organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1344

1-(4-Chloro­phen­yl)-1H-1,2,3,4-tetra­zole

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608 739, Republic of Korea, bDepartment of Physics, Dr. M.G.R. Educational and Research Institute, Dr. M.G.R. University, Maduravoyal, Chennai 600 095, India, and cX-ray Crystallography Laboratory, Post Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 26 March 2012; accepted 3 April 2012; online 13 April 2012)

There are two independent mol­ecules in the asymmetric unit of the title compound, C7H5ClN4, in which the tetra­zole and benzene rings are twisted by dihedral angles of 12.9 (1) and 39.8 (1)°. In the crystal, the independent mol­ecules are connected into a tetra­mer by C—H⋯N hydrogen bonds, generating an R44(12) graph-set motif.

Related literature

For applications of tetra­zoles in medicinal and synthetic chemistry, see: Butler (1996[Butler, R. N. (1996). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katrizky, C. W. Rees & E. F. V. Scriven, pp. 621-678. Oxford: Pergamon.]). For related structures, see: Baek et al. (2012[Baek, K., Gayathri, D., Gupta, V. K., Kant, R. & Jeong, Y. T. (2012). Acta Cryst. E68, o394.]); Matsunaga et al. (1999[Matsunaga, T., Ohno, Y., Akutsu, Y., Arai, M., Tamura, M. & Iida, M. (1999). Acta Cryst. C55, 129-131.]); Lyakhov et al. (2000[Lyakhov, A. S., Ivashkevich, D. O., Gaponik, P. N., Grigoriev, Y. V. & Ivashkevich, L. S. (2000). Acta Cryst. C56, 256-257.], 2001[Lyakhov, A. S., Gaponik, P. N., Voitekhovich, S. V., Ivashkevich, L. S. & Kulak, A. A. (2001). Acta Cryst. C57, 1204-1206.]). For the synthesis, see: Aridoss & Laali (2011[Aridoss, G. & Laali, K. K. (2011). Eur. J. Org. Chem. pp. 2827-2835.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5ClN4

  • Mr = 180.60

  • Monoclinic, P 21 /c

  • a = 3.8626 (2) Å

  • b = 27.9946 (10) Å

  • c = 14.4943 (5) Å

  • β = 95.640 (3)°

  • V = 1559.71 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.795, Tmax = 0.917

  • 16702 measured reflections

  • 3366 independent reflections

  • 2610 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.101

  • S = 1.07

  • 3366 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1A⋯N1Bi 0.93 2.54 3.454 (3) 167
C1B—H1B⋯N1Aii 0.93 2.50 3.406 (3) 163
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Heterocycles in general received much importance in recent years. Tetrazoles represent a unique class of heterocyclic compounds that exhibit a broad range of application both in medicinal and synthetic chemistry (Butler, 1996).

The title compound crystallizes in a monoclinic crystal system with two independent molecules in the asymmetric unit. Bond lengths and angles are comparable with the similar crystal structures (Baek et al., 2012; Lyakhov et al., 2000, 2001; Matsunaga et al., 1999). The tetrazole and benzene rings are planar but not coplanar with the dihedral angle being 12.9 (1) and 39.8 (1)°, respectively, for molecules A and B. Torsion angles C1A—N4A—C2A—C3A [165.7 (2)°] and C1B—N4B—C2B—C3B [-138.5 (3)°] indicate for the difference in the dihedral angle between the two rings in molecules A and B. The chlorine atoms in molecules A and B deviate 0.021 (3) and 0.009 (3) Å, respectively, from the benzene plane. The crystal packing is stabilized by C—H···N intermolecular interactions (Table 1), wherein atom C1 acts as donor to N1 generating an R44(12) graph-set motif.

Related literature top

For applications of tetrazoles in medicinal and synthetic chemistry, see: Butler (1996). For related structures, see: Baek et al. (2012); Matsunaga et al. (1999); Lyakhov et al. (2000, 2001). For the synthesis, see: Aridoss & Laali (2011).

Experimental top

The title compound was synthesized from the known procedure (Aridoss & Laali, 2011). Fine white diffraction quality crystals were obtained by slow evaporation of its ethanol solution.

Refinement top

All H-atoms were refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A molecular packing diagram of the title compound, showing intermolecular interactions.
1-(4-Chlorophenyl)-1H-1,2,3,4-tetrazole top
Crystal data top
C7H5ClN4F(000) = 736
Mr = 180.60Dx = 1.538 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7146 reflections
a = 3.8626 (2) Åθ = 3.6–29.0°
b = 27.9946 (10) ŵ = 0.43 mm1
c = 14.4943 (5) ÅT = 293 K
β = 95.640 (3)°Block, white
V = 1559.71 (11) Å30.3 × 0.2 × 0.2 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3366 independent reflections
Radiation source: fine-focus sealed tube2610 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.1049 pixels mm-1θmax = 27.0°, θmin = 3.6°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 3535
Tmin = 0.795, Tmax = 0.917l = 1818
16702 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.030P)2 + 0.7614P]
where P = (Fo2 + 2Fc2)/3
3366 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C7H5ClN4V = 1559.71 (11) Å3
Mr = 180.60Z = 8
Monoclinic, P21/cMo Kα radiation
a = 3.8626 (2) ŵ = 0.43 mm1
b = 27.9946 (10) ÅT = 293 K
c = 14.4943 (5) Å0.3 × 0.2 × 0.2 mm
β = 95.640 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3366 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2610 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 0.917Rint = 0.038
16702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
3366 reflectionsΔρmin = 0.22 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.6813 (6)0.49499 (9)0.21942 (16)0.0471 (6)
H1A0.78060.47690.17500.057*
C2A0.8047 (5)0.44145 (7)0.35903 (15)0.0334 (5)
C3A0.8223 (6)0.44243 (8)0.45455 (15)0.0406 (5)
H3A0.74430.46910.48480.049*
C4A0.9559 (6)0.40373 (8)0.50482 (16)0.0420 (5)
H4A0.96700.40400.56920.050*
C5A1.0728 (5)0.36472 (8)0.45945 (15)0.0373 (5)
C6A1.0536 (6)0.36342 (8)0.36386 (16)0.0434 (5)
H6A1.13180.33680.33380.052*
C7A0.9169 (6)0.40214 (8)0.31318 (15)0.0424 (5)
H7A0.90100.40160.24870.051*
N1A0.5321 (6)0.53656 (7)0.20473 (15)0.0525 (5)
N2A0.4223 (6)0.54976 (7)0.28770 (15)0.0561 (6)
N3A0.5037 (6)0.51752 (7)0.34968 (14)0.0523 (5)
N4A0.6693 (4)0.48236 (6)0.30800 (12)0.0368 (4)
Cl11.24583 (17)0.31657 (2)0.52393 (4)0.05170 (18)
C1B0.9963 (7)0.92383 (9)0.51988 (17)0.0507 (6)
H1B1.12510.94100.56630.061*
C2B1.0545 (6)0.84159 (8)0.58921 (15)0.0378 (5)
C3B1.1628 (6)0.79776 (9)0.56058 (17)0.0481 (6)
H3B1.15820.79090.49770.058*
C4B1.2783 (6)0.76411 (9)0.62583 (18)0.0493 (6)
H4B1.35170.73430.60730.059*
C5B1.2846 (6)0.77494 (8)0.71897 (16)0.0410 (5)
C6B1.1770 (6)0.81872 (8)0.74729 (16)0.0465 (6)
H6B1.18410.82570.81020.056*
C7B1.0581 (6)0.85244 (8)0.68223 (16)0.0429 (5)
H7B0.98140.88210.70080.052*
N1B0.8456 (6)0.94204 (9)0.44305 (16)0.0615 (6)
N2B0.6892 (6)0.90440 (10)0.39623 (15)0.0644 (6)
N3B0.7429 (6)0.86506 (9)0.44239 (15)0.0578 (6)
N4B0.9373 (5)0.87688 (7)0.52159 (12)0.0418 (5)
Cl21.43462 (19)0.73209 (2)0.80028 (5)0.0613 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0595 (15)0.0454 (14)0.0359 (13)0.0024 (12)0.0023 (11)0.0014 (11)
C2A0.0320 (11)0.0354 (11)0.0327 (12)0.0031 (9)0.0031 (8)0.0017 (9)
C3A0.0485 (14)0.0385 (12)0.0355 (13)0.0007 (10)0.0082 (10)0.0075 (10)
C4A0.0502 (14)0.0453 (13)0.0305 (12)0.0030 (11)0.0048 (10)0.0025 (10)
C5A0.0346 (11)0.0389 (12)0.0384 (12)0.0026 (9)0.0028 (9)0.0003 (10)
C6A0.0500 (14)0.0402 (12)0.0406 (13)0.0049 (10)0.0080 (10)0.0065 (11)
C7A0.0512 (14)0.0474 (13)0.0290 (12)0.0029 (11)0.0059 (10)0.0050 (10)
N1A0.0636 (14)0.0467 (12)0.0455 (13)0.0026 (10)0.0029 (10)0.0016 (10)
N2A0.0685 (15)0.0482 (12)0.0507 (14)0.0092 (11)0.0021 (11)0.0003 (11)
N3A0.0667 (14)0.0457 (12)0.0454 (13)0.0135 (10)0.0098 (10)0.0020 (10)
N4A0.0395 (10)0.0353 (10)0.0354 (10)0.0021 (8)0.0030 (8)0.0035 (8)
Cl10.0571 (4)0.0493 (3)0.0477 (4)0.0085 (3)0.0000 (3)0.0054 (3)
C1B0.0543 (15)0.0572 (16)0.0404 (14)0.0027 (12)0.0032 (11)0.0054 (12)
C2B0.0355 (11)0.0440 (12)0.0341 (12)0.0057 (10)0.0050 (9)0.0016 (10)
C3B0.0568 (15)0.0546 (15)0.0341 (13)0.0037 (12)0.0101 (11)0.0107 (12)
C4B0.0551 (15)0.0434 (13)0.0504 (16)0.0031 (11)0.0100 (12)0.0081 (12)
C5B0.0358 (12)0.0426 (12)0.0442 (14)0.0030 (10)0.0027 (10)0.0035 (11)
C6B0.0565 (15)0.0508 (14)0.0320 (12)0.0020 (12)0.0033 (10)0.0053 (11)
C7B0.0506 (14)0.0416 (12)0.0369 (13)0.0048 (11)0.0059 (10)0.0060 (10)
N1B0.0652 (15)0.0721 (15)0.0469 (14)0.0012 (12)0.0039 (11)0.0161 (12)
N2B0.0654 (15)0.0881 (18)0.0385 (12)0.0015 (14)0.0006 (11)0.0108 (13)
N3B0.0596 (14)0.0760 (16)0.0356 (12)0.0056 (12)0.0065 (10)0.0005 (11)
N4B0.0410 (11)0.0525 (12)0.0316 (11)0.0038 (9)0.0027 (8)0.0008 (9)
Cl20.0659 (4)0.0552 (4)0.0607 (4)0.0056 (3)0.0037 (3)0.0109 (3)
Geometric parameters (Å, º) top
C1A—N1A1.307 (3)C1B—N1B1.308 (3)
C1A—N4A1.337 (3)C1B—N4B1.335 (3)
C1A—H1A0.9300C1B—H1B0.9300
C2A—C7A1.377 (3)C2B—C3B1.374 (3)
C2A—C3A1.380 (3)C2B—C7B1.381 (3)
C2A—N4A1.434 (3)C2B—N4B1.433 (3)
C3A—C4A1.378 (3)C3B—C4B1.378 (3)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C5A1.374 (3)C4B—C5B1.381 (3)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.381 (3)C5B—C6B1.370 (3)
C5A—Cl11.736 (2)C5B—Cl21.741 (2)
C6A—C7A1.385 (3)C6B—C7B1.381 (3)
C6A—H6A0.9300C6B—H6B0.9300
C7A—H7A0.9300C7B—H7B0.9300
N1A—N2A1.365 (3)N1B—N2B1.362 (3)
N2A—N3A1.290 (3)N2B—N3B1.295 (3)
N3A—N4A1.349 (2)N3B—N4B1.350 (3)
N1A—C1A—N4A109.6 (2)N1B—C1B—N4B109.7 (2)
N1A—C1A—H1A125.2N1B—C1B—H1B125.2
N4A—C1A—H1A125.2N4B—C1B—H1B125.2
C7A—C2A—C3A120.9 (2)C3B—C2B—C7B121.2 (2)
C7A—C2A—N4A120.34 (19)C3B—C2B—N4B119.6 (2)
C3A—C2A—N4A118.77 (19)C7B—C2B—N4B119.2 (2)
C4A—C3A—C2A119.6 (2)C2B—C3B—C4B119.4 (2)
C4A—C3A—H3A120.2C2B—C3B—H3B120.3
C2A—C3A—H3A120.2C4B—C3B—H3B120.3
C5A—C4A—C3A119.7 (2)C3B—C4B—C5B119.6 (2)
C5A—C4A—H4A120.1C3B—C4B—H4B120.2
C3A—C4A—H4A120.1C5B—C4B—H4B120.2
C4A—C5A—C6A120.9 (2)C6B—C5B—C4B120.8 (2)
C4A—C5A—Cl1119.12 (17)C6B—C5B—Cl2120.29 (19)
C6A—C5A—Cl1119.99 (17)C4B—C5B—Cl2118.89 (18)
C5A—C6A—C7A119.5 (2)C5B—C6B—C7B119.8 (2)
C5A—C6A—H6A120.3C5B—C6B—H6B120.1
C7A—C6A—H6A120.3C7B—C6B—H6B120.1
C2A—C7A—C6A119.4 (2)C6B—C7B—C2B119.2 (2)
C2A—C7A—H7A120.3C6B—C7B—H7B120.4
C6A—C7A—H7A120.3C2B—C7B—H7B120.4
C1A—N1A—N2A105.5 (2)C1B—N1B—N2B105.2 (2)
N3A—N2A—N1A110.40 (19)N3B—N2B—N1B111.1 (2)
N2A—N3A—N4A107.00 (19)N2B—N3B—N4B106.2 (2)
C1A—N4A—N3A107.45 (18)C1B—N4B—N3B107.9 (2)
C1A—N4A—C2A131.41 (19)C1B—N4B—C2B130.4 (2)
N3A—N4A—C2A121.11 (18)N3B—N4B—C2B121.6 (2)
C7A—C2A—C3A—C4A0.4 (3)C7B—C2B—C3B—C4B0.3 (4)
N4A—C2A—C3A—C4A179.11 (19)N4B—C2B—C3B—C4B179.4 (2)
C2A—C3A—C4A—C5A0.5 (3)C2B—C3B—C4B—C5B0.2 (4)
C3A—C4A—C5A—C6A0.9 (3)C3B—C4B—C5B—C6B0.0 (4)
C3A—C4A—C5A—Cl1179.15 (17)C3B—C4B—C5B—Cl2179.50 (18)
C4A—C5A—C6A—C7A0.5 (3)C4B—C5B—C6B—C7B0.5 (4)
Cl1—C5A—C6A—C7A179.63 (17)Cl2—C5B—C6B—C7B179.93 (18)
C3A—C2A—C7A—C6A0.9 (3)C5B—C6B—C7B—C2B0.9 (4)
N4A—C2A—C7A—C6A178.63 (19)C3B—C2B—C7B—C6B0.8 (3)
C5A—C6A—C7A—C2A0.5 (3)N4B—C2B—C7B—C6B178.8 (2)
N4A—C1A—N1A—N2A0.4 (3)N4B—C1B—N1B—N2B0.1 (3)
C1A—N1A—N2A—N3A0.3 (3)C1B—N1B—N2B—N3B0.1 (3)
N1A—N2A—N3A—N4A0.0 (3)N1B—N2B—N3B—N4B0.3 (3)
N1A—C1A—N4A—N3A0.4 (3)N1B—C1B—N4B—N3B0.3 (3)
N1A—C1A—N4A—C2A177.6 (2)N1B—C1B—N4B—C2B178.2 (2)
N2A—N3A—N4A—C1A0.2 (3)N2B—N3B—N4B—C1B0.4 (3)
N2A—N3A—N4A—C2A178.05 (19)N2B—N3B—N4B—C2B178.4 (2)
C7A—C2A—N4A—C1A13.8 (3)C3B—C2B—N4B—C1B138.5 (3)
C3A—C2A—N4A—C1A165.7 (2)C7B—C2B—N4B—C1B41.1 (3)
C7A—C2A—N4A—N3A168.4 (2)C3B—C2B—N4B—N3B39.1 (3)
C3A—C2A—N4A—N3A12.0 (3)C7B—C2B—N4B—N3B141.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···N1Bi0.932.543.454 (3)167
C1B—H1B···N1Aii0.932.503.406 (3)163
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H5ClN4
Mr180.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)3.8626 (2), 27.9946 (10), 14.4943 (5)
β (°) 95.640 (3)
V3)1559.71 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.795, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
16702, 3366, 2610
Rint0.038
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.101, 1.07
No. of reflections3366
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···N1Bi0.932.543.454 (3)167
C1B—H1B···N1Aii0.932.503.406 (3)163
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+3/2, z+1/2.
 

Acknowledgements

YTJ is thankful for the support provided by the second stage of the BK-21 program. The authors thank the Director, USIC University of Jammu, Jammu Tawi, India, for the X-ray data collection.

References

First citationAridoss, G. & Laali, K. K. (2011). Eur. J. Org. Chem. pp. 2827–2835.  Web of Science CrossRef Google Scholar
First citationBaek, K., Gayathri, D., Gupta, V. K., Kant, R. & Jeong, Y. T. (2012). Acta Cryst. E68, o394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButler, R. N. (1996). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katrizky, C. W. Rees & E. F. V. Scriven, pp. 621–678. Oxford: Pergamon.  Google Scholar
First citationLyakhov, A. S., Gaponik, P. N., Voitekhovich, S. V., Ivashkevich, L. S. & Kulak, A. A. (2001). Acta Cryst. C57, 1204–1206.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLyakhov, A. S., Ivashkevich, D. O., Gaponik, P. N., Grigoriev, Y. V. & Ivashkevich, L. S. (2000). Acta Cryst. C56, 256–257.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsunaga, T., Ohno, Y., Akutsu, Y., Arai, M., Tamura, M. & Iida, M. (1999). Acta Cryst. C55, 129–131.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1344
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds