organic compounds
1-(4-Chlorophenyl)-1H-1,2,3,4-tetrazole
aDepartment of Image Science and Engineering, Pukyong National University, Busan 608 739, Republic of Korea, bDepartment of Physics, Dr. M.G.R. Educational and Research Institute, Dr. M.G.R. University, Maduravoyal, Chennai 600 095, India, and cX-ray Crystallography Laboratory, Post Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: ytjeong@pknu.ac.kr
There are two independent molecules in the 7H5ClN4, in which the tetrazole and benzene rings are twisted by dihedral angles of 12.9 (1) and 39.8 (1)°. In the crystal, the independent molecules are connected into a tetramer by C—H⋯N hydrogen bonds, generating an R44(12) graph-set motif.
of the title compound, CRelated literature
For applications of tetrazoles in medicinal and synthetic chemistry, see: Butler (1996). For related structures, see: Baek et al. (2012); Matsunaga et al. (1999); Lyakhov et al. (2000, 2001). For the synthesis, see: Aridoss & Laali (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536812014353/is5104sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812014353/is5104Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812014353/is5104Isup3.cml
The title compound was synthesized from the known procedure (Aridoss & Laali, 2011). Fine white diffraction quality crystals were obtained by slow evaporation of its ethanol solution.
All H-atoms were refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. | |
Fig. 2. A molecular packing diagram of the title compound, showing intermolecular interactions. |
C7H5ClN4 | F(000) = 736 |
Mr = 180.60 | Dx = 1.538 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7146 reflections |
a = 3.8626 (2) Å | θ = 3.6–29.0° |
b = 27.9946 (10) Å | µ = 0.43 mm−1 |
c = 14.4943 (5) Å | T = 293 K |
β = 95.640 (3)° | Block, white |
V = 1559.71 (11) Å3 | 0.3 × 0.2 × 0.2 mm |
Z = 8 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 3366 independent reflections |
Radiation source: fine-focus sealed tube | 2610 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 27.0°, θmin = 3.6° |
ω scans | h = −4→4 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −35→35 |
Tmin = 0.795, Tmax = 0.917 | l = −18→18 |
16702 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.030P)2 + 0.7614P] where P = (Fo2 + 2Fc2)/3 |
3366 reflections | (Δ/σ)max = 0.001 |
217 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C7H5ClN4 | V = 1559.71 (11) Å3 |
Mr = 180.60 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.8626 (2) Å | µ = 0.43 mm−1 |
b = 27.9946 (10) Å | T = 293 K |
c = 14.4943 (5) Å | 0.3 × 0.2 × 0.2 mm |
β = 95.640 (3)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 3366 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2610 reflections with I > 2σ(I) |
Tmin = 0.795, Tmax = 0.917 | Rint = 0.038 |
16702 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.18 e Å−3 |
3366 reflections | Δρmin = −0.22 e Å−3 |
217 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1A | 0.6813 (6) | 0.49499 (9) | 0.21942 (16) | 0.0471 (6) | |
H1A | 0.7806 | 0.4769 | 0.1750 | 0.057* | |
C2A | 0.8047 (5) | 0.44145 (7) | 0.35903 (15) | 0.0334 (5) | |
C3A | 0.8223 (6) | 0.44243 (8) | 0.45455 (15) | 0.0406 (5) | |
H3A | 0.7443 | 0.4691 | 0.4848 | 0.049* | |
C4A | 0.9559 (6) | 0.40373 (8) | 0.50482 (16) | 0.0420 (5) | |
H4A | 0.9670 | 0.4040 | 0.5692 | 0.050* | |
C5A | 1.0728 (5) | 0.36472 (8) | 0.45945 (15) | 0.0373 (5) | |
C6A | 1.0536 (6) | 0.36342 (8) | 0.36386 (16) | 0.0434 (5) | |
H6A | 1.1318 | 0.3368 | 0.3338 | 0.052* | |
C7A | 0.9169 (6) | 0.40214 (8) | 0.31318 (15) | 0.0424 (5) | |
H7A | 0.9010 | 0.4016 | 0.2487 | 0.051* | |
N1A | 0.5321 (6) | 0.53656 (7) | 0.20473 (15) | 0.0525 (5) | |
N2A | 0.4223 (6) | 0.54976 (7) | 0.28770 (15) | 0.0561 (6) | |
N3A | 0.5037 (6) | 0.51752 (7) | 0.34968 (14) | 0.0523 (5) | |
N4A | 0.6693 (4) | 0.48236 (6) | 0.30800 (12) | 0.0368 (4) | |
Cl1 | 1.24583 (17) | 0.31657 (2) | 0.52393 (4) | 0.05170 (18) | |
C1B | 0.9963 (7) | 0.92383 (9) | 0.51988 (17) | 0.0507 (6) | |
H1B | 1.1251 | 0.9410 | 0.5663 | 0.061* | |
C2B | 1.0545 (6) | 0.84159 (8) | 0.58921 (15) | 0.0378 (5) | |
C3B | 1.1628 (6) | 0.79776 (9) | 0.56058 (17) | 0.0481 (6) | |
H3B | 1.1582 | 0.7909 | 0.4977 | 0.058* | |
C4B | 1.2783 (6) | 0.76411 (9) | 0.62583 (18) | 0.0493 (6) | |
H4B | 1.3517 | 0.7343 | 0.6073 | 0.059* | |
C5B | 1.2846 (6) | 0.77494 (8) | 0.71897 (16) | 0.0410 (5) | |
C6B | 1.1770 (6) | 0.81872 (8) | 0.74729 (16) | 0.0465 (6) | |
H6B | 1.1841 | 0.8257 | 0.8102 | 0.056* | |
C7B | 1.0581 (6) | 0.85244 (8) | 0.68223 (16) | 0.0429 (5) | |
H7B | 0.9814 | 0.8821 | 0.7008 | 0.052* | |
N1B | 0.8456 (6) | 0.94204 (9) | 0.44305 (16) | 0.0615 (6) | |
N2B | 0.6892 (6) | 0.90440 (10) | 0.39623 (15) | 0.0644 (6) | |
N3B | 0.7429 (6) | 0.86506 (9) | 0.44239 (15) | 0.0578 (6) | |
N4B | 0.9373 (5) | 0.87688 (7) | 0.52159 (12) | 0.0418 (5) | |
Cl2 | 1.43462 (19) | 0.73209 (2) | 0.80028 (5) | 0.0613 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.0595 (15) | 0.0454 (14) | 0.0359 (13) | 0.0024 (12) | 0.0023 (11) | −0.0014 (11) |
C2A | 0.0320 (11) | 0.0354 (11) | 0.0327 (12) | −0.0031 (9) | 0.0031 (8) | −0.0017 (9) |
C3A | 0.0485 (14) | 0.0385 (12) | 0.0355 (13) | 0.0007 (10) | 0.0082 (10) | −0.0075 (10) |
C4A | 0.0502 (14) | 0.0453 (13) | 0.0305 (12) | −0.0030 (11) | 0.0048 (10) | −0.0025 (10) |
C5A | 0.0346 (11) | 0.0389 (12) | 0.0384 (12) | −0.0026 (9) | 0.0028 (9) | 0.0003 (10) |
C6A | 0.0500 (14) | 0.0402 (12) | 0.0406 (13) | 0.0049 (10) | 0.0080 (10) | −0.0065 (11) |
C7A | 0.0512 (14) | 0.0474 (13) | 0.0290 (12) | 0.0029 (11) | 0.0059 (10) | −0.0050 (10) |
N1A | 0.0636 (14) | 0.0467 (12) | 0.0455 (13) | 0.0026 (10) | −0.0029 (10) | 0.0016 (10) |
N2A | 0.0685 (15) | 0.0482 (12) | 0.0507 (14) | 0.0092 (11) | 0.0021 (11) | 0.0003 (11) |
N3A | 0.0667 (14) | 0.0457 (12) | 0.0454 (13) | 0.0135 (10) | 0.0098 (10) | −0.0020 (10) |
N4A | 0.0395 (10) | 0.0353 (10) | 0.0354 (10) | −0.0021 (8) | 0.0030 (8) | −0.0035 (8) |
Cl1 | 0.0571 (4) | 0.0493 (3) | 0.0477 (4) | 0.0085 (3) | 0.0000 (3) | 0.0054 (3) |
C1B | 0.0543 (15) | 0.0572 (16) | 0.0404 (14) | −0.0027 (12) | 0.0032 (11) | 0.0054 (12) |
C2B | 0.0355 (11) | 0.0440 (12) | 0.0341 (12) | −0.0057 (10) | 0.0050 (9) | −0.0016 (10) |
C3B | 0.0568 (15) | 0.0546 (15) | 0.0341 (13) | −0.0037 (12) | 0.0101 (11) | −0.0107 (12) |
C4B | 0.0551 (15) | 0.0434 (13) | 0.0504 (16) | 0.0031 (11) | 0.0100 (12) | −0.0081 (12) |
C5B | 0.0358 (12) | 0.0426 (12) | 0.0442 (14) | −0.0030 (10) | 0.0027 (10) | 0.0035 (11) |
C6B | 0.0565 (15) | 0.0508 (14) | 0.0320 (12) | 0.0020 (12) | 0.0033 (10) | −0.0053 (11) |
C7B | 0.0506 (14) | 0.0416 (12) | 0.0369 (13) | 0.0048 (11) | 0.0059 (10) | −0.0060 (10) |
N1B | 0.0652 (15) | 0.0721 (15) | 0.0469 (14) | 0.0012 (12) | 0.0039 (11) | 0.0161 (12) |
N2B | 0.0654 (15) | 0.0881 (18) | 0.0385 (12) | 0.0015 (14) | −0.0006 (11) | 0.0108 (13) |
N3B | 0.0596 (14) | 0.0760 (16) | 0.0356 (12) | −0.0056 (12) | −0.0065 (10) | −0.0005 (11) |
N4B | 0.0410 (11) | 0.0525 (12) | 0.0316 (11) | −0.0038 (9) | 0.0027 (8) | 0.0008 (9) |
Cl2 | 0.0659 (4) | 0.0552 (4) | 0.0607 (4) | 0.0056 (3) | −0.0037 (3) | 0.0109 (3) |
C1A—N1A | 1.307 (3) | C1B—N1B | 1.308 (3) |
C1A—N4A | 1.337 (3) | C1B—N4B | 1.335 (3) |
C1A—H1A | 0.9300 | C1B—H1B | 0.9300 |
C2A—C7A | 1.377 (3) | C2B—C3B | 1.374 (3) |
C2A—C3A | 1.380 (3) | C2B—C7B | 1.381 (3) |
C2A—N4A | 1.434 (3) | C2B—N4B | 1.433 (3) |
C3A—C4A | 1.378 (3) | C3B—C4B | 1.378 (3) |
C3A—H3A | 0.9300 | C3B—H3B | 0.9300 |
C4A—C5A | 1.374 (3) | C4B—C5B | 1.381 (3) |
C4A—H4A | 0.9300 | C4B—H4B | 0.9300 |
C5A—C6A | 1.381 (3) | C5B—C6B | 1.370 (3) |
C5A—Cl1 | 1.736 (2) | C5B—Cl2 | 1.741 (2) |
C6A—C7A | 1.385 (3) | C6B—C7B | 1.381 (3) |
C6A—H6A | 0.9300 | C6B—H6B | 0.9300 |
C7A—H7A | 0.9300 | C7B—H7B | 0.9300 |
N1A—N2A | 1.365 (3) | N1B—N2B | 1.362 (3) |
N2A—N3A | 1.290 (3) | N2B—N3B | 1.295 (3) |
N3A—N4A | 1.349 (2) | N3B—N4B | 1.350 (3) |
N1A—C1A—N4A | 109.6 (2) | N1B—C1B—N4B | 109.7 (2) |
N1A—C1A—H1A | 125.2 | N1B—C1B—H1B | 125.2 |
N4A—C1A—H1A | 125.2 | N4B—C1B—H1B | 125.2 |
C7A—C2A—C3A | 120.9 (2) | C3B—C2B—C7B | 121.2 (2) |
C7A—C2A—N4A | 120.34 (19) | C3B—C2B—N4B | 119.6 (2) |
C3A—C2A—N4A | 118.77 (19) | C7B—C2B—N4B | 119.2 (2) |
C4A—C3A—C2A | 119.6 (2) | C2B—C3B—C4B | 119.4 (2) |
C4A—C3A—H3A | 120.2 | C2B—C3B—H3B | 120.3 |
C2A—C3A—H3A | 120.2 | C4B—C3B—H3B | 120.3 |
C5A—C4A—C3A | 119.7 (2) | C3B—C4B—C5B | 119.6 (2) |
C5A—C4A—H4A | 120.1 | C3B—C4B—H4B | 120.2 |
C3A—C4A—H4A | 120.1 | C5B—C4B—H4B | 120.2 |
C4A—C5A—C6A | 120.9 (2) | C6B—C5B—C4B | 120.8 (2) |
C4A—C5A—Cl1 | 119.12 (17) | C6B—C5B—Cl2 | 120.29 (19) |
C6A—C5A—Cl1 | 119.99 (17) | C4B—C5B—Cl2 | 118.89 (18) |
C5A—C6A—C7A | 119.5 (2) | C5B—C6B—C7B | 119.8 (2) |
C5A—C6A—H6A | 120.3 | C5B—C6B—H6B | 120.1 |
C7A—C6A—H6A | 120.3 | C7B—C6B—H6B | 120.1 |
C2A—C7A—C6A | 119.4 (2) | C6B—C7B—C2B | 119.2 (2) |
C2A—C7A—H7A | 120.3 | C6B—C7B—H7B | 120.4 |
C6A—C7A—H7A | 120.3 | C2B—C7B—H7B | 120.4 |
C1A—N1A—N2A | 105.5 (2) | C1B—N1B—N2B | 105.2 (2) |
N3A—N2A—N1A | 110.40 (19) | N3B—N2B—N1B | 111.1 (2) |
N2A—N3A—N4A | 107.00 (19) | N2B—N3B—N4B | 106.2 (2) |
C1A—N4A—N3A | 107.45 (18) | C1B—N4B—N3B | 107.9 (2) |
C1A—N4A—C2A | 131.41 (19) | C1B—N4B—C2B | 130.4 (2) |
N3A—N4A—C2A | 121.11 (18) | N3B—N4B—C2B | 121.6 (2) |
C7A—C2A—C3A—C4A | 0.4 (3) | C7B—C2B—C3B—C4B | −0.3 (4) |
N4A—C2A—C3A—C4A | −179.11 (19) | N4B—C2B—C3B—C4B | 179.4 (2) |
C2A—C3A—C4A—C5A | 0.5 (3) | C2B—C3B—C4B—C5B | −0.2 (4) |
C3A—C4A—C5A—C6A | −0.9 (3) | C3B—C4B—C5B—C6B | 0.0 (4) |
C3A—C4A—C5A—Cl1 | 179.15 (17) | C3B—C4B—C5B—Cl2 | −179.50 (18) |
C4A—C5A—C6A—C7A | 0.5 (3) | C4B—C5B—C6B—C7B | 0.5 (4) |
Cl1—C5A—C6A—C7A | −179.63 (17) | Cl2—C5B—C6B—C7B | −179.93 (18) |
C3A—C2A—C7A—C6A | −0.9 (3) | C5B—C6B—C7B—C2B | −0.9 (4) |
N4A—C2A—C7A—C6A | 178.63 (19) | C3B—C2B—C7B—C6B | 0.8 (3) |
C5A—C6A—C7A—C2A | 0.5 (3) | N4B—C2B—C7B—C6B | −178.8 (2) |
N4A—C1A—N1A—N2A | −0.4 (3) | N4B—C1B—N1B—N2B | −0.1 (3) |
C1A—N1A—N2A—N3A | 0.3 (3) | C1B—N1B—N2B—N3B | −0.1 (3) |
N1A—N2A—N3A—N4A | 0.0 (3) | N1B—N2B—N3B—N4B | 0.3 (3) |
N1A—C1A—N4A—N3A | 0.4 (3) | N1B—C1B—N4B—N3B | 0.3 (3) |
N1A—C1A—N4A—C2A | −177.6 (2) | N1B—C1B—N4B—C2B | 178.2 (2) |
N2A—N3A—N4A—C1A | −0.2 (3) | N2B—N3B—N4B—C1B | −0.4 (3) |
N2A—N3A—N4A—C2A | 178.05 (19) | N2B—N3B—N4B—C2B | −178.4 (2) |
C7A—C2A—N4A—C1A | −13.8 (3) | C3B—C2B—N4B—C1B | −138.5 (3) |
C3A—C2A—N4A—C1A | 165.7 (2) | C7B—C2B—N4B—C1B | 41.1 (3) |
C7A—C2A—N4A—N3A | 168.4 (2) | C3B—C2B—N4B—N3B | 39.1 (3) |
C3A—C2A—N4A—N3A | −12.0 (3) | C7B—C2B—N4B—N3B | −141.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1A—H1A···N1Bi | 0.93 | 2.54 | 3.454 (3) | 167 |
C1B—H1B···N1Aii | 0.93 | 2.50 | 3.406 (3) | 163 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x+1, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H5ClN4 |
Mr | 180.60 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 3.8626 (2), 27.9946 (10), 14.4943 (5) |
β (°) | 95.640 (3) |
V (Å3) | 1559.71 (11) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.43 |
Crystal size (mm) | 0.3 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.795, 0.917 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16702, 3366, 2610 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.101, 1.07 |
No. of reflections | 3366 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.22 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C1A—H1A···N1Bi | 0.93 | 2.54 | 3.454 (3) | 167 |
C1B—H1B···N1Aii | 0.93 | 2.50 | 3.406 (3) | 163 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x+1, −y+3/2, z+1/2. |
Acknowledgements
YTJ is thankful for the support provided by the second stage of the BK-21 program. The authors thank the Director, USIC University of Jammu, Jammu Tawi, India, for the X-ray data collection.
References
Aridoss, G. & Laali, K. K. (2011). Eur. J. Org. Chem. pp. 2827–2835. Web of Science CrossRef Google Scholar
Baek, K., Gayathri, D., Gupta, V. K., Kant, R. & Jeong, Y. T. (2012). Acta Cryst. E68, o394. Web of Science CSD CrossRef IUCr Journals Google Scholar
Butler, R. N. (1996). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katrizky, C. W. Rees & E. F. V. Scriven, pp. 621–678. Oxford: Pergamon. Google Scholar
Lyakhov, A. S., Gaponik, P. N., Voitekhovich, S. V., Ivashkevich, L. S. & Kulak, A. A. (2001). Acta Cryst. C57, 1204–1206. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lyakhov, A. S., Ivashkevich, D. O., Gaponik, P. N., Grigoriev, Y. V. & Ivashkevich, L. S. (2000). Acta Cryst. C56, 256–257. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Matsunaga, T., Ohno, Y., Akutsu, Y., Arai, M., Tamura, M. & Iida, M. (1999). Acta Cryst. C55, 129–131. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocycles in general received much importance in recent years. Tetrazoles represent a unique class of heterocyclic compounds that exhibit a broad range of application both in medicinal and synthetic chemistry (Butler, 1996).
The title compound crystallizes in a monoclinic crystal system with two independent molecules in the asymmetric unit. Bond lengths and angles are comparable with the similar crystal structures (Baek et al., 2012; Lyakhov et al., 2000, 2001; Matsunaga et al., 1999). The tetrazole and benzene rings are planar but not coplanar with the dihedral angle being 12.9 (1) and 39.8 (1)°, respectively, for molecules A and B. Torsion angles C1A—N4A—C2A—C3A [165.7 (2)°] and C1B—N4B—C2B—C3B [-138.5 (3)°] indicate for the difference in the dihedral angle between the two rings in molecules A and B. The chlorine atoms in molecules A and B deviate 0.021 (3) and 0.009 (3) Å, respectively, from the benzene plane. The crystal packing is stabilized by C—H···N intermolecular interactions (Table 1), wherein atom C1 acts as donor to N1 generating an R44(12) graph-set motif.