organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1347

3-(Adamantan-1-yl)-4-ethyl-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 March 2012; accepted 3 April 2012; online 13 April 2012)

In the title compound, C14H21N3S, the 1,2,4-triazole ring is nearly planar, with a maximum deviation of 0.003 (4) Å. In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯S hydrogen bonds.

Related literature

For the biological activity of adamantane derivatives, see: Al-Omar et al. (2010[Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.]); Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug Res. 56, 40-47.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.], 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]); Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]). For the synthesis of the title compound, see: El-Emam & Ibrahim (1991[El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug Res. 41, 1260-1264.]). For related structures of adamantane derivatives, see: Almutairi et al. (2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]); Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]); Rouchal et al. (2010[Rouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736.]); Wang et al. (2011[Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o348.]); Al-Abdullah et al. (2012[Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H21N3S

  • Mr = 263.40

  • Monoclinic, P 21 /c

  • a = 13.8329 (7) Å

  • b = 7.3107 (4) Å

  • c = 17.5302 (12) Å

  • β = 128.157 (4)°

  • V = 1393.99 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.94 mm−1

  • T = 296 K

  • 0.58 × 0.12 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.228, Tmax = 0.906

  • 8009 measured reflections

  • 2448 independent reflections

  • 1632 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.167

  • S = 1.13

  • 2448 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯S1i 0.88 (4) 2.47 (4) 3.338 (4) 170 (4)
Symmetry code: (i) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al. 2004). Moreover, adamantane derivatives were recently reported to exhibit marked antibacterial activity (Kadi et al., 2007, 2010). In an earlier publication, we reported the synthesis and potent anti-inflammatory and analgesic activities of a series of 5-(1-adamantyl)-4-substituted-4H-1,2,4-triazole-3-thiols and related derivatives including the title compound (El-Emam & Ibrahim, 1991).

In the title molecule (Fig. 1), the 1,2,4-triazole ring (N1–N3/C1/C2) is nearly planar with a maximum deviation of 0.003 (4)) Å at atom C1. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Almutairi et al., 2012; Al-Tamimi et al., 2010; Rouchal et al., 2010; Wang et al., 2011; Al-Abdullah et al., 2012).

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of intermolecular N2—H2A···S1 hydrogen bonds (Table 1).

Related literature top

For the biological activity of adamantane derivatives, see: Al-Omar et al. (2010); Al-Deeb et al. (2006); El-Emam et al. (2004); Kadi et al. (2007, 2010); Vernier et al. (1969). For the synthesis of the title compound, see: El-Emam & Ibrahim (1991). For related structures of adamantane derivatives, see: Almutairi et al. (2012); Al-Tamimi et al. (2010); Rouchal et al. (2010); Wang et al. (2011); Al-Abdullah et al. (2012). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of adamantane-1-carbohydrazide (1.94 g, 0.01 mol), ethyl isothiocyanate (0.87 g, 0.01 mol), in ethanol (10 ml) was heated under reflux with stirring for one hour and the solvent was distilled off in vacuo. Aqueous sodium hydroxide solution (10%, 15 ml) was added to the residue and the mixture was heated under reflux for 2 h, then filtered hot. On cooling, the mixture was acidified with hydrochloric acid and the precipitated crude product was filtered, washed with water, dried and crystallized from aqueous ethanol to yield 2.24 g (85%) of the title compound (C14H21N3S) as colorless crystals. M.p.: 210-212 °C. 1H NMR (CDCl3, 500.13 MHz): δ 1.36 (t, 3H, CH3CH2, J = 7.0 Hz), 1.73 (s, 6H, Adamantane-H), 1.99 (m, 6H, Adamantane-H), 2.06 (s, 3H, Adamantane-H), 4.19 (q, 2H, CH3CH2), 11.60 (br. s, 1H, NH). 13C NMR (CDCl3, 125.76 MHz): δ 13.99 (CH3), 27.91, 35.48, 36.27, 39.75 (Adamantane-C), 41.17 (CH2), 158.04 (C=N), 167.25 (C=S).

Refinement top

Atom H1N2 was located in a difference Fourier map and refined freely [N—H = 0.87 (4) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.96–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
3-(Adamantan-1-yl)-4-ethyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C14H21N3SF(000) = 568
Mr = 263.40Dx = 1.255 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 592 reflections
a = 13.8329 (7) Åθ = 4.1–66.5°
b = 7.3107 (4) ŵ = 1.94 mm1
c = 17.5302 (12) ÅT = 296 K
β = 128.157 (4)°Needle, colourless
V = 1393.99 (16) Å30.58 × 0.12 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2448 independent reflections
Radiation source: fine-focus sealed tube1632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ϕ and ω scansθmax = 67.5°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.228, Tmax = 0.906k = 86
8009 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0553P)2 + 1.0409P]
where P = (Fo2 + 2Fc2)/3
2448 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H21N3SV = 1393.99 (16) Å3
Mr = 263.40Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.8329 (7) ŵ = 1.94 mm1
b = 7.3107 (4) ÅT = 296 K
c = 17.5302 (12) Å0.58 × 0.12 × 0.05 mm
β = 128.157 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2448 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1632 reflections with I > 2σ(I)
Tmin = 0.228, Tmax = 0.906Rint = 0.093
8009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.19 e Å3
2448 reflectionsΔρmin = 0.26 e Å3
168 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10923 (11)0.88672 (13)0.05119 (8)0.0602 (4)
N10.0606 (3)0.6128 (4)0.1520 (2)0.0452 (7)
N20.0957 (4)0.7839 (4)0.0738 (3)0.0591 (10)
N30.1903 (3)0.6609 (4)0.1203 (2)0.0571 (9)
C10.0152 (4)0.7606 (4)0.0913 (3)0.0490 (10)
C20.1677 (4)0.5561 (5)0.1684 (3)0.0479 (9)
C30.2544 (4)0.4078 (5)0.2347 (3)0.0505 (9)
C40.3537 (4)0.3859 (5)0.2218 (4)0.0733 (13)
H4A0.39540.50180.23450.088*
H4B0.31580.35090.15540.088*
C50.4475 (5)0.2398 (6)0.2914 (5)0.0821 (15)
H5A0.51040.22840.28220.099*
C60.5089 (5)0.2972 (7)0.3961 (5)0.0953 (18)
H6A0.56950.20680.44060.114*
H6B0.55040.41360.40960.114*
C70.4113 (4)0.3141 (6)0.4098 (3)0.0710 (12)
H7A0.45020.34810.47710.085*
C80.3435 (4)0.1329 (5)0.3865 (3)0.0660 (12)
H8A0.28100.14550.39510.079*
H8B0.40090.03910.43070.079*
C90.2836 (4)0.0760 (5)0.2820 (3)0.0587 (11)
H9A0.24150.04140.26820.070*
C100.1908 (4)0.2214 (5)0.2139 (3)0.0524 (10)
H10A0.12790.23120.22230.063*
H10B0.15120.18620.14730.063*
C110.3813 (5)0.0576 (6)0.2681 (4)0.0781 (14)
H11A0.34330.02310.20160.094*
H11B0.43970.03690.31060.094*
C120.3189 (4)0.4605 (5)0.3421 (3)0.0595 (11)
H12A0.36070.57680.35640.071*
H12B0.25790.47390.35230.071*
C130.0034 (4)0.5359 (5)0.1871 (3)0.0486 (9)
H13A0.03750.63500.20060.058*
H13B0.05530.47100.24740.058*
C140.1058 (4)0.4064 (5)0.1148 (3)0.0577 (10)
H14A0.14850.36640.13890.087*
H14B0.07170.30240.10560.087*
H14C0.16220.46820.05400.087*
H1N20.089 (3)0.868 (5)0.035 (3)0.063 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0812 (8)0.0444 (6)0.0664 (7)0.0174 (5)0.0513 (6)0.0157 (4)
N10.060 (2)0.0367 (15)0.0490 (17)0.0075 (14)0.0389 (16)0.0066 (12)
N20.088 (3)0.0436 (19)0.069 (2)0.0136 (17)0.060 (2)0.0182 (16)
N30.076 (2)0.0419 (17)0.074 (2)0.0115 (16)0.057 (2)0.0146 (15)
C10.071 (3)0.0329 (18)0.048 (2)0.0057 (17)0.039 (2)0.0031 (15)
C20.064 (3)0.0383 (19)0.053 (2)0.0010 (17)0.042 (2)0.0002 (15)
C30.059 (3)0.040 (2)0.064 (2)0.0053 (17)0.043 (2)0.0074 (16)
C40.086 (3)0.051 (2)0.120 (4)0.012 (2)0.082 (3)0.020 (2)
C50.074 (3)0.062 (3)0.140 (5)0.022 (2)0.080 (4)0.029 (3)
C60.061 (3)0.071 (3)0.127 (5)0.005 (3)0.045 (3)0.025 (3)
C70.055 (3)0.064 (3)0.068 (3)0.004 (2)0.025 (2)0.005 (2)
C80.053 (3)0.057 (3)0.070 (3)0.007 (2)0.029 (2)0.023 (2)
C90.061 (3)0.037 (2)0.078 (3)0.0047 (18)0.043 (2)0.0093 (18)
C100.062 (3)0.044 (2)0.055 (2)0.0045 (18)0.038 (2)0.0048 (16)
C110.081 (3)0.052 (3)0.118 (4)0.022 (2)0.070 (3)0.020 (3)
C120.060 (3)0.045 (2)0.063 (3)0.0037 (18)0.032 (2)0.0001 (18)
C130.065 (3)0.043 (2)0.052 (2)0.0083 (18)0.043 (2)0.0071 (16)
C140.060 (3)0.049 (2)0.067 (3)0.0003 (19)0.041 (2)0.0006 (18)
Geometric parameters (Å, º) top
S1—C11.677 (4)C7—C121.521 (5)
N1—C11.367 (4)C7—C81.526 (5)
N1—C21.386 (5)C7—H7A0.9800
N1—C131.468 (4)C8—C91.530 (6)
N2—C11.337 (5)C8—H8A0.9700
N2—N31.366 (4)C8—H8B0.9700
N2—H1N20.87 (4)C9—C101.520 (5)
N3—C21.312 (4)C9—C111.522 (6)
C2—C31.497 (5)C9—H9A0.9800
C3—C41.533 (5)C10—H10A0.9700
C3—C101.539 (5)C10—H10B0.9700
C3—C121.553 (5)C11—H11A0.9700
C4—C51.535 (6)C11—H11B0.9700
C4—H4A0.9700C12—H12A0.9700
C4—H4B0.9700C12—H12B0.9700
C5—C111.522 (6)C13—C141.514 (5)
C5—C61.530 (7)C13—H13A0.9700
C5—H5A0.9800C13—H13B0.9700
C6—C71.515 (7)C14—H14A0.9600
C6—H6A0.9700C14—H14B0.9600
C6—H6B0.9700C14—H14C0.9600
C1—N1—C2108.5 (3)C7—C8—C9110.2 (3)
C1—N1—C13121.5 (3)C7—C8—H8A109.6
C2—N1—C13130.0 (3)C9—C8—H8A109.6
C1—N2—N3113.9 (3)C7—C8—H8B109.6
C1—N2—H1N2124 (3)C9—C8—H8B109.6
N3—N2—H1N2122 (3)H8A—C8—H8B108.1
C2—N3—N2104.3 (3)C10—C9—C11109.8 (3)
N2—C1—N1103.4 (3)C10—C9—C8108.7 (3)
N2—C1—S1128.2 (3)C11—C9—C8109.8 (4)
N1—C1—S1128.3 (3)C10—C9—H9A109.5
N3—C2—N1109.9 (3)C11—C9—H9A109.5
N3—C2—C3121.8 (3)C8—C9—H9A109.5
N1—C2—C3128.2 (3)C9—C10—C3110.6 (3)
C2—C3—C4108.8 (3)C9—C10—H10A109.5
C2—C3—C10113.0 (3)C3—C10—H10A109.5
C4—C3—C10107.9 (3)C9—C10—H10B109.5
C2—C3—C12110.2 (3)C3—C10—H10B109.5
C4—C3—C12108.0 (3)H10A—C10—H10B108.1
C10—C3—C12108.8 (3)C9—C11—C5109.0 (3)
C3—C4—C5110.5 (3)C9—C11—H11A109.9
C3—C4—H4A109.6C5—C11—H11A109.9
C5—C4—H4A109.6C9—C11—H11B109.9
C3—C4—H4B109.6C5—C11—H11B109.9
C5—C4—H4B109.6H11A—C11—H11B108.3
H4A—C4—H4B108.1C7—C12—C3110.3 (3)
C11—C5—C6111.0 (4)C7—C12—H12A109.6
C11—C5—C4108.8 (4)C3—C12—H12A109.6
C6—C5—C4109.4 (4)C7—C12—H12B109.6
C11—C5—H5A109.2C3—C12—H12B109.6
C6—C5—H5A109.2H12A—C12—H12B108.1
C4—C5—H5A109.2N1—C13—C14112.5 (3)
C7—C6—C5108.9 (4)N1—C13—H13A109.1
C7—C6—H6A109.9C14—C13—H13A109.1
C5—C6—H6A109.9N1—C13—H13B109.1
C7—C6—H6B109.9C14—C13—H13B109.1
C5—C6—H6B109.9H13A—C13—H13B107.8
H6A—C6—H6B108.3C13—C14—H14A109.5
C6—C7—C12109.6 (4)C13—C14—H14B109.5
C6—C7—C8110.4 (4)H14A—C14—H14B109.5
C12—C7—C8108.7 (3)C13—C14—H14C109.5
C6—C7—H7A109.4H14A—C14—H14C109.5
C12—C7—H7A109.4H14B—C14—H14C109.5
C8—C7—H7A109.4
C1—N2—N3—C20.3 (4)C11—C5—C6—C759.4 (5)
N3—N2—C1—N10.6 (4)C4—C5—C6—C760.7 (5)
N3—N2—C1—S1177.7 (3)C5—C6—C7—C1261.3 (5)
C2—N1—C1—N20.6 (4)C5—C6—C7—C858.3 (5)
C13—N1—C1—N2178.0 (3)C6—C7—C8—C958.9 (5)
C2—N1—C1—S1177.7 (3)C12—C7—C8—C961.4 (5)
C13—N1—C1—S13.8 (5)C7—C8—C9—C1061.4 (4)
N2—N3—C2—N10.1 (4)C7—C8—C9—C1158.8 (4)
N2—N3—C2—C3176.4 (3)C11—C9—C10—C360.1 (4)
C1—N1—C2—N30.4 (4)C8—C9—C10—C360.0 (4)
C13—N1—C2—N3177.9 (3)C2—C3—C10—C9178.9 (3)
C1—N1—C2—C3175.8 (3)C4—C3—C10—C958.6 (4)
C13—N1—C2—C35.9 (6)C12—C3—C10—C958.3 (4)
N3—C2—C3—C48.8 (5)C10—C9—C11—C560.7 (5)
N1—C2—C3—C4175.4 (4)C8—C9—C11—C558.8 (5)
N3—C2—C3—C10128.6 (4)C6—C5—C11—C959.8 (5)
N1—C2—C3—C1055.6 (5)C4—C5—C11—C960.7 (5)
N3—C2—C3—C12109.5 (4)C6—C7—C12—C361.0 (5)
N1—C2—C3—C1266.3 (5)C8—C7—C12—C359.7 (5)
C2—C3—C4—C5177.9 (4)C2—C3—C12—C7177.4 (3)
C10—C3—C4—C559.2 (5)C4—C3—C12—C758.7 (4)
C12—C3—C4—C558.2 (5)C10—C3—C12—C758.2 (4)
C3—C4—C5—C1161.2 (5)C1—N1—C13—C1482.7 (4)
C3—C4—C5—C660.3 (5)C2—N1—C13—C1495.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.88 (4)2.47 (4)3.338 (4)170 (4)
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H21N3S
Mr263.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.8329 (7), 7.3107 (4), 17.5302 (12)
β (°) 128.157 (4)
V3)1393.99 (16)
Z4
Radiation typeCu Kα
µ (mm1)1.94
Crystal size (mm)0.58 × 0.12 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.228, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
8009, 2448, 1632
Rint0.093
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.167, 1.13
No. of reflections2448
No. of parameters168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.88 (4)2.47 (4)3.338 (4)170 (4)
Symmetry code: (i) x, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAl-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug Res. 56, 40–47.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550.  Web of Science CAS PubMed Google Scholar
First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug Res. 41, 1260–1264.  CAS Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o348.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1347
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds