M. & Akkurt, M. (2012b). Acta Cryst. E68, o885–o886. CSD CrossRef IUCr Journals Google Scholar
Hosni, H. M. & Abdulla, M. M. (2008). Acta Pharm. 58, 175–186. Web of Science CrossRef PubMed CAS Google Scholar
Konda, S. G., Khedkar, V. T. & Dawane, B. S. (2010). J. Chem. Pharm. Res. 2, 187–191. CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913–918. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. 24, 4611–4612. CrossRef CAS Web of Science Google Scholar
Soliman, A. M., Mohamed, S. K., El Remaily, M. A. A. & Abdel-Ghany, H. (2012). Eur. J. Med. Chem. 47, 138–142. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In continuation of our research interest in the synthesis of potential biologically active molecules (Soliman et al., 2012; Horton et al., 2012a,b), we got prompted to study the chemical and pharmacological characterization of new cyano-amino pyridine derivatives due to their vibrant chemical activities. Hence cyano-amino pyridines have been considered as convenient synthons due to their diverse applications particularly in organic synthesis (Shishoo et al., 1983; Deo et al., 1990; Bhalerao & Krishnaiah, 1995; Al-Haiza et al., 2003) and medicinal chemistry (Altomare et al., 2000; Hosni & Abdulla, 2008; Murata et al., 2003; Konda et al., 2010).
The title compound, 2-amino-6-(dimethylamino)-pyridine-3,5-dicarbonitrile, is slightly twisted. The maximum deviation from the mean plane of the pyridyl ring, N1/C1—C5 (marked with asterisk) is 0.0285 (13) Angstrom. The cyano groups are flipped to different sides of the pyridine plane with atoms C6 & N3 showing deviations of +0.072 (3) Å and +0.124 (4) Å, while atoms C7 & N4 are bent out of the pyridine plane by -0.228 (4) Å and -0.409 (5) Å, respectively.
Hydrogen bonding interactions are observed in the crystal lattice connecting the molecules into zigzag chains running along the c-axis. As it is expected, N—H···N interactions are shorter as the observed N4···H3(–C3) distance.