organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1532

2-Amino-6-(di­methyl­amino)pyridine-3,5-dicarbo­nitrile

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bDepartment of Chemistry, Faculty of Science, Sohag University, Egypt, cDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and dDepartment of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, People's Republic of China
*Correspondence e-mail: sohail262001@yahoo.com

(Received 13 April 2012; accepted 18 April 2012; online 25 April 2012)

The title compound, C9H9N5, is slightly twisted from planarity, with a maximum deviation of 0.0285 (13) Å from the pyridine plane for the C atom bearing the amino group. The cyano groups are on different sides of the pyridine plane, with C- and N-atom deviations of 0.072 (3)/0.124 (4) and −0.228 (4)/−0.409 (5) Å from the pyridine plane. In the crystal, N—H⋯N and C—H⋯N hydrogen bonds connect the mol­ecules into zigzag chains running along the c axis.

Related literature

For the synthesis of similar structures, see: Horton et al. (2012a[Horton, P. N., Mohamed, S. K., Soliman, A. M., Abdel-Raheem, E. M. M. & Akkurt, M. (2012a). Acta Cryst. E68, o938.],b[Horton, P. N., Mohamed, S. K., Soliman, A. M., Abdel-Raheem, E. M. M. & Akkurt, M. (2012b). Acta Cryst. E68, o885-o886.]); Soliman et al. (2012[Soliman, A. M., Mohamed, S. K., El Remaily, M. A. A. & Abdel-Ghany, H. (2012). Eur. J. Med. Chem. 47, 138-142.]). For the biological significance of cyano­amino pyridines, see: Al-Haiza et al. (2003[Al-Haiza, M. A., Mostafa, M. S. & El-Kady, M. Y. (2003). Molecules, 8, 275-286.]); Bhalerao & Krishnaiah (1995[Bhalerao, U. T. & Krishnaiah, A. (1995). Indian J. Chem. Sect. B, 34, 587-590.]); Deo et al. (1990[Deo, K., Avasthi, K., Pratap, R., Bhakuni, D. S. & Joshi, M. N. (1990). Indian J. Chem. Sect. B, 29, 459-463.]); Murata et al. (2003[Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913-918.]); Konda et al. (2010[Konda, S. G., Khedkar, V. T. & Dawane, B. S. (2010). J. Chem. Pharm. Res. 2, 187-191.]); Altomare et al. (2000[Altomare, C., Cellamare, S., Summo, L., Fossa, P., Mosti, L. & Carotti, A. (2000). Bioorg. Med. Chem. 8, 909-916.]); Hosni & Abdulla (2008[Hosni, H. M. & Abdulla, M. M. (2008). Acta Pharm. 58, 175-186.]); Shishoo et al. (1983[Shishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. 24, 4611-4612.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N5

  • Mr = 187.21

  • Monoclinic, C 2/c

  • a = 28.667 (7) Å

  • b = 3.9702 (10) Å

  • c = 17.950 (4) Å

  • β = 112.920 (3)°

  • V = 1881.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.21 × 0.03 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.997

  • 4846 measured reflections

  • 1658 independent reflections

  • 1173 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.147

  • S = 1.03

  • 1658 reflections

  • 138 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N3i 0.88 (3) 2.25 (3) 3.119 (3) 167 (2)
N2—H2⋯N1ii 0.88 (3) 2.43 (3) 3.260 (3) 158 (3)
C3—H3⋯N4iii 0.93 2.55 3.471 (4) 170
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our research interest in the synthesis of potential biologically active molecules (Soliman et al., 2012; Horton et al., 2012a,b), we got prompted to study the chemical and pharmacological characterization of new cyano-amino pyridine derivatives due to their vibrant chemical activities. Hence cyano-amino pyridines have been considered as convenient synthons due to their diverse applications particularly in organic synthesis (Shishoo et al., 1983; Deo et al., 1990; Bhalerao & Krishnaiah, 1995; Al-Haiza et al., 2003) and medicinal chemistry (Altomare et al., 2000; Hosni & Abdulla, 2008; Murata et al., 2003; Konda et al., 2010).

The title compound, 2-amino-6-(dimethylamino)-pyridine-3,5-dicarbonitrile, is slightly twisted. The maximum deviation from the mean plane of the pyridyl ring, N1/C1—C5 (marked with asterisk) is 0.0285 (13) Angstrom. The cyano groups are flipped to different sides of the pyridine plane with atoms C6 & N3 showing deviations of +0.072 (3) Å and +0.124 (4) Å, while atoms C7 & N4 are bent out of the pyridine plane by -0.228 (4) Å and -0.409 (5) Å, respectively.

Hydrogen bonding interactions are observed in the crystal lattice connecting the molecules into zigzag chains running along the c-axis. As it is expected, N—H···N interactions are shorter as the observed N4···H3(–C3) distance.

Related literature top

For the synthesis of similar structures, see: Horton et al. (2012a,b); Soliman et al. (2012). For the biological significance of cyanoamino pyridines, see: Al-Haiza et al. (2003); Bhalerao & Krishnaiah (1995); Deo et al. (1990); Murata et al. (2003); Konda et al. (2010); Altomare et al. (2000); Hosni & Abdulla (2008); Shishoo et al. (1983).

Experimental top

The title compound (1) was obtained as a by-product from the reaction of 2-amino-6-chloropyridine-3,5-dicarbonitrile (1 mmol; 179 mg) with amino guanidine (1 mmol; 74 mg) in dimethylformamide. The reaction mixture was refluxed for 4 h at 426 K and then poured on cold water. A solid product was filtered off, dried and recrystallized from ethanol to afford cupric needles which were suitable for X-Ray diffraction without further recrystallization. Yield 45% and m.p. 453 K.

Refinement top

The structure was solved by direct methods (SHELXS97, Sheldrick, 2008) and expanded using Fourier techniques. All non-H atoms were refined anisotropically.

C-bound H atoms are all placed at geometrical positions with C—H = 0.93 and 0.96 Å for phenyl and methyl H-atoms, respectively. C-bound phenyl hydrogen atoms are refined using a riding model with Uiso(H) = 1.2Ueq(C), methyl H-atoms are refined using a riding model with Uiso(H) = 1.5Ueq(C). N-bound H atoms were located from the difference Fourier map and were refined isotropically.

Highest peak is 0.16 at (0.1967, 0.2214, 0.0041) [1.04 Å from H8C] Deepest hole is -0.19 at (0.1226, 0.1471, 0.2613) [1.01 Å from C5]

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing thermal ellipsoids on the 50% probability level.
2-Amino-6-(dimethylamino)pyridine-3,5-dicarbonitrile top
Crystal data top
C9H9N5F(000) = 784
Mr = 187.21Dx = 1.322 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4846 reflections
a = 28.667 (7) Åθ = 3.1–25.0°
b = 3.9702 (10) ŵ = 0.09 mm1
c = 17.950 (4) ÅT = 296 K
β = 112.920 (3)°Plate, yellow
V = 1881.7 (8) Å30.32 × 0.21 × 0.03 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD
diffractometer
1658 independent reflections
Radiation source: fine-focus sealed tube1173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 3334
Tmin = 0.972, Tmax = 0.997k = 44
4846 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0915P)2 + 0.1839P]
where P = (Fo2 + 2Fc2)/3
1658 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C9H9N5V = 1881.7 (8) Å3
Mr = 187.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.667 (7) ŵ = 0.09 mm1
b = 3.9702 (10) ÅT = 296 K
c = 17.950 (4) Å0.32 × 0.21 × 0.03 mm
β = 112.920 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1658 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1173 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.997Rint = 0.025
4846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
1658 reflectionsΔρmin = 0.19 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.07712 (6)0.0877 (4)0.27256 (9)0.0417 (5)
N20.00997 (6)0.2230 (6)0.15638 (13)0.0573 (6)
H10.0050 (9)0.284 (6)0.1053 (17)0.068 (8)*
H20.0096 (12)0.128 (8)0.1777 (19)0.094 (9)*
N30.05670 (8)0.6406 (6)0.02533 (12)0.0669 (6)
N40.25896 (8)0.0677 (9)0.35083 (15)0.1042 (10)
N50.14100 (6)0.0606 (5)0.39210 (10)0.0488 (5)
C10.06018 (7)0.2187 (5)0.19854 (12)0.0415 (5)
C20.09339 (7)0.3580 (5)0.16489 (12)0.0431 (5)
C30.14482 (7)0.3269 (6)0.20982 (13)0.0499 (6)
H30.16760.40790.18870.060*
C40.16300 (7)0.1796 (5)0.28473 (13)0.0463 (5)
C50.12699 (7)0.0699 (5)0.31732 (12)0.0413 (5)
C60.07369 (8)0.5132 (6)0.08746 (14)0.0498 (6)
C70.21622 (9)0.1175 (7)0.32283 (15)0.0673 (7)
C80.18827 (9)0.0208 (8)0.45832 (15)0.0782 (8)
H8A0.18280.03560.50770.117*
H8B0.20060.23280.44780.117*
H8C0.21270.15200.46340.117*
C90.10351 (8)0.2200 (6)0.41700 (13)0.0561 (6)
H9A0.11970.38820.45720.084*
H9B0.07780.32380.37100.084*
H9C0.08840.05300.43920.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0341 (9)0.0539 (10)0.0397 (10)0.0009 (7)0.0172 (7)0.0014 (8)
N20.0344 (10)0.0948 (16)0.0427 (12)0.0056 (9)0.0150 (9)0.0117 (11)
N30.0644 (13)0.0872 (15)0.0559 (13)0.0010 (11)0.0308 (11)0.0131 (12)
N40.0412 (12)0.175 (3)0.0971 (19)0.0216 (15)0.0270 (12)0.0016 (19)
N50.0376 (9)0.0639 (11)0.0435 (10)0.0045 (8)0.0142 (8)0.0037 (9)
C10.0364 (10)0.0501 (12)0.0411 (12)0.0021 (8)0.0186 (9)0.0048 (9)
C20.0404 (11)0.0522 (12)0.0425 (12)0.0026 (9)0.0224 (9)0.0020 (10)
C30.0419 (12)0.0610 (13)0.0572 (14)0.0054 (9)0.0307 (11)0.0060 (11)
C40.0332 (11)0.0580 (13)0.0515 (13)0.0009 (9)0.0205 (9)0.0041 (11)
C50.0348 (10)0.0455 (11)0.0449 (12)0.0010 (8)0.0169 (9)0.0067 (9)
C60.0468 (12)0.0611 (14)0.0509 (14)0.0040 (10)0.0292 (11)0.0023 (12)
C70.0445 (14)0.0956 (19)0.0682 (17)0.0067 (12)0.0288 (12)0.0019 (14)
C80.0492 (14)0.108 (2)0.0642 (17)0.0041 (14)0.0074 (12)0.0105 (16)
C90.0532 (13)0.0662 (14)0.0575 (14)0.0078 (11)0.0310 (12)0.0106 (12)
Geometric parameters (Å, º) top
N1—C11.330 (2)C2—C61.421 (3)
N1—C51.341 (2)C3—C41.370 (3)
N2—C11.340 (3)C3—H30.9300
N2—H10.88 (3)C4—C71.429 (3)
N2—H20.88 (3)C4—C51.438 (3)
N3—C61.146 (3)C8—H8A0.9600
N4—C71.146 (3)C8—H8B0.9600
N5—C51.346 (3)C8—H8C0.9600
N5—C81.449 (3)C9—H9A0.9600
N5—C91.459 (3)C9—H9B0.9600
C1—C21.423 (3)C9—H9C0.9600
C2—C31.383 (3)
C1—N1—C5120.56 (16)C7—C4—C5123.7 (2)
C1—N2—H1124.9 (15)N1—C5—N5116.88 (16)
C1—N2—H2118 (2)N1—C5—C4120.45 (18)
H1—N2—H2116 (3)N5—C5—C4122.66 (18)
C5—N5—C8123.56 (19)N3—C6—C2178.3 (2)
C5—N5—C9120.21 (17)N4—C7—C4177.7 (3)
C8—N5—C9114.24 (18)N5—C8—H8A109.5
N1—C1—N2117.60 (18)N5—C8—H8B109.5
N1—C1—C2122.11 (18)H8A—C8—H8B109.5
N2—C1—C2120.28 (19)N5—C8—H8C109.5
C3—C2—C6122.45 (17)H8A—C8—H8C109.5
C3—C2—C1117.08 (19)H8B—C8—H8C109.5
C6—C2—C1120.45 (17)N5—C9—H9A109.5
C4—C3—C2121.48 (18)N5—C9—H9B109.5
C4—C3—H3119.3H9A—C9—H9B109.5
C2—C3—H3119.3N5—C9—H9C109.5
C3—C4—C7118.05 (19)H9A—C9—H9C109.5
C3—C4—C5118.02 (18)H9B—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N3i0.88 (3)2.25 (3)3.119 (3)167 (2)
N2—H2···N1ii0.88 (3)2.43 (3)3.260 (3)158 (3)
C3—H3···N4iii0.932.553.471 (4)170
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9N5
Mr187.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)28.667 (7), 3.9702 (10), 17.950 (4)
β (°) 112.920 (3)
V3)1881.7 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.21 × 0.03
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.972, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
4846, 1658, 1173
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.147, 1.03
No. of reflections1658
No. of parameters138
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N3i0.88 (3)2.25 (3)3.119 (3)167 (2)
N2—H2···N1ii0.88 (3)2.43 (3)3.260 (3)158 (3)
C3—H3···N4iii0.932.553.471 (4)170
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are thankful to the University of Hong Kong for providing the single-crystal X-ray crystallography facility.

References

First citationAl-Haiza, M. A., Mostafa, M. S. & El-Kady, M. Y. (2003). Molecules, 8, 275–286.  CAS Google Scholar
First citationAltomare, C., Cellamare, S., Summo, L., Fossa, P., Mosti, L. & Carotti, A. (2000). Bioorg. Med. Chem. 8, 909–916.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhalerao, U. T. & Krishnaiah, A. (1995). Indian J. Chem. Sect. B, 34, 587–590.  Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeo, K., Avasthi, K., Pratap, R., Bhakuni, D. S. & Joshi, M. N. (1990). Indian J. Chem. Sect. B, 29, 459–463.  Google Scholar
First citationHorton, P. N., Mohamed, S. K., Soliman, A. M., Abdel-Raheem, E. M. M. & Akkurt, M. (2012a). Acta Cryst. E68, o938.  CSD CrossRef IUCr Journals Google Scholar
First citationHorton, P. N., Mohamed, S. K., Soliman, A. M., Abdel-Raheem, E. M. M. & Akkurt, M. (2012b). Acta Cryst. E68, o885–o886.  CSD CrossRef IUCr Journals Google Scholar
First citationHosni, H. M. & Abdulla, M. M. (2008). Acta Pharm. 58, 175–186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKonda, S. G., Khedkar, V. T. & Dawane, B. S. (2010). J. Chem. Pharm. Res. 2, 187–191.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMurata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913–918.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. 24, 4611–4612.  CrossRef CAS Web of Science Google Scholar
First citationSoliman, A. M., Mohamed, S. K., El Remaily, M. A. A. & Abdel-Ghany, H. (2012). Eur. J. Med. Chem. 47, 138–142.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1532
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds