organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1287-o1288

N-(2,6-Di­methyl­phen­yl)-2,2-di­phenyl­acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Montepadavu, PO, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 March 2012; accepted 28 March 2012; online 4 April 2012)

In the title compound, C22H21NO, the dihedral angle between the phenyl rings is 82.59 (7)°. The dimethyl­benzene ring forms dihedral angles of 52.86 (4) and 49.65 (5)° with the two phenyl rings. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming a C(4) chain along the c axis. The crystal also features C—H⋯π inter­actions.

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). For the coordination abilities of amides, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For related structures, see: Praveen et al. (2011a[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1826.],b[Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2602-o2603.],c[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o2604.]); Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21NO

  • Mr = 315.40

  • Monoclinic, P 21 /c

  • a = 12.0606 (10) Å

  • b = 16.6747 (13) Å

  • c = 8.9469 (7) Å

  • β = 108.080 (2)°

  • V = 1710.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.56 × 0.21 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.991

  • 19127 measured reflections

  • 4994 independent reflections

  • 3661 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.139

  • S = 1.03

  • 4994 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.88 (2) 1.97 (2) 2.8207 (16) 163.2 (17)
C12—H12ACg1ii 0.95 2.80 3.6981 (17) 158
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin & Marinkovic, 2006; Mijin et al., 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives viz., N-(4-chloro-1,3-benzothiazol-2-yl)-2-(3-methylphenyl)acetamide monohydrate, N-(3-chloro-4-fluorophenyl)-2,2-diphenylacetamide and N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011a,b,c) have been reported. In continuation of our work on synthesis of amides (Fun et al., 2011a,b), we report herein the crystal structure of the title compound (I).

The title compound (Fig. 1) consists of two benzene rings (C1–C6 & C8–C13) and one dimethylbenzene ring (C15–C22) [maximum deviation = 0.0159 (10) at atom C22]. The dihedral angle between the two phenyl rings is 82.59 (7)°. The dimethylbenzene ring forms dihedral angles of 52.86 (4) and 49.65 (5) Å with the C1–C6 and C8–C13 phenyl rings, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a,b).

In the crystal (Fig. 2), molecules are linked by intermolecular N1—H1N1···O1 hydrogen bonds (Table 1), forming an infinite chain along the c axis. The crystal is further stabilized by C—H···π interaction (Table 1), involving Cg1 which is the centroid of C1–C6 ring.

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For related structures, see: Praveen et al. (2011a,b,c); Fun et al. (2011a,b). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Diphenylacetic acid (0.212 g, 1 mmol), 2,6-dimethylaniline (0.1 ml, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in the presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring which was then extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methylene chloride and acetone (1:1) mixture by the slow evaporation method (M.P.: 469–471 K).

Refinement top

Atom H1N1 was located in a difference Fourier map and refined freely [N—H = 0.88 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95, 0.98 and 1.00 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. Two outliers (-2 11 8) and (0 9 7) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds.
N-(2,6-Dimethylphenyl)-2,2-diphenylacetamide top
Crystal data top
C22H21NOF(000) = 672
Mr = 315.40Dx = 1.225 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4188 reflections
a = 12.0606 (10) Åθ = 2.4–29.9°
b = 16.6747 (13) ŵ = 0.07 mm1
c = 8.9469 (7) ÅT = 100 K
β = 108.080 (2)°Block, colourless
V = 1710.4 (2) Å30.56 × 0.21 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4994 independent reflections
Radiation source: fine-focus sealed tube3661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1716
Tmin = 0.959, Tmax = 0.991k = 2323
19127 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.6024P]
where P = (Fo2 + 2Fc2)/3
4994 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C22H21NOV = 1710.4 (2) Å3
Mr = 315.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0606 (10) ŵ = 0.07 mm1
b = 16.6747 (13) ÅT = 100 K
c = 8.9469 (7) Å0.56 × 0.21 × 0.12 mm
β = 108.080 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4994 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3661 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.991Rint = 0.049
19127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
4994 reflectionsΔρmin = 0.27 e Å3
223 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20052 (9)0.19921 (6)1.02094 (12)0.0242 (2)
N10.27147 (10)0.26010 (7)0.84282 (14)0.0170 (2)
C10.09237 (12)0.00933 (8)0.86256 (17)0.0219 (3)
H1A0.01370.02710.83510.026*
C20.12231 (14)0.06573 (9)0.93123 (19)0.0266 (3)
H2A0.06380.09920.94880.032*
C30.23640 (14)0.09192 (9)0.97397 (19)0.0289 (4)
H3A0.25660.14311.02140.035*
C40.32122 (14)0.04310 (9)0.9472 (2)0.0293 (4)
H4A0.40000.06070.97680.035*
C50.29162 (13)0.03156 (9)0.87732 (18)0.0238 (3)
H5A0.35030.06450.85890.029*
C60.17645 (12)0.05855 (8)0.83388 (17)0.0185 (3)
C70.14945 (11)0.14193 (8)0.76064 (16)0.0174 (3)
H7A0.18690.14600.67570.021*
C80.01942 (12)0.15663 (8)0.68561 (17)0.0183 (3)
C90.04747 (13)0.20118 (8)0.75703 (18)0.0228 (3)
H9A0.01150.22650.85530.027*
C100.16715 (13)0.20883 (9)0.6849 (2)0.0269 (3)
H10A0.21220.23970.73400.032*
C110.22128 (13)0.17175 (9)0.54190 (19)0.0257 (3)
H11A0.30310.17670.49390.031*
C120.15501 (13)0.12737 (9)0.46949 (19)0.0254 (3)
H12A0.19130.10200.37140.031*
C130.03575 (13)0.12027 (8)0.54073 (17)0.0222 (3)
H13A0.00930.09020.49030.027*
C140.20834 (12)0.20360 (8)0.88693 (17)0.0176 (3)
C150.33925 (11)0.31871 (8)0.95000 (16)0.0174 (3)
C160.30565 (12)0.39937 (8)0.93049 (17)0.0195 (3)
C170.37580 (13)0.45554 (9)1.03253 (18)0.0245 (3)
H17A0.35450.51061.02170.029*
C180.47589 (13)0.43236 (9)1.14927 (19)0.0271 (3)
H18A0.52300.47151.21710.033*
C190.50738 (12)0.35244 (10)1.16725 (18)0.0251 (3)
H19A0.57580.33701.24840.030*
C200.44015 (12)0.29401 (8)1.06793 (18)0.0214 (3)
C210.19801 (14)0.42557 (9)0.80384 (19)0.0269 (3)
H21A0.17770.48030.82540.040*
H21B0.13350.38940.80130.040*
H21C0.21250.42420.70200.040*
C220.47809 (14)0.20760 (9)1.0863 (2)0.0292 (4)
H22A0.47400.18540.98330.044*
H22B0.42650.17701.13090.044*
H22C0.55840.20411.15680.044*
H1N10.2599 (16)0.2654 (11)0.742 (2)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0360 (6)0.0259 (5)0.0127 (5)0.0079 (4)0.0105 (4)0.0027 (4)
N10.0219 (5)0.0189 (5)0.0098 (6)0.0018 (4)0.0041 (5)0.0006 (5)
C10.0240 (6)0.0216 (6)0.0193 (7)0.0000 (5)0.0055 (6)0.0009 (6)
C20.0346 (8)0.0226 (7)0.0204 (8)0.0028 (6)0.0055 (6)0.0023 (6)
C30.0405 (8)0.0198 (6)0.0192 (8)0.0055 (6)0.0010 (7)0.0013 (6)
C40.0288 (7)0.0279 (7)0.0253 (8)0.0080 (6)0.0001 (6)0.0082 (7)
C50.0247 (6)0.0254 (7)0.0212 (8)0.0006 (5)0.0071 (6)0.0063 (6)
C60.0236 (6)0.0192 (6)0.0118 (6)0.0001 (5)0.0041 (5)0.0039 (5)
C70.0223 (6)0.0192 (6)0.0110 (6)0.0020 (5)0.0058 (5)0.0022 (5)
C80.0247 (6)0.0163 (6)0.0135 (6)0.0011 (5)0.0052 (5)0.0022 (5)
C90.0289 (7)0.0199 (6)0.0188 (7)0.0003 (5)0.0060 (6)0.0027 (6)
C100.0294 (7)0.0238 (7)0.0280 (9)0.0045 (6)0.0097 (7)0.0004 (7)
C110.0258 (7)0.0231 (7)0.0244 (8)0.0004 (5)0.0021 (6)0.0055 (6)
C120.0302 (7)0.0264 (7)0.0166 (7)0.0049 (6)0.0028 (6)0.0019 (6)
C130.0294 (7)0.0220 (6)0.0157 (7)0.0016 (5)0.0077 (6)0.0025 (6)
C140.0209 (6)0.0185 (6)0.0135 (6)0.0004 (5)0.0054 (5)0.0011 (5)
C150.0185 (6)0.0205 (6)0.0141 (6)0.0020 (5)0.0064 (5)0.0001 (5)
C160.0235 (6)0.0207 (6)0.0168 (7)0.0000 (5)0.0097 (6)0.0003 (6)
C170.0330 (7)0.0199 (6)0.0231 (8)0.0039 (6)0.0124 (6)0.0027 (6)
C180.0296 (7)0.0298 (7)0.0234 (8)0.0110 (6)0.0102 (6)0.0065 (7)
C190.0199 (6)0.0362 (8)0.0178 (7)0.0044 (6)0.0041 (6)0.0032 (7)
C200.0200 (6)0.0258 (7)0.0187 (7)0.0001 (5)0.0068 (6)0.0009 (6)
C210.0339 (8)0.0238 (7)0.0209 (8)0.0071 (6)0.0054 (7)0.0019 (6)
C220.0275 (7)0.0298 (7)0.0255 (8)0.0080 (6)0.0012 (6)0.0006 (7)
Geometric parameters (Å, º) top
O1—C141.2337 (17)C10—H10A0.9500
N1—C141.3452 (18)C11—C121.388 (2)
N1—C151.4340 (17)C11—H11A0.9500
N1—H1N10.88 (2)C12—C131.386 (2)
C1—C61.389 (2)C12—H12A0.9500
C1—C21.392 (2)C13—H13A0.9500
C1—H1A0.9500C15—C161.3998 (19)
C2—C31.380 (2)C15—C201.4024 (19)
C2—H2A0.9500C16—C171.395 (2)
C3—C41.385 (2)C16—C211.499 (2)
C3—H3A0.9500C17—C181.384 (2)
C4—C51.389 (2)C17—H17A0.9500
C4—H4A0.9500C18—C191.381 (2)
C5—C61.3957 (19)C18—H18A0.9500
C5—H5A0.9500C19—C201.396 (2)
C6—C71.5285 (19)C19—H19A0.9500
C7—C81.5221 (18)C20—C221.505 (2)
C7—C141.5298 (18)C21—H21A0.9800
C7—H7A1.0000C21—H21B0.9800
C8—C91.389 (2)C21—H21C0.9800
C8—C131.398 (2)C22—H22A0.9800
C9—C101.392 (2)C22—H22B0.9800
C9—H9A0.9500C22—H22C0.9800
C10—C111.388 (2)
C14—N1—C15122.57 (12)C13—C12—C11119.78 (14)
C14—N1—H1N1116.8 (12)C13—C12—H12A120.1
C15—N1—H1N1119.8 (12)C11—C12—H12A120.1
C6—C1—C2120.58 (14)C12—C13—C8121.11 (14)
C6—C1—H1A119.7C12—C13—H13A119.4
C2—C1—H1A119.7C8—C13—H13A119.4
C3—C2—C1120.45 (15)O1—C14—N1123.20 (13)
C3—C2—H2A119.8O1—C14—C7121.33 (12)
C1—C2—H2A119.8N1—C14—C7115.43 (12)
C2—C3—C4119.52 (14)C16—C15—C20121.74 (13)
C2—C3—H3A120.2C16—C15—N1119.24 (12)
C4—C3—H3A120.2C20—C15—N1118.97 (12)
C3—C4—C5120.27 (14)C17—C16—C15118.04 (13)
C3—C4—H4A119.9C17—C16—C21120.39 (13)
C5—C4—H4A119.9C15—C16—C21121.57 (13)
C4—C5—C6120.58 (14)C18—C17—C16121.07 (14)
C4—C5—H5A119.7C18—C17—H17A119.5
C6—C5—H5A119.7C16—C17—H17A119.5
C1—C6—C5118.59 (13)C19—C18—C17120.08 (14)
C1—C6—C7123.10 (12)C19—C18—H18A120.0
C5—C6—C7118.29 (13)C17—C18—H18A120.0
C8—C7—C6112.88 (11)C18—C19—C20120.98 (14)
C8—C7—C14113.34 (11)C18—C19—H19A119.5
C6—C7—C14107.85 (11)C20—C19—H19A119.5
C8—C7—H7A107.5C19—C20—C15118.09 (13)
C6—C7—H7A107.5C19—C20—C22120.10 (13)
C14—C7—H7A107.5C15—C20—C22121.79 (13)
C9—C8—C13118.75 (13)C16—C21—H21A109.5
C9—C8—C7123.30 (13)C16—C21—H21B109.5
C13—C8—C7117.88 (13)H21A—C21—H21B109.5
C8—C9—C10120.14 (14)C16—C21—H21C109.5
C8—C9—H9A119.9H21A—C21—H21C109.5
C10—C9—H9A119.9H21B—C21—H21C109.5
C11—C10—C9120.66 (15)C20—C22—H22A109.5
C11—C10—H10A119.7C20—C22—H22B109.5
C9—C10—H10A119.7H22A—C22—H22B109.5
C10—C11—C12119.55 (14)C20—C22—H22C109.5
C10—C11—H11A120.2H22A—C22—H22C109.5
C12—C11—H11A120.2H22B—C22—H22C109.5
C6—C1—C2—C30.9 (2)C7—C8—C13—C12176.47 (13)
C1—C2—C3—C40.4 (2)C15—N1—C14—O12.5 (2)
C2—C3—C4—C50.3 (2)C15—N1—C14—C7175.23 (11)
C3—C4—C5—C60.3 (2)C8—C7—C14—O179.21 (16)
C2—C1—C6—C50.9 (2)C6—C7—C14—O146.51 (17)
C2—C1—C6—C7179.26 (14)C8—C7—C14—N1103.05 (14)
C4—C5—C6—C10.2 (2)C6—C7—C14—N1131.23 (12)
C4—C5—C6—C7178.71 (13)C14—N1—C15—C16112.23 (15)
C1—C6—C7—C814.54 (19)C14—N1—C15—C2070.24 (18)
C5—C6—C7—C8167.05 (13)C20—C15—C16—C170.0 (2)
C1—C6—C7—C14111.45 (15)N1—C15—C16—C17177.47 (13)
C5—C6—C7—C1466.97 (16)C20—C15—C16—C21179.73 (14)
C6—C7—C8—C9101.42 (15)N1—C15—C16—C212.3 (2)
C14—C7—C8—C921.56 (19)C15—C16—C17—C180.2 (2)
C6—C7—C8—C1375.63 (16)C21—C16—C17—C18179.52 (14)
C14—C7—C8—C13161.39 (12)C16—C17—C18—C190.5 (2)
C13—C8—C9—C100.2 (2)C17—C18—C19—C200.6 (2)
C7—C8—C9—C10176.82 (13)C18—C19—C20—C150.4 (2)
C8—C9—C10—C110.5 (2)C18—C19—C20—C22178.07 (15)
C9—C10—C11—C120.7 (2)C16—C15—C20—C190.1 (2)
C10—C11—C12—C130.2 (2)N1—C15—C20—C19177.57 (13)
C11—C12—C13—C80.5 (2)C16—C15—C20—C22178.36 (14)
C9—C8—C13—C120.7 (2)N1—C15—C20—C220.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.88 (2)1.97 (2)2.8207 (16)163.2 (17)
C12—H12A···Cg1ii0.952.803.6981 (17)158
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H21NO
Mr315.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.0606 (10), 16.6747 (13), 8.9469 (7)
β (°) 108.080 (2)
V3)1710.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.56 × 0.21 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.959, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
19127, 4994, 3661
Rint0.049
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.139, 1.03
No. of reflections4994
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.88 (2)1.97 (2)2.8207 (16)163.2 (17)
C12—H12A···Cg1ii0.952.803.6981 (17)158
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a Research Fellowship. BN thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP–DRS–Phase 1 programme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2602–o2603.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o2604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1287-o1288
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds