metal-organic compounds
catena-Poly[(aquadimethanolzinc)-μ-furan-2,5-dicarboxylato-κ3O2:O2,O2′]
aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com
In the 6H2O5)(CH3OH)2(H2O)]n, an infinite chain is formed along the b axis by linking of the Zn(OH2)(CH3OH)2 unit with one carboxylate group of the furan-2,5-dicarboxylate ligand. The ZnII ion is in a distorted octahedral environment with one weak coordination [Zn—Ocarboxylate = 2.565 (3) Å] and two methanol molecules located in axial positions. In the chain, Owater—H⋯O hydrogen bonds are present, while adjacent chains are linked by Omethanol—H⋯O hydrogen bonds into a layer parallel to (10-2).
of the title compound, [Zn(CRelated literature
For applications and structures of metal-organic framework materials, see: Chui et al. (1999); Corma et al. (2010); Ferey (2008); Li et al. (1999, 2012a,b); Ma et al. (2009); Murray et al. (2009); Tranchemontagne et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812014936/is5106sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812014936/is5106Isup2.hkl
In a typically synthesized route of (I), furan-2,5-dicarboxyl acid (0.312 g, 2.0 mmol) and Zn(NO3)2.6H2O (0.592 g, 2.0 mmol) were dissolved in DMF (7.8 ml, 0.1 mol) under stirring. Then, 72 ml methanol ann N(et)3 (0.29 ml, 2.0 mmol) were successively added. The mixture with molar ratio of 1 (furan-2,5-dicarboxyl acid): 1 (Zn(NO3)2.6H2O): 1 (N(et)3) was laid under room temperature for 4 days. The colorless block product was collected as a single phase.
Water H atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.82 (2) Å and H···H = 1.37 (2) Å, and with Uiso(H) = 1.2Ueq(O). Hydroxyl H atoms were located in a difference Fourier map and refined with a restraint of O—H = 0.82 (2) Å, and with Uiso(H) = 1.2Ueq(O). The carbon H-atoms were placed in calculated positions [C—H (furan ring) = 0.93 Å and C—H (methyl) = 0.96 Å] and were included in the
in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Zn(C6H2O5)(CH4O)2(H2O)] | F(000) = 616 |
Mr = 301.57 | Dx = 1.744 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2000 reflections |
a = 10.077 (2) Å | θ = 3.2–27.5° |
b = 8.1235 (16) Å | µ = 2.17 mm−1 |
c = 17.101 (3) Å | T = 293 K |
β = 124.86 (3)° | Block, colorless |
V = 1148.7 (6) Å3 | 0.10 × 0.10 × 0.10 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 2605 independent reflections |
Radiation source: fine-focus sealed tube | 1593 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.119 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −10→10 |
Tmin = 0.813, Tmax = 0.813 | l = −22→22 |
10467 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.142 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.057P)2] where P = (Fo2 + 2Fc2)/3 |
2605 reflections | (Δ/σ)max < 0.001 |
168 parameters | Δρmax = 0.61 e Å−3 |
5 restraints | Δρmin = −0.71 e Å−3 |
[Zn(C6H2O5)(CH4O)2(H2O)] | V = 1148.7 (6) Å3 |
Mr = 301.57 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.077 (2) Å | µ = 2.17 mm−1 |
b = 8.1235 (16) Å | T = 293 K |
c = 17.101 (3) Å | 0.10 × 0.10 × 0.10 mm |
β = 124.86 (3)° |
Rigaku R-AXIS RAPID diffractometer | 2605 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1593 reflections with I > 2σ(I) |
Tmin = 0.813, Tmax = 0.813 | Rint = 0.119 |
10467 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 5 restraints |
wR(F2) = 0.142 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.61 e Å−3 |
2605 reflections | Δρmin = −0.71 e Å−3 |
168 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.44202 (7) | 0.83143 (7) | 0.20225 (4) | 0.0346 (2) | |
O1 | 0.6292 (4) | 0.8216 (4) | 0.3472 (2) | 0.0380 (9) | |
O2 | 0.5778 (4) | 1.0836 (4) | 0.3099 (2) | 0.0389 (9) | |
O4 | 1.1259 (4) | 1.3677 (4) | 0.7066 (2) | 0.0438 (10) | |
O5 | 0.9191 (5) | 1.4792 (4) | 0.5739 (3) | 0.0589 (13) | |
O1W | 0.3262 (4) | 0.9960 (4) | 0.1007 (3) | 0.0475 (11) | |
H1A | 0.334 (6) | 1.097 (3) | 0.110 (3) | 0.057* | |
H1B | 0.244 (4) | 0.976 (5) | 0.047 (2) | 0.057* | |
C1 | 0.6580 (5) | 0.9708 (5) | 0.3707 (3) | 0.0294 (12) | |
C2 | 0.7857 (5) | 1.0133 (5) | 0.4697 (3) | 0.0297 (11) | |
O3 | 0.8150 (4) | 1.1781 (3) | 0.4901 (2) | 0.0329 (8) | |
C3 | 0.9431 (6) | 1.1887 (6) | 0.5841 (3) | 0.0334 (12) | |
C5 | 0.9904 (6) | 1.0374 (6) | 0.6215 (4) | 0.0401 (14) | |
H5 | 1.0737 | 1.0123 | 0.6841 | 0.048* | |
C4 | 0.8892 (6) | 0.9213 (6) | 0.5474 (3) | 0.0365 (13) | |
H4 | 0.8937 | 0.8071 | 0.5519 | 0.044* | |
C6 | 0.9997 (6) | 1.3588 (6) | 0.6231 (4) | 0.0382 (13) | |
O7 | 0.6257 (4) | 0.8255 (5) | 0.1789 (3) | 0.0463 (10) | |
H7 | 0.708 (5) | 0.785 (7) | 0.224 (3) | 0.056* | |
C7 | 0.5999 (8) | 0.8006 (8) | 0.0889 (4) | 0.066 (2) | |
H7A | 0.5788 | 0.6861 | 0.0722 | 0.080* | |
H7B | 0.6945 | 0.8338 | 0.0923 | 0.080* | |
H7C | 0.5089 | 0.8649 | 0.0414 | 0.080* | |
O8 | 0.2706 (5) | 0.8407 (4) | 0.2328 (3) | 0.0519 (10) | |
H8 | 0.225 (6) | 0.931 (4) | 0.214 (4) | 0.062* | |
C8 | 0.2859 (9) | 0.7722 (8) | 0.3147 (5) | 0.0660 (19) | |
H8A | 0.3299 | 0.6631 | 0.3258 | 0.079* | |
H8B | 0.1814 | 0.7675 | 0.3038 | 0.079* | |
H8C | 0.3566 | 0.8399 | 0.3692 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0342 (4) | 0.0245 (3) | 0.0305 (3) | 0.0015 (2) | 0.0098 (3) | 0.0008 (3) |
O1 | 0.043 (2) | 0.0227 (16) | 0.0330 (18) | −0.0025 (15) | 0.0124 (16) | −0.0055 (15) |
O2 | 0.040 (2) | 0.0242 (17) | 0.0311 (19) | 0.0018 (15) | 0.0075 (17) | 0.0067 (15) |
O4 | 0.037 (2) | 0.0347 (19) | 0.0316 (19) | 0.0007 (16) | 0.0034 (16) | −0.0017 (16) |
O5 | 0.055 (2) | 0.0290 (19) | 0.042 (2) | 0.0009 (18) | −0.0027 (19) | −0.0061 (18) |
O1W | 0.050 (2) | 0.0228 (17) | 0.0315 (19) | −0.0047 (17) | 0.0005 (17) | −0.0004 (16) |
C1 | 0.031 (3) | 0.020 (2) | 0.031 (3) | −0.0002 (19) | 0.015 (2) | 0.000 (2) |
C2 | 0.029 (3) | 0.023 (2) | 0.030 (3) | −0.003 (2) | 0.012 (2) | −0.009 (2) |
O3 | 0.0324 (18) | 0.0215 (15) | 0.0272 (16) | −0.0021 (14) | 0.0068 (14) | −0.0041 (14) |
C3 | 0.028 (2) | 0.032 (3) | 0.025 (2) | −0.004 (2) | 0.006 (2) | −0.002 (2) |
C5 | 0.033 (3) | 0.036 (3) | 0.032 (3) | 0.000 (2) | 0.007 (2) | 0.004 (2) |
C4 | 0.036 (3) | 0.025 (2) | 0.035 (3) | −0.001 (2) | 0.013 (2) | 0.000 (2) |
C6 | 0.036 (3) | 0.034 (3) | 0.033 (3) | −0.003 (2) | 0.012 (2) | −0.006 (2) |
O7 | 0.041 (2) | 0.051 (2) | 0.038 (2) | 0.0064 (18) | 0.0175 (18) | 0.0070 (19) |
C7 | 0.071 (5) | 0.081 (5) | 0.047 (4) | 0.019 (4) | 0.033 (3) | 0.010 (3) |
O8 | 0.048 (2) | 0.041 (2) | 0.067 (3) | 0.0144 (18) | 0.033 (2) | 0.019 (2) |
C8 | 0.084 (5) | 0.054 (4) | 0.071 (5) | 0.008 (4) | 0.051 (4) | 0.018 (4) |
Zn1—O1W | 1.962 (3) | O3—C3 | 1.372 (5) |
Zn1—O2i | 2.022 (3) | C3—C5 | 1.341 (6) |
Zn1—O8 | 2.072 (4) | C3—C6 | 1.499 (6) |
Zn1—O1 | 2.090 (4) | C5—C4 | 1.435 (6) |
Zn1—O7 | 2.105 (4) | C5—H5 | 0.9300 |
Zn1—O2 | 2.565 (3) | C4—H4 | 0.9300 |
O1—C1 | 1.257 (5) | O7—C7 | 1.421 (7) |
O2—C1 | 1.270 (5) | O7—H7 | 0.817 (19) |
O2—Zn1ii | 2.022 (3) | C7—H7A | 0.9600 |
O4—C6 | 1.259 (5) | C7—H7B | 0.9600 |
O5—C6 | 1.243 (6) | C7—H7C | 0.9600 |
O1W—H1A | 0.828 (19) | O8—C8 | 1.430 (7) |
O1W—H1B | 0.828 (19) | O8—H8 | 0.82 (2) |
C1—C2 | 1.467 (6) | C8—H8A | 0.9600 |
C2—C4 | 1.352 (6) | C8—H8B | 0.9600 |
C2—O3 | 1.372 (5) | C8—H8C | 0.9600 |
O1W—Zn1—O2i | 127.86 (14) | C5—C3—C6 | 133.7 (4) |
O1W—Zn1—O8 | 92.21 (17) | O3—C3—C6 | 116.3 (4) |
O2i—Zn1—O8 | 90.81 (15) | C3—C5—C4 | 107.5 (4) |
O1W—Zn1—O1 | 138.87 (13) | C3—C5—H5 | 126.2 |
O2i—Zn1—O1 | 93.05 (12) | C4—C5—H5 | 126.2 |
O8—Zn1—O1 | 91.10 (16) | C2—C4—C5 | 105.3 (4) |
O1W—Zn1—O7 | 89.45 (17) | C2—C4—H4 | 127.3 |
O2i—Zn1—O7 | 90.23 (15) | C5—C4—H4 | 127.3 |
O8—Zn1—O7 | 176.90 (15) | O5—C6—O4 | 124.6 (4) |
O1—Zn1—O7 | 85.93 (15) | O5—C6—C3 | 119.3 (4) |
O1W—Zn1—O2 | 83.95 (13) | O4—C6—C3 | 116.0 (4) |
O2i—Zn1—O2 | 148.19 (7) | C7—O7—Zn1 | 124.9 (4) |
O8—Zn1—O2 | 88.27 (15) | C7—O7—H7 | 116 (4) |
O1—Zn1—O2 | 55.19 (11) | Zn1—O7—H7 | 111 (4) |
O7—Zn1—O2 | 89.31 (13) | O7—C7—H7A | 109.5 |
C1—O1—Zn1 | 103.2 (3) | O7—C7—H7B | 109.5 |
C1—O2—Zn1ii | 141.4 (3) | H7A—C7—H7B | 109.5 |
C1—O2—Zn1 | 80.8 (3) | O7—C7—H7C | 109.5 |
Zn1ii—O2—Zn1 | 137.77 (14) | H7A—C7—H7C | 109.5 |
Zn1—O1W—H1A | 124 (3) | H7B—C7—H7C | 109.5 |
Zn1—O1W—H1B | 124 (3) | C8—O8—Zn1 | 126.4 (4) |
H1A—O1W—H1B | 110 (3) | C8—O8—H8 | 117 (5) |
O1—C1—O2 | 120.8 (4) | Zn1—O8—H8 | 107 (4) |
O1—C1—C2 | 119.0 (4) | O8—C8—H8A | 109.5 |
O2—C1—C2 | 120.2 (4) | O8—C8—H8B | 109.5 |
C4—C2—O3 | 110.9 (4) | H8A—C8—H8B | 109.5 |
C4—C2—C1 | 132.8 (4) | O8—C8—H8C | 109.5 |
O3—C2—C1 | 116.3 (4) | H8A—C8—H8C | 109.5 |
C3—O3—C2 | 106.3 (3) | H8B—C8—H8C | 109.5 |
C5—C3—O3 | 110.0 (4) | ||
O1W—Zn1—O1—C1 | 7.3 (5) | O1—C1—C2—O3 | 177.9 (4) |
O2i—Zn1—O1—C1 | −178.2 (3) | O2—C1—C2—O3 | −2.3 (7) |
O8—Zn1—O1—C1 | −87.3 (3) | C4—C2—O3—C3 | 0.7 (6) |
O7—Zn1—O1—C1 | 91.8 (3) | C1—C2—O3—C3 | −176.8 (4) |
O2—Zn1—O1—C1 | −0.2 (3) | C2—O3—C3—C5 | −1.1 (6) |
O1W—Zn1—O2—C1 | −174.9 (3) | C2—O3—C3—C6 | 179.2 (4) |
O2i—Zn1—O2—C1 | 4.0 (3) | O3—C3—C5—C4 | 1.0 (6) |
O8—Zn1—O2—C1 | 92.7 (3) | C6—C3—C5—C4 | −179.3 (6) |
O1—Zn1—O2—C1 | 0.2 (3) | O3—C2—C4—C5 | −0.1 (6) |
O7—Zn1—O2—C1 | −85.3 (3) | C1—C2—C4—C5 | 176.8 (5) |
O1W—Zn1—O2—Zn1ii | 5.4 (3) | C3—C5—C4—C2 | −0.5 (6) |
O2i—Zn1—O2—Zn1ii | −175.7 (3) | C5—C3—C6—O5 | −171.4 (6) |
O8—Zn1—O2—Zn1ii | −87.0 (3) | O3—C3—C6—O5 | 8.3 (8) |
O1—Zn1—O2—Zn1ii | −179.5 (3) | C5—C3—C6—O4 | 6.4 (10) |
O7—Zn1—O2—Zn1ii | 95.0 (3) | O3—C3—C6—O4 | −174.0 (5) |
Zn1—O1—C1—O2 | 0.4 (6) | O1W—Zn1—O7—C7 | −52.1 (4) |
Zn1—O1—C1—C2 | −179.9 (4) | O2i—Zn1—O7—C7 | 75.8 (4) |
Zn1ii—O2—C1—O1 | 179.4 (4) | O1—Zn1—O7—C7 | 168.8 (4) |
Zn1—O2—C1—O1 | −0.3 (5) | O2—Zn1—O7—C7 | −136.1 (4) |
Zn1ii—O2—C1—C2 | −0.4 (8) | O1W—Zn1—O8—C8 | −167.6 (5) |
Zn1—O2—C1—C2 | 179.9 (5) | O2i—Zn1—O8—C8 | 64.5 (5) |
O1—C1—C2—C4 | 1.1 (9) | O1—Zn1—O8—C8 | −28.6 (5) |
O2—C1—C2—C4 | −179.1 (5) | O2—Zn1—O8—C8 | −83.7 (5) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O1ii | 0.83 (2) | 1.92 (2) | 2.745 (5) | 171 (5) |
O1W—H1B···O5i | 0.83 (2) | 1.76 (2) | 2.571 (5) | 165 (5) |
O7—H7···O4iii | 0.82 (2) | 1.86 (3) | 2.639 (5) | 158 (6) |
O8—H8···O4iv | 0.82 (2) | 1.88 (3) | 2.682 (5) | 163 (6) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+2, −y+2, −z+1; (iv) x−1, −y+5/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C6H2O5)(CH4O)2(H2O)] |
Mr | 301.57 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.077 (2), 8.1235 (16), 17.101 (3) |
β (°) | 124.86 (3) |
V (Å3) | 1148.7 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.17 |
Crystal size (mm) | 0.10 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.813, 0.813 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10467, 2605, 1593 |
Rint | 0.119 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.142, 1.01 |
No. of reflections | 2605 |
No. of parameters | 168 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.61, −0.71 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O1i | 0.828 (19) | 1.924 (19) | 2.745 (5) | 171 (5) |
O1W—H1B···O5ii | 0.828 (19) | 1.76 (2) | 2.571 (5) | 165 (5) |
O7—H7···O4iii | 0.817 (19) | 1.86 (3) | 2.639 (5) | 158 (6) |
O8—H8···O4iv | 0.82 (2) | 1.88 (3) | 2.682 (5) | 163 (6) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, −y+2, −z+1; (iv) x−1, −y+5/2, z−1/2. |
Acknowledgements
This project was sponsored by the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.
References
Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150. Web of Science CSD CrossRef PubMed CAS Google Scholar
Corma, A., Garcia, H. & Llabrés i Xamena, F. X. (2010). Chem. Rev. 110, 4606–4655. Web of Science CrossRef CAS PubMed Google Scholar
Ferey, G. (2008). Chem. Soc. Rev. 37, 191–214. Web of Science PubMed CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279. CAS Google Scholar
Li, Y.-F., Gao, Y., Xu, Y., Qin, X. & Gao, W.-Y. (2012a). Acta Cryst. E68, m445. CSD CrossRef IUCr Journals Google Scholar
Li, Y.-F., Gao, Y., Xu, Y., Qin, X.-L. & Gao, W.-Y. (2012b). Acta Cryst. E68, m500. CSD CrossRef IUCr Journals Google Scholar
Ma, L., Abney, C. & Lin, W. (2009). Chem. Soc. Rev. 38, 1248–1256. Web of Science CrossRef PubMed CAS Google Scholar
Murray, L. J., Dinca, M. & Long, J. R. (2009). Chem. Soc. Rev. 38, 1294–1314. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1257–1283. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During past decades, more efforts have made to construct the metal organic framework (MOF) materials due to the potential applications including gas absorption and catalyst reactions (Ma et al., 2009; Murray et al., 2009; Corma et al., 2010). The more attentions have been focused on the MOF based on the phenyl ring with carboxylate groups (Chui et al., 1999; Li et al., 1999; Ferey, 2008; Tranchemontagne et al., 2009). Compared with phenyl ring with carboxylate groups, the 5-membered rings with carboxylate groups as the ligand are rarely studied. Recently, we utilize furan-2,5-dicarboxyl acid as the ligand to constructed the MOFs (Li et al., 2012a,b). In this work, a novel chainlike compound, [Zn(C6H2O5)(H2O)(CH3OH)2]n, (I), is structurally determined.
The asymmetric unit of (I) contains one ZnII cation, one furan-2,5-dicarboxylate anion, one water and two methanol molecules (Fig. 1). The ZnII cation is coordinated by three carboxylate O atoms, one water molecule and two methanol molecules which locate at the axial positions, exhibiting a distorted octahedron. The oxygen of carboxylate [Zn—Ocarboxylate = 2.565 (2) Å] is very weakly ligated to the Zn cation. If excluding this oxygen, the ZnII ion displays a distorted triganol bipyramid geometry but the chain property may not be changed. Only one carboxyl of furan-2,5-dicarboxylate involves in the formation of infinite chain. The carboxyl shows a µ2:η1,η2 coordinated mode.
The ZnII cations are linked by one carboxylate of furan-2,5-dicarboxylate to give rise to an infinite chain (Fig. 2). Owater–H···O hydrogen bonds are intra-chain interactions, while Omethanol–H···O hydrogen bonds inter-chain interactions which are responsible to link the adjacent chains into a layer parallel to the (102) plane (Fig. 3).