metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(aqua­di­methano­lzinc)-μ-furan-2,5-di­carboxyl­ato-κ3O2:O2,O2′]

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 27 March 2012; accepted 4 April 2012; online 13 April 2012)

In the crystal structure of the title compound, [Zn(C6H2O5)(CH3OH)2(H2O)]n, an infinite chain is formed along the b axis by linking of the Zn(OH2)(CH3OH)2 unit with one carboxyl­ate group of the furan-2,5-dicarboxyl­ate ligand. The ZnII ion is in a distorted octa­hedral environment with one weak coordination [Zn—Ocarboxyl­ate = 2.565 (3) Å] and two meth­anol mol­ecules located in axial positions. In the chain, Owater—H⋯O hydrogen bonds are present, while adjacent chains are linked by Omethanol—H⋯O hydrogen bonds into a layer parallel to (10-2).

Related literature

For applications and structures of metal-organic framework materials, see: Chui et al. (1999[Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148-1150.]); Corma et al. (2010[Corma, A., Garcia, H. & Llabrés i Xamena, F. X. (2010). Chem. Rev. 110, 4606-4655.]); Ferey (2008[Ferey, G. (2008). Chem. Soc. Rev. 37, 191-214.]); Li et al. (1999[Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.], 2012a[Li, Y.-F., Gao, Y., Xu, Y., Qin, X. & Gao, W.-Y. (2012a). Acta Cryst. E68, m445.],b[Li, Y.-F., Gao, Y., Xu, Y., Qin, X.-L. & Gao, W.-Y. (2012b). Acta Cryst. E68, m500.]); Ma et al. (2009[Ma, L., Abney, C. & Lin, W. (2009). Chem. Soc. Rev. 38, 1248-1256.]); Murray et al. (2009[Murray, L. J., Dinca, M. & Long, J. R. (2009). Chem. Soc. Rev. 38, 1294-1314.]); Tranchemontagne et al. (2009[Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1257-1283.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H2O5)(CH4O)2(H2O)]

  • Mr = 301.57

  • Monoclinic, P 21 /c

  • a = 10.077 (2) Å

  • b = 8.1235 (16) Å

  • c = 17.101 (3) Å

  • β = 124.86 (3)°

  • V = 1148.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.813, Tmax = 0.813

  • 10467 measured reflections

  • 2605 independent reflections

  • 1593 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.142

  • S = 1.01

  • 2605 reflections

  • 168 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O1i 0.83 (2) 1.92 (2) 2.745 (5) 171 (5)
O1W—H1B⋯O5ii 0.83 (2) 1.76 (2) 2.571 (5) 165 (5)
O7—H7⋯O4iii 0.82 (2) 1.86 (3) 2.639 (5) 158 (6)
O8—H8⋯O4iv 0.82 (2) 1.88 (3) 2.682 (5) 163 (6)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+2, -z+1; (iv) [x-1, -y+{\script{5\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During past decades, more efforts have made to construct the metal organic framework (MOF) materials due to the potential applications including gas absorption and catalyst reactions (Ma et al., 2009; Murray et al., 2009; Corma et al., 2010). The more attentions have been focused on the MOF based on the phenyl ring with carboxylate groups (Chui et al., 1999; Li et al., 1999; Ferey, 2008; Tranchemontagne et al., 2009). Compared with phenyl ring with carboxylate groups, the 5-membered rings with carboxylate groups as the ligand are rarely studied. Recently, we utilize furan-2,5-dicarboxyl acid as the ligand to constructed the MOFs (Li et al., 2012a,b). In this work, a novel chainlike compound, [Zn(C6H2O5)(H2O)(CH3OH)2]n, (I), is structurally determined.

The asymmetric unit of (I) contains one ZnII cation, one furan-2,5-dicarboxylate anion, one water and two methanol molecules (Fig. 1). The ZnII cation is coordinated by three carboxylate O atoms, one water molecule and two methanol molecules which locate at the axial positions, exhibiting a distorted octahedron. The oxygen of carboxylate [Zn—Ocarboxylate = 2.565 (2) Å] is very weakly ligated to the Zn cation. If excluding this oxygen, the ZnII ion displays a distorted triganol bipyramid geometry but the chain property may not be changed. Only one carboxyl of furan-2,5-dicarboxylate involves in the formation of infinite chain. The carboxyl shows a µ2:η1,η2 coordinated mode.

The ZnII cations are linked by one carboxylate of furan-2,5-dicarboxylate to give rise to an infinite chain (Fig. 2). Owater–H···O hydrogen bonds are intra-chain interactions, while Omethanol–H···O hydrogen bonds inter-chain interactions which are responsible to link the adjacent chains into a layer parallel to the (102) plane (Fig. 3).

Related literature top

For applications and structures of metal-organic framework materials, see: Chui et al. (1999); Corma et al. (2010); Ferey (2008); Li et al. (1999, 2012a,b); Ma et al. (2009); Murray et al. (2009); Tranchemontagne et al. (2009).

Experimental top

In a typically synthesized route of (I), furan-2,5-dicarboxyl acid (0.312 g, 2.0 mmol) and Zn(NO3)2.6H2O (0.592 g, 2.0 mmol) were dissolved in DMF (7.8 ml, 0.1 mol) under stirring. Then, 72 ml methanol ann N(et)3 (0.29 ml, 2.0 mmol) were successively added. The mixture with molar ratio of 1 (furan-2,5-dicarboxyl acid): 1 (Zn(NO3)2.6H2O): 1 (N(et)3) was laid under room temperature for 4 days. The colorless block product was collected as a single phase.

Refinement top

Water H atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.82 (2) Å and H···H = 1.37 (2) Å, and with Uiso(H) = 1.2Ueq(O). Hydroxyl H atoms were located in a difference Fourier map and refined with a restraint of O—H = 0.82 (2) Å, and with Uiso(H) = 1.2Ueq(O). The carbon H-atoms were placed in calculated positions [C—H (furan ring) = 0.93 Å and C—H (methyl) = 0.96 Å] and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry code: (i) 1 - x, -1/2 + y, 1/2 - z.]
[Figure 2] Fig. 2. The stick plot of the title compound, displaying the infinite chain along the [010] direction formed by linking the ZnII ion with one carboxyl of furan-2,5-dicarboxylate.
[Figure 3] Fig. 3. The ball-stick packing diagram of the title compound. The adjacent chains are held together by the Omethanol–H···O hydrogen bonds into layers.
catena-Poly[(aquadimethanolzinc)-µ-furan-2,5- dicarboxylato-κ3O2:O2,O2'] top
Crystal data top
[Zn(C6H2O5)(CH4O)2(H2O)]F(000) = 616
Mr = 301.57Dx = 1.744 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 10.077 (2) Åθ = 3.2–27.5°
b = 8.1235 (16) ŵ = 2.17 mm1
c = 17.101 (3) ÅT = 293 K
β = 124.86 (3)°Block, colorless
V = 1148.7 (6) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2605 independent reflections
Radiation source: fine-focus sealed tube1593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.813, Tmax = 0.813l = 2222
10467 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.057P)2]
where P = (Fo2 + 2Fc2)/3
2605 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.61 e Å3
5 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Zn(C6H2O5)(CH4O)2(H2O)]V = 1148.7 (6) Å3
Mr = 301.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.077 (2) ŵ = 2.17 mm1
b = 8.1235 (16) ÅT = 293 K
c = 17.101 (3) Å0.10 × 0.10 × 0.10 mm
β = 124.86 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2605 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1593 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.813Rint = 0.119
10467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0625 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.61 e Å3
2605 reflectionsΔρmin = 0.71 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.44202 (7)0.83143 (7)0.20225 (4)0.0346 (2)
O10.6292 (4)0.8216 (4)0.3472 (2)0.0380 (9)
O20.5778 (4)1.0836 (4)0.3099 (2)0.0389 (9)
O41.1259 (4)1.3677 (4)0.7066 (2)0.0438 (10)
O50.9191 (5)1.4792 (4)0.5739 (3)0.0589 (13)
O1W0.3262 (4)0.9960 (4)0.1007 (3)0.0475 (11)
H1A0.334 (6)1.097 (3)0.110 (3)0.057*
H1B0.244 (4)0.976 (5)0.047 (2)0.057*
C10.6580 (5)0.9708 (5)0.3707 (3)0.0294 (12)
C20.7857 (5)1.0133 (5)0.4697 (3)0.0297 (11)
O30.8150 (4)1.1781 (3)0.4901 (2)0.0329 (8)
C30.9431 (6)1.1887 (6)0.5841 (3)0.0334 (12)
C50.9904 (6)1.0374 (6)0.6215 (4)0.0401 (14)
H51.07371.01230.68410.048*
C40.8892 (6)0.9213 (6)0.5474 (3)0.0365 (13)
H40.89370.80710.55190.044*
C60.9997 (6)1.3588 (6)0.6231 (4)0.0382 (13)
O70.6257 (4)0.8255 (5)0.1789 (3)0.0463 (10)
H70.708 (5)0.785 (7)0.224 (3)0.056*
C70.5999 (8)0.8006 (8)0.0889 (4)0.066 (2)
H7A0.57880.68610.07220.080*
H7B0.69450.83380.09230.080*
H7C0.50890.86490.04140.080*
O80.2706 (5)0.8407 (4)0.2328 (3)0.0519 (10)
H80.225 (6)0.931 (4)0.214 (4)0.062*
C80.2859 (9)0.7722 (8)0.3147 (5)0.0660 (19)
H8A0.32990.66310.32580.079*
H8B0.18140.76750.30380.079*
H8C0.35660.83990.36920.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0342 (4)0.0245 (3)0.0305 (3)0.0015 (2)0.0098 (3)0.0008 (3)
O10.043 (2)0.0227 (16)0.0330 (18)0.0025 (15)0.0124 (16)0.0055 (15)
O20.040 (2)0.0242 (17)0.0311 (19)0.0018 (15)0.0075 (17)0.0067 (15)
O40.037 (2)0.0347 (19)0.0316 (19)0.0007 (16)0.0034 (16)0.0017 (16)
O50.055 (2)0.0290 (19)0.042 (2)0.0009 (18)0.0027 (19)0.0061 (18)
O1W0.050 (2)0.0228 (17)0.0315 (19)0.0047 (17)0.0005 (17)0.0004 (16)
C10.031 (3)0.020 (2)0.031 (3)0.0002 (19)0.015 (2)0.000 (2)
C20.029 (3)0.023 (2)0.030 (3)0.003 (2)0.012 (2)0.009 (2)
O30.0324 (18)0.0215 (15)0.0272 (16)0.0021 (14)0.0068 (14)0.0041 (14)
C30.028 (2)0.032 (3)0.025 (2)0.004 (2)0.006 (2)0.002 (2)
C50.033 (3)0.036 (3)0.032 (3)0.000 (2)0.007 (2)0.004 (2)
C40.036 (3)0.025 (2)0.035 (3)0.001 (2)0.013 (2)0.000 (2)
C60.036 (3)0.034 (3)0.033 (3)0.003 (2)0.012 (2)0.006 (2)
O70.041 (2)0.051 (2)0.038 (2)0.0064 (18)0.0175 (18)0.0070 (19)
C70.071 (5)0.081 (5)0.047 (4)0.019 (4)0.033 (3)0.010 (3)
O80.048 (2)0.041 (2)0.067 (3)0.0144 (18)0.033 (2)0.019 (2)
C80.084 (5)0.054 (4)0.071 (5)0.008 (4)0.051 (4)0.018 (4)
Geometric parameters (Å, º) top
Zn1—O1W1.962 (3)O3—C31.372 (5)
Zn1—O2i2.022 (3)C3—C51.341 (6)
Zn1—O82.072 (4)C3—C61.499 (6)
Zn1—O12.090 (4)C5—C41.435 (6)
Zn1—O72.105 (4)C5—H50.9300
Zn1—O22.565 (3)C4—H40.9300
O1—C11.257 (5)O7—C71.421 (7)
O2—C11.270 (5)O7—H70.817 (19)
O2—Zn1ii2.022 (3)C7—H7A0.9600
O4—C61.259 (5)C7—H7B0.9600
O5—C61.243 (6)C7—H7C0.9600
O1W—H1A0.828 (19)O8—C81.430 (7)
O1W—H1B0.828 (19)O8—H80.82 (2)
C1—C21.467 (6)C8—H8A0.9600
C2—C41.352 (6)C8—H8B0.9600
C2—O31.372 (5)C8—H8C0.9600
O1W—Zn1—O2i127.86 (14)C5—C3—C6133.7 (4)
O1W—Zn1—O892.21 (17)O3—C3—C6116.3 (4)
O2i—Zn1—O890.81 (15)C3—C5—C4107.5 (4)
O1W—Zn1—O1138.87 (13)C3—C5—H5126.2
O2i—Zn1—O193.05 (12)C4—C5—H5126.2
O8—Zn1—O191.10 (16)C2—C4—C5105.3 (4)
O1W—Zn1—O789.45 (17)C2—C4—H4127.3
O2i—Zn1—O790.23 (15)C5—C4—H4127.3
O8—Zn1—O7176.90 (15)O5—C6—O4124.6 (4)
O1—Zn1—O785.93 (15)O5—C6—C3119.3 (4)
O1W—Zn1—O283.95 (13)O4—C6—C3116.0 (4)
O2i—Zn1—O2148.19 (7)C7—O7—Zn1124.9 (4)
O8—Zn1—O288.27 (15)C7—O7—H7116 (4)
O1—Zn1—O255.19 (11)Zn1—O7—H7111 (4)
O7—Zn1—O289.31 (13)O7—C7—H7A109.5
C1—O1—Zn1103.2 (3)O7—C7—H7B109.5
C1—O2—Zn1ii141.4 (3)H7A—C7—H7B109.5
C1—O2—Zn180.8 (3)O7—C7—H7C109.5
Zn1ii—O2—Zn1137.77 (14)H7A—C7—H7C109.5
Zn1—O1W—H1A124 (3)H7B—C7—H7C109.5
Zn1—O1W—H1B124 (3)C8—O8—Zn1126.4 (4)
H1A—O1W—H1B110 (3)C8—O8—H8117 (5)
O1—C1—O2120.8 (4)Zn1—O8—H8107 (4)
O1—C1—C2119.0 (4)O8—C8—H8A109.5
O2—C1—C2120.2 (4)O8—C8—H8B109.5
C4—C2—O3110.9 (4)H8A—C8—H8B109.5
C4—C2—C1132.8 (4)O8—C8—H8C109.5
O3—C2—C1116.3 (4)H8A—C8—H8C109.5
C3—O3—C2106.3 (3)H8B—C8—H8C109.5
C5—C3—O3110.0 (4)
O1W—Zn1—O1—C17.3 (5)O1—C1—C2—O3177.9 (4)
O2i—Zn1—O1—C1178.2 (3)O2—C1—C2—O32.3 (7)
O8—Zn1—O1—C187.3 (3)C4—C2—O3—C30.7 (6)
O7—Zn1—O1—C191.8 (3)C1—C2—O3—C3176.8 (4)
O2—Zn1—O1—C10.2 (3)C2—O3—C3—C51.1 (6)
O1W—Zn1—O2—C1174.9 (3)C2—O3—C3—C6179.2 (4)
O2i—Zn1—O2—C14.0 (3)O3—C3—C5—C41.0 (6)
O8—Zn1—O2—C192.7 (3)C6—C3—C5—C4179.3 (6)
O1—Zn1—O2—C10.2 (3)O3—C2—C4—C50.1 (6)
O7—Zn1—O2—C185.3 (3)C1—C2—C4—C5176.8 (5)
O1W—Zn1—O2—Zn1ii5.4 (3)C3—C5—C4—C20.5 (6)
O2i—Zn1—O2—Zn1ii175.7 (3)C5—C3—C6—O5171.4 (6)
O8—Zn1—O2—Zn1ii87.0 (3)O3—C3—C6—O58.3 (8)
O1—Zn1—O2—Zn1ii179.5 (3)C5—C3—C6—O46.4 (10)
O7—Zn1—O2—Zn1ii95.0 (3)O3—C3—C6—O4174.0 (5)
Zn1—O1—C1—O20.4 (6)O1W—Zn1—O7—C752.1 (4)
Zn1—O1—C1—C2179.9 (4)O2i—Zn1—O7—C775.8 (4)
Zn1ii—O2—C1—O1179.4 (4)O1—Zn1—O7—C7168.8 (4)
Zn1—O2—C1—O10.3 (5)O2—Zn1—O7—C7136.1 (4)
Zn1ii—O2—C1—C20.4 (8)O1W—Zn1—O8—C8167.6 (5)
Zn1—O2—C1—C2179.9 (5)O2i—Zn1—O8—C864.5 (5)
O1—C1—C2—C41.1 (9)O1—Zn1—O8—C828.6 (5)
O2—C1—C2—C4179.1 (5)O2—Zn1—O8—C883.7 (5)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O1ii0.83 (2)1.92 (2)2.745 (5)171 (5)
O1W—H1B···O5i0.83 (2)1.76 (2)2.571 (5)165 (5)
O7—H7···O4iii0.82 (2)1.86 (3)2.639 (5)158 (6)
O8—H8···O4iv0.82 (2)1.88 (3)2.682 (5)163 (6)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+2, z+1; (iv) x1, y+5/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C6H2O5)(CH4O)2(H2O)]
Mr301.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.077 (2), 8.1235 (16), 17.101 (3)
β (°) 124.86 (3)
V3)1148.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.813, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
10467, 2605, 1593
Rint0.119
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.142, 1.01
No. of reflections2605
No. of parameters168
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.71

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O1i0.828 (19)1.924 (19)2.745 (5)171 (5)
O1W—H1B···O5ii0.828 (19)1.76 (2)2.571 (5)165 (5)
O7—H7···O4iii0.817 (19)1.86 (3)2.639 (5)158 (6)
O8—H8···O4iv0.82 (2)1.88 (3)2.682 (5)163 (6)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+2, z+1; (iv) x1, y+5/2, z1/2.
 

Acknowledgements

This project was sponsored by the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCorma, A., Garcia, H. & Llabrés i Xamena, F. X. (2010). Chem. Rev. 110, 4606–4655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFerey, G. (2008). Chem. Soc. Rev. 37, 191–214.  Web of Science PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.  CAS Google Scholar
First citationLi, Y.-F., Gao, Y., Xu, Y., Qin, X. & Gao, W.-Y. (2012a). Acta Cryst. E68, m445.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F., Gao, Y., Xu, Y., Qin, X.-L. & Gao, W.-Y. (2012b). Acta Cryst. E68, m500.  CSD CrossRef IUCr Journals Google Scholar
First citationMa, L., Abney, C. & Lin, W. (2009). Chem. Soc. Rev. 38, 1248–1256.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurray, L. J., Dinca, M. & Long, J. R. (2009). Chem. Soc. Rev. 38, 1294–1314.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1257–1283.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds