organic compounds
3-(Adamantan-1-yl)-4-ethyl-1H-1,2,4-triazole-5(4H)-thione
aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C14H21N3S, the 1,2,4-triazole ring is nearly planar, with a maximum deviation of 0.003 (4) Å. In the crystal, molecules are linked into inversion dimers by pairs of N—H⋯S hydrogen bonds.
Related literature
For the biological activity of adamantane derivatives, see: Al-Omar et al. (2010); Al-Deeb et al. (2006); El-Emam et al. (2004); Kadi et al. (2007, 2010); Vernier et al. (1969). For the synthesis of the title compound, see: El-Emam & Ibrahim (1991). For related structures of adamantane derivatives, see: Almutairi et al. (2012); Al-Tamimi et al. (2010); Rouchal et al. (2010); Wang et al. (2011); Al-Abdullah et al. (2012). For standard bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812014407/is5108sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812014407/is5108Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812014407/is5108Isup3.cml
A mixture of adamantane-1-carbohydrazide (1.94 g, 0.01 mol), ethyl isothiocyanate (0.87 g, 0.01 mol), in ethanol (10 ml) was heated under reflux with stirring for one hour and the solvent was distilled off in vacuo. Aqueous sodium hydroxide solution (10%, 15 ml) was added to the residue and the mixture was heated under reflux for 2 h, then filtered hot. On cooling, the mixture was acidified with hydrochloric acid and the precipitated crude product was filtered, washed with water, dried and crystallized from aqueous ethanol to yield 2.24 g (85%) of the title compound (C14H21N3S) as colorless crystals. M.p.: 210-212 °C. 1H NMR (CDCl3, 500.13 MHz): δ 1.36 (t, 3H, CH3CH2, J = 7.0 Hz), 1.73 (s, 6H, Adamantane-H), 1.99 (m, 6H, Adamantane-H), 2.06 (s, 3H, Adamantane-H), 4.19 (q, 2H, CH3CH2), 11.60 (br. s, 1H, NH). 13C NMR (CDCl3, 125.76 MHz): δ 13.99 (CH3), 27.91, 35.48, 36.27, 39.75 (Adamantane-C), 41.17 (CH2), 158.04 (C=N), 167.25 (C=S).
Atom H1N2 was located in a difference Fourier map and refined freely [N—H = 0.87 (4) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.96–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).C14H21N3S | F(000) = 568 |
Mr = 263.40 | Dx = 1.255 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 592 reflections |
a = 13.8329 (7) Å | θ = 4.1–66.5° |
b = 7.3107 (4) Å | µ = 1.94 mm−1 |
c = 17.5302 (12) Å | T = 296 K |
β = 128.157 (4)° | Needle, colourless |
V = 1393.99 (16) Å3 | 0.58 × 0.12 × 0.05 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 2448 independent reflections |
Radiation source: fine-focus sealed tube | 1632 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.093 |
ϕ and ω scans | θmax = 67.5°, θmin = 4.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −16→16 |
Tmin = 0.228, Tmax = 0.906 | k = −8→6 |
8009 measured reflections | l = −20→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.167 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0553P)2 + 1.0409P] where P = (Fo2 + 2Fc2)/3 |
2448 reflections | (Δ/σ)max = 0.001 |
168 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C14H21N3S | V = 1393.99 (16) Å3 |
Mr = 263.40 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 13.8329 (7) Å | µ = 1.94 mm−1 |
b = 7.3107 (4) Å | T = 296 K |
c = 17.5302 (12) Å | 0.58 × 0.12 × 0.05 mm |
β = 128.157 (4)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2448 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1632 reflections with I > 2σ(I) |
Tmin = 0.228, Tmax = 0.906 | Rint = 0.093 |
8009 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.167 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | Δρmax = 0.19 e Å−3 |
2448 reflections | Δρmin = −0.26 e Å−3 |
168 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.10923 (11) | 0.88672 (13) | 0.05119 (8) | 0.0602 (4) | |
N1 | 0.0606 (3) | 0.6128 (4) | 0.1520 (2) | 0.0452 (7) | |
N2 | 0.0957 (4) | 0.7839 (4) | 0.0738 (3) | 0.0591 (10) | |
N3 | 0.1903 (3) | 0.6609 (4) | 0.1203 (2) | 0.0571 (9) | |
C1 | 0.0152 (4) | 0.7606 (4) | 0.0913 (3) | 0.0490 (10) | |
C2 | 0.1677 (4) | 0.5561 (5) | 0.1684 (3) | 0.0479 (9) | |
C3 | 0.2544 (4) | 0.4078 (5) | 0.2347 (3) | 0.0505 (9) | |
C4 | 0.3537 (4) | 0.3859 (5) | 0.2218 (4) | 0.0733 (13) | |
H4A | 0.3954 | 0.5018 | 0.2345 | 0.088* | |
H4B | 0.3158 | 0.3509 | 0.1554 | 0.088* | |
C5 | 0.4475 (5) | 0.2398 (6) | 0.2914 (5) | 0.0821 (15) | |
H5A | 0.5104 | 0.2284 | 0.2822 | 0.099* | |
C6 | 0.5089 (5) | 0.2972 (7) | 0.3961 (5) | 0.0953 (18) | |
H6A | 0.5695 | 0.2068 | 0.4406 | 0.114* | |
H6B | 0.5504 | 0.4136 | 0.4096 | 0.114* | |
C7 | 0.4113 (4) | 0.3141 (6) | 0.4098 (3) | 0.0710 (12) | |
H7A | 0.4502 | 0.3481 | 0.4771 | 0.085* | |
C8 | 0.3435 (4) | 0.1329 (5) | 0.3865 (3) | 0.0660 (12) | |
H8A | 0.2810 | 0.1455 | 0.3951 | 0.079* | |
H8B | 0.4009 | 0.0391 | 0.4307 | 0.079* | |
C9 | 0.2836 (4) | 0.0760 (5) | 0.2820 (3) | 0.0587 (11) | |
H9A | 0.2415 | −0.0414 | 0.2682 | 0.070* | |
C10 | 0.1908 (4) | 0.2214 (5) | 0.2139 (3) | 0.0524 (10) | |
H10A | 0.1279 | 0.2312 | 0.2223 | 0.063* | |
H10B | 0.1512 | 0.1862 | 0.1473 | 0.063* | |
C11 | 0.3813 (5) | 0.0576 (6) | 0.2681 (4) | 0.0781 (14) | |
H11A | 0.3433 | 0.0231 | 0.2016 | 0.094* | |
H11B | 0.4397 | −0.0369 | 0.3106 | 0.094* | |
C12 | 0.3189 (4) | 0.4605 (5) | 0.3421 (3) | 0.0595 (11) | |
H12A | 0.3607 | 0.5768 | 0.3564 | 0.071* | |
H12B | 0.2579 | 0.4739 | 0.3523 | 0.071* | |
C13 | −0.0034 (4) | 0.5359 (5) | 0.1871 (3) | 0.0486 (9) | |
H13A | −0.0375 | 0.6350 | 0.2006 | 0.058* | |
H13B | 0.0553 | 0.4710 | 0.2474 | 0.058* | |
C14 | −0.1058 (4) | 0.4064 (5) | 0.1148 (3) | 0.0577 (10) | |
H14A | −0.1485 | 0.3664 | 0.1389 | 0.087* | |
H14B | −0.0717 | 0.3024 | 0.1056 | 0.087* | |
H14C | −0.1622 | 0.4682 | 0.0540 | 0.087* | |
H1N2 | 0.089 (3) | 0.868 (5) | 0.035 (3) | 0.063 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0812 (8) | 0.0444 (6) | 0.0664 (7) | 0.0174 (5) | 0.0513 (6) | 0.0157 (4) |
N1 | 0.060 (2) | 0.0367 (15) | 0.0490 (17) | 0.0075 (14) | 0.0389 (16) | 0.0066 (12) |
N2 | 0.088 (3) | 0.0436 (19) | 0.069 (2) | 0.0136 (17) | 0.060 (2) | 0.0182 (16) |
N3 | 0.076 (2) | 0.0419 (17) | 0.074 (2) | 0.0115 (16) | 0.057 (2) | 0.0146 (15) |
C1 | 0.071 (3) | 0.0329 (18) | 0.048 (2) | 0.0057 (17) | 0.039 (2) | 0.0031 (15) |
C2 | 0.064 (3) | 0.0383 (19) | 0.053 (2) | 0.0010 (17) | 0.042 (2) | 0.0002 (15) |
C3 | 0.059 (3) | 0.040 (2) | 0.064 (2) | 0.0053 (17) | 0.043 (2) | 0.0074 (16) |
C4 | 0.086 (3) | 0.051 (2) | 0.120 (4) | 0.012 (2) | 0.082 (3) | 0.020 (2) |
C5 | 0.074 (3) | 0.062 (3) | 0.140 (5) | 0.022 (2) | 0.080 (4) | 0.029 (3) |
C6 | 0.061 (3) | 0.071 (3) | 0.127 (5) | 0.005 (3) | 0.045 (3) | 0.025 (3) |
C7 | 0.055 (3) | 0.064 (3) | 0.068 (3) | −0.004 (2) | 0.025 (2) | 0.005 (2) |
C8 | 0.053 (3) | 0.057 (3) | 0.070 (3) | 0.007 (2) | 0.029 (2) | 0.023 (2) |
C9 | 0.061 (3) | 0.037 (2) | 0.078 (3) | 0.0047 (18) | 0.043 (2) | 0.0093 (18) |
C10 | 0.062 (3) | 0.044 (2) | 0.055 (2) | 0.0045 (18) | 0.038 (2) | 0.0048 (16) |
C11 | 0.081 (3) | 0.052 (3) | 0.118 (4) | 0.022 (2) | 0.070 (3) | 0.020 (3) |
C12 | 0.060 (3) | 0.045 (2) | 0.063 (3) | −0.0037 (18) | 0.032 (2) | 0.0001 (18) |
C13 | 0.065 (3) | 0.043 (2) | 0.052 (2) | 0.0083 (18) | 0.043 (2) | 0.0071 (16) |
C14 | 0.060 (3) | 0.049 (2) | 0.067 (3) | −0.0003 (19) | 0.041 (2) | −0.0006 (18) |
S1—C1 | 1.677 (4) | C7—C12 | 1.521 (5) |
N1—C1 | 1.367 (4) | C7—C8 | 1.526 (5) |
N1—C2 | 1.386 (5) | C7—H7A | 0.9800 |
N1—C13 | 1.468 (4) | C8—C9 | 1.530 (6) |
N2—C1 | 1.337 (5) | C8—H8A | 0.9700 |
N2—N3 | 1.366 (4) | C8—H8B | 0.9700 |
N2—H1N2 | 0.87 (4) | C9—C10 | 1.520 (5) |
N3—C2 | 1.312 (4) | C9—C11 | 1.522 (6) |
C2—C3 | 1.497 (5) | C9—H9A | 0.9800 |
C3—C4 | 1.533 (5) | C10—H10A | 0.9700 |
C3—C10 | 1.539 (5) | C10—H10B | 0.9700 |
C3—C12 | 1.553 (5) | C11—H11A | 0.9700 |
C4—C5 | 1.535 (6) | C11—H11B | 0.9700 |
C4—H4A | 0.9700 | C12—H12A | 0.9700 |
C4—H4B | 0.9700 | C12—H12B | 0.9700 |
C5—C11 | 1.522 (6) | C13—C14 | 1.514 (5) |
C5—C6 | 1.530 (7) | C13—H13A | 0.9700 |
C5—H5A | 0.9800 | C13—H13B | 0.9700 |
C6—C7 | 1.515 (7) | C14—H14A | 0.9600 |
C6—H6A | 0.9700 | C14—H14B | 0.9600 |
C6—H6B | 0.9700 | C14—H14C | 0.9600 |
C1—N1—C2 | 108.5 (3) | C7—C8—C9 | 110.2 (3) |
C1—N1—C13 | 121.5 (3) | C7—C8—H8A | 109.6 |
C2—N1—C13 | 130.0 (3) | C9—C8—H8A | 109.6 |
C1—N2—N3 | 113.9 (3) | C7—C8—H8B | 109.6 |
C1—N2—H1N2 | 124 (3) | C9—C8—H8B | 109.6 |
N3—N2—H1N2 | 122 (3) | H8A—C8—H8B | 108.1 |
C2—N3—N2 | 104.3 (3) | C10—C9—C11 | 109.8 (3) |
N2—C1—N1 | 103.4 (3) | C10—C9—C8 | 108.7 (3) |
N2—C1—S1 | 128.2 (3) | C11—C9—C8 | 109.8 (4) |
N1—C1—S1 | 128.3 (3) | C10—C9—H9A | 109.5 |
N3—C2—N1 | 109.9 (3) | C11—C9—H9A | 109.5 |
N3—C2—C3 | 121.8 (3) | C8—C9—H9A | 109.5 |
N1—C2—C3 | 128.2 (3) | C9—C10—C3 | 110.6 (3) |
C2—C3—C4 | 108.8 (3) | C9—C10—H10A | 109.5 |
C2—C3—C10 | 113.0 (3) | C3—C10—H10A | 109.5 |
C4—C3—C10 | 107.9 (3) | C9—C10—H10B | 109.5 |
C2—C3—C12 | 110.2 (3) | C3—C10—H10B | 109.5 |
C4—C3—C12 | 108.0 (3) | H10A—C10—H10B | 108.1 |
C10—C3—C12 | 108.8 (3) | C9—C11—C5 | 109.0 (3) |
C3—C4—C5 | 110.5 (3) | C9—C11—H11A | 109.9 |
C3—C4—H4A | 109.6 | C5—C11—H11A | 109.9 |
C5—C4—H4A | 109.6 | C9—C11—H11B | 109.9 |
C3—C4—H4B | 109.6 | C5—C11—H11B | 109.9 |
C5—C4—H4B | 109.6 | H11A—C11—H11B | 108.3 |
H4A—C4—H4B | 108.1 | C7—C12—C3 | 110.3 (3) |
C11—C5—C6 | 111.0 (4) | C7—C12—H12A | 109.6 |
C11—C5—C4 | 108.8 (4) | C3—C12—H12A | 109.6 |
C6—C5—C4 | 109.4 (4) | C7—C12—H12B | 109.6 |
C11—C5—H5A | 109.2 | C3—C12—H12B | 109.6 |
C6—C5—H5A | 109.2 | H12A—C12—H12B | 108.1 |
C4—C5—H5A | 109.2 | N1—C13—C14 | 112.5 (3) |
C7—C6—C5 | 108.9 (4) | N1—C13—H13A | 109.1 |
C7—C6—H6A | 109.9 | C14—C13—H13A | 109.1 |
C5—C6—H6A | 109.9 | N1—C13—H13B | 109.1 |
C7—C6—H6B | 109.9 | C14—C13—H13B | 109.1 |
C5—C6—H6B | 109.9 | H13A—C13—H13B | 107.8 |
H6A—C6—H6B | 108.3 | C13—C14—H14A | 109.5 |
C6—C7—C12 | 109.6 (4) | C13—C14—H14B | 109.5 |
C6—C7—C8 | 110.4 (4) | H14A—C14—H14B | 109.5 |
C12—C7—C8 | 108.7 (3) | C13—C14—H14C | 109.5 |
C6—C7—H7A | 109.4 | H14A—C14—H14C | 109.5 |
C12—C7—H7A | 109.4 | H14B—C14—H14C | 109.5 |
C8—C7—H7A | 109.4 | ||
C1—N2—N3—C2 | 0.3 (4) | C11—C5—C6—C7 | −59.4 (5) |
N3—N2—C1—N1 | −0.6 (4) | C4—C5—C6—C7 | 60.7 (5) |
N3—N2—C1—S1 | 177.7 (3) | C5—C6—C7—C12 | −61.3 (5) |
C2—N1—C1—N2 | 0.6 (4) | C5—C6—C7—C8 | 58.3 (5) |
C13—N1—C1—N2 | −178.0 (3) | C6—C7—C8—C9 | −58.9 (5) |
C2—N1—C1—S1 | −177.7 (3) | C12—C7—C8—C9 | 61.4 (5) |
C13—N1—C1—S1 | 3.8 (5) | C7—C8—C9—C10 | −61.4 (4) |
N2—N3—C2—N1 | 0.1 (4) | C7—C8—C9—C11 | 58.8 (4) |
N2—N3—C2—C3 | −176.4 (3) | C11—C9—C10—C3 | −60.1 (4) |
C1—N1—C2—N3 | −0.4 (4) | C8—C9—C10—C3 | 60.0 (4) |
C13—N1—C2—N3 | 177.9 (3) | C2—C3—C10—C9 | 178.9 (3) |
C1—N1—C2—C3 | 175.8 (3) | C4—C3—C10—C9 | 58.6 (4) |
C13—N1—C2—C3 | −5.9 (6) | C12—C3—C10—C9 | −58.3 (4) |
N3—C2—C3—C4 | −8.8 (5) | C10—C9—C11—C5 | 60.7 (5) |
N1—C2—C3—C4 | 175.4 (4) | C8—C9—C11—C5 | −58.8 (5) |
N3—C2—C3—C10 | −128.6 (4) | C6—C5—C11—C9 | 59.8 (5) |
N1—C2—C3—C10 | 55.6 (5) | C4—C5—C11—C9 | −60.7 (5) |
N3—C2—C3—C12 | 109.5 (4) | C6—C7—C12—C3 | 61.0 (5) |
N1—C2—C3—C12 | −66.3 (5) | C8—C7—C12—C3 | −59.7 (5) |
C2—C3—C4—C5 | 177.9 (4) | C2—C3—C12—C7 | −177.4 (3) |
C10—C3—C4—C5 | −59.2 (5) | C4—C3—C12—C7 | −58.7 (4) |
C12—C3—C4—C5 | 58.2 (5) | C10—C3—C12—C7 | 58.2 (4) |
C3—C4—C5—C11 | 61.2 (5) | C1—N1—C13—C14 | 82.7 (4) |
C3—C4—C5—C6 | −60.3 (5) | C2—N1—C13—C14 | −95.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···S1i | 0.88 (4) | 2.47 (4) | 3.338 (4) | 170 (4) |
Symmetry code: (i) −x, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C14H21N3S |
Mr | 263.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 13.8329 (7), 7.3107 (4), 17.5302 (12) |
β (°) | 128.157 (4) |
V (Å3) | 1393.99 (16) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.94 |
Crystal size (mm) | 0.58 × 0.12 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.228, 0.906 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8009, 2448, 1632 |
Rint | 0.093 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.167, 1.13 |
No. of reflections | 2448 |
No. of parameters | 168 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.26 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···S1i | 0.88 (4) | 2.47 (4) | 3.338 (4) | 170 (4) |
Symmetry code: (i) −x, −y+2, −z. |
Acknowledgements
The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).
References
Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531. Web of Science CSD CrossRef IUCr Journals Google Scholar
Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug Res. 56, 40–47. CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656. CSD CrossRef IUCr Journals Google Scholar
Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550. Web of Science CAS PubMed Google Scholar
Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. Web of Science CrossRef PubMed CAS Google Scholar
El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug Res. 41, 1260–1264. CAS Google Scholar
Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. Web of Science CrossRef CAS PubMed Google Scholar
Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Rouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665. CrossRef CAS PubMed Web of Science Google Scholar
Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o348. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al. 2004). Moreover, adamantane derivatives were recently reported to exhibit marked antibacterial activity (Kadi et al., 2007, 2010). In an earlier publication, we reported the synthesis and potent anti-inflammatory and analgesic activities of a series of 5-(1-adamantyl)-4-substituted-4H-1,2,4-triazole-3-thiols and related derivatives including the title compound (El-Emam & Ibrahim, 1991).
In the title molecule (Fig. 1), the 1,2,4-triazole ring (N1–N3/C1/C2) is nearly planar with a maximum deviation of 0.003 (4)) Å at atom C1. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Almutairi et al., 2012; Al-Tamimi et al., 2010; Rouchal et al., 2010; Wang et al., 2011; Al-Abdullah et al., 2012).
In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of intermolecular N2—H2A···S1 hydrogen bonds (Table 1).