organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1377-o1378

Methyl 2-({6-[(1-meth­­oxy-2-methyl-1-oxopropan-2-yl)carbamo­yl]pyridin-2-yl}formamido)-2-methyl­propano­ate

aPharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 March 2012; accepted 4 April 2012; online 13 April 2012)

In the title compound, C17H23N3O6, the two meth­oxy­carbonyl C—O—C=O planes are inclined at dihedral angles of 5.3 (4) and 83.9 (4)° with respect to the central pyridine ring. An intra­molecular N—H⋯O hydrogen bond generates an S(5) ring motif. In the crystal, mol­ecules are linked into a chain along the c axis via C—H⋯O hydrogen bonds.

Related literature

For general background to and the pharmacological activity of the title compound, see: Abou-Ghalia & Amr (2004[Abou-Ghalia, M. H. & Amr, A. E. (2004). Amino Acids, 26, 283-289.]); Abou-Ghalia et al. (2003[Abou-Ghalia, M. H., Amr, A. E. & Abdulla, M. M. (2003). Z. Naturforsch. Teil B, 58, 903-910.]); Al-Omar & Amr (2010[Al-Omar, M. A. & Amr, A. E. (2010). Molecules, 15, 4711-4721.]); Amr (2000[Amr, A. E. (2000). Indian J. Heterocycl. Chem. 10, 49-58.]); Attia et al. (1997[Attia, A., Abdel-Salam, O. I. & Amr, A. E. (1997). Egypt. J. Chem. 40, 317-325.], 2000[Attia, A., Abdel-Salam, O. I. & Amr, A. E. (2000). Egypt. J. Chem. 43, 297-307.]); Amr et al. (2009[Amr, A. E., Sabrry, N. M., Abdalla, M. M. & Abdel-Wahab, B. F. (2009). Eur. J. Med. Chem. 44, 725-735.]); Fakhr et al. (2008[Fakhr, I. M., Amr, A. E., Sabry, N. M. & Abdalah, M. M. (2008). Arch. Pharm. Chem. Life Sci. 341, 174-180.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H23N3O6

  • Mr = 365.38

  • Orthorhombic, P c a 21

  • a = 10.2307 (10) Å

  • b = 9.3038 (11) Å

  • c = 20.652 (2) Å

  • V = 1965.8 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 296 K

  • 0.63 × 0.52 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.560, Tmax = 0.932

  • 7477 measured reflections

  • 1898 independent reflections

  • 1249 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.133

  • S = 0.91

  • 1898 reflections

  • 250 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2 0.85 (4) 2.08 (4) 2.614 (5) 120 (3)
C3—H3A⋯O6i 0.93 2.49 3.204 (6) 134
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In our previous work, we have reported that certain substituted pyridines and Schiff base derivatives are antimicrobial, anti-inflammatory and anticancer agents (Abou-Ghalia & Amr, 2004; Abou-Ghalia et al., 2003; Al-Omar & Amr, 2010; Amr, 2000; Attia et al., 1997, 2000). In continuation of our interests in the chemical and pharmacological properties of disubstituted pyridine derivatives (Amr et al., 2009; Fakhr et al., 2008), we report herein the synthesis and antimicrobial activities of the title compound.

In the title molecule (Fig. 1), the two methoxycarbonyl moieties (O2/O3/C8/C9 and O5/O6/C14/C15) are nearly planar [maximum deviations of 0.005 (5) and 0.009 (5) Å at atoms C8 and C14, respectively] and are inclined at angles of 5.3 (4) and 83.9 (4)° with the pyridine ring (N1/C1–C5). Bond lengths (Allen et al., 1987) and angles are within normal ranges. The molecular structure is stabilized by an intramolecular N2—H1N2···O2 hydrogen bond (Table 1), which generates an S(5) ring motif (Bernstein et al., 1995).

In the crystal (Fig. 2), molecules are linked into one-dimensional chains propagating along the [001] direction via intermolecular C3—H3A···O6 hydrogen bonds (Table 1).

Related literature top

For general background to and the pharmacological activity of the title compound, see: Abou-Ghalia & Amr (2004); Abou-Ghalia et al. (2003); Al-Omar & Amr (2010); Amr (2000); Attia et al. (1997, 2000); Amr et al. (2009); Fakhr et al. (2008). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of 2-methylalanine methyl esters (2 mmol), 2,6-pyridinedicarboyl dichloride (1 mmol) in dichloromethane (15 mL) was added at -10 °C with stirring. Triethylamine was added drop wise to the reaction mixture in order to keep the reaction mixture slightly basic (pH ~ 8). Stirring was continued for 3 h more at -15 °C and then 12 h at r.t. The reaction mixture was then washed with water, 1N hydrochloric acid, 1N sodium bicarbonate and finally with water and dried over anhydrous calcium chloride. The solvent was evaporated under reduced pressure to dryness and the obtained solid was crystallized from chloroform to give the titled bis-ester.

Refinement top

Atoms H1N2 and H1N3 were located in a difference Fourier map and refined freely [N—H = 0.84 (4) and 0.95 (5) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. Even though Cu radiation was used, there was not enough anomalous dispersion to determine the absolute configuration. Thus, Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
Methyl 2-({6-[(1-methoxy-2-methyl-1-oxopropan-2- yl)carbamoyl]pyridin-2-yl}formamido)-2-methylpropanoate top
Crystal data top
C17H23N3O6F(000) = 776
Mr = 365.38Dx = 1.235 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2acCell parameters from 874 reflections
a = 10.2307 (10) Åθ = 4.8–49.5°
b = 9.3038 (11) ŵ = 0.79 mm1
c = 20.652 (2) ÅT = 296 K
V = 1965.8 (4) Å3Plate, colourless
Z = 40.63 × 0.52 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1898 independent reflections
Radiation source: fine-focus sealed tube1249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 70.3°, θmin = 6.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1210
Tmin = 0.560, Tmax = 0.932k = 1011
7477 measured reflectionsl = 2413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0914P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.001
1898 reflectionsΔρmax = 0.19 e Å3
250 parametersΔρmin = 0.17 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0102 (11)
Crystal data top
C17H23N3O6V = 1965.8 (4) Å3
Mr = 365.38Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 10.2307 (10) ŵ = 0.79 mm1
b = 9.3038 (11) ÅT = 296 K
c = 20.652 (2) Å0.63 × 0.52 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1898 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1249 reflections with I > 2σ(I)
Tmin = 0.560, Tmax = 0.932Rint = 0.043
7477 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.19 e Å3
1898 reflectionsΔρmin = 0.17 e Å3
250 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6692 (3)0.7355 (4)0.72873 (15)0.1024 (10)
O20.8492 (3)0.6849 (5)0.51295 (18)0.1213 (13)
O31.0304 (3)0.5979 (4)0.55776 (19)0.1156 (12)
O40.2658 (2)0.9156 (4)0.46691 (14)0.1017 (11)
O50.3806 (4)0.6611 (7)0.3829 (2)0.1392 (17)
O60.3250 (4)0.8241 (7)0.3084 (2)0.170 (2)
N10.5055 (3)0.8326 (3)0.58446 (14)0.0676 (8)
N20.7327 (3)0.7306 (4)0.62369 (18)0.0745 (8)
H1N20.715 (4)0.744 (4)0.584 (2)0.068 (12)*
N30.4811 (3)0.8725 (5)0.45674 (16)0.0830 (10)
H1N30.554 (5)0.851 (5)0.484 (3)0.102 (14)*
C10.5188 (3)0.8156 (4)0.64814 (17)0.0665 (9)
C20.4185 (4)0.8403 (4)0.69200 (19)0.0740 (10)
H2A0.43150.82630.73610.089*
C30.2992 (4)0.8860 (5)0.66876 (19)0.0774 (10)
H3A0.23080.90550.69710.093*
C40.2830 (3)0.9021 (5)0.60377 (18)0.0737 (10)
H4A0.20270.93060.58700.088*
C50.3875 (3)0.8757 (4)0.5630 (2)0.0684 (9)
C60.6502 (3)0.7562 (5)0.67077 (17)0.0720 (9)
C70.8613 (3)0.6622 (4)0.6287 (2)0.0741 (9)
C80.9097 (4)0.6522 (5)0.5605 (2)0.0862 (11)
C91.0870 (6)0.5824 (10)0.4936 (3)0.147 (3)
H9A1.15910.51650.49540.220*
H9B1.11730.67420.47860.220*
H9C1.02190.54620.46430.220*
C100.9549 (4)0.7569 (6)0.6675 (3)0.1005 (15)
H10A0.96580.84740.64580.151*
H10B1.03810.70990.67120.151*
H10C0.91960.77310.71000.151*
C110.8503 (6)0.5137 (6)0.6576 (3)0.1151 (17)
H11A0.79370.45590.63130.173*
H11B0.81490.52050.70060.173*
H11C0.93530.47030.65950.173*
C120.3733 (3)0.8903 (5)0.49148 (19)0.0774 (11)
C130.4893 (4)0.8851 (7)0.3870 (2)0.0988 (17)
C140.3863 (4)0.7913 (10)0.3552 (2)0.121 (2)
C150.2980 (11)0.5560 (12)0.3517 (4)0.212 (5)
H15A0.31260.46330.37090.317*
H15B0.31850.55200.30640.317*
H15C0.20800.58270.35710.317*
C160.6234 (4)0.8267 (9)0.3661 (3)0.135 (3)
H16A0.63360.73010.38160.203*
H16B0.69120.88620.38380.203*
H16C0.62910.82730.31970.203*
C170.4747 (6)1.0409 (9)0.3669 (3)0.143 (3)
H17A0.40221.08300.38960.215*
H17B0.45941.04610.32110.215*
H17C0.55331.09240.37740.215*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.101 (2)0.140 (3)0.0657 (19)0.0175 (18)0.0122 (14)0.0065 (18)
O20.096 (2)0.188 (4)0.080 (2)0.027 (2)0.0005 (17)0.002 (2)
O30.0874 (19)0.157 (3)0.102 (3)0.0322 (18)0.0008 (16)0.005 (2)
O40.0631 (13)0.167 (3)0.0754 (17)0.0001 (15)0.0090 (13)0.0276 (19)
O50.133 (3)0.200 (5)0.085 (3)0.049 (3)0.009 (2)0.016 (3)
O60.114 (3)0.318 (7)0.078 (2)0.045 (4)0.038 (2)0.024 (3)
N10.0623 (15)0.085 (2)0.0558 (18)0.0025 (14)0.0017 (11)0.0001 (14)
N20.0652 (15)0.096 (2)0.0620 (19)0.0030 (14)0.0075 (14)0.0038 (18)
N30.0638 (16)0.130 (3)0.0552 (18)0.0040 (16)0.0019 (13)0.0054 (17)
C10.0708 (19)0.074 (2)0.054 (2)0.0044 (15)0.0051 (14)0.0036 (17)
C20.085 (2)0.080 (2)0.057 (2)0.0078 (18)0.0009 (17)0.005 (2)
C30.071 (2)0.090 (3)0.071 (3)0.0034 (19)0.0125 (17)0.008 (2)
C40.0646 (19)0.088 (3)0.068 (2)0.0023 (17)0.0045 (15)0.0001 (19)
C50.0603 (17)0.081 (2)0.064 (2)0.0025 (15)0.0025 (15)0.0004 (18)
C60.075 (2)0.087 (3)0.054 (2)0.0019 (18)0.0104 (16)0.0023 (18)
C70.0707 (19)0.079 (2)0.072 (2)0.0061 (17)0.0080 (17)0.001 (2)
C80.072 (2)0.101 (3)0.086 (3)0.0066 (19)0.005 (2)0.004 (3)
C90.104 (4)0.217 (8)0.118 (4)0.037 (4)0.019 (3)0.021 (5)
C100.078 (2)0.123 (4)0.100 (3)0.012 (2)0.020 (2)0.019 (3)
C110.125 (4)0.100 (4)0.121 (4)0.025 (3)0.010 (3)0.021 (3)
C120.0661 (19)0.105 (3)0.061 (2)0.0039 (18)0.0013 (16)0.008 (2)
C130.066 (2)0.174 (5)0.056 (2)0.004 (2)0.0016 (15)0.014 (3)
C140.086 (3)0.222 (7)0.056 (3)0.027 (3)0.004 (2)0.012 (4)
C150.227 (10)0.274 (12)0.134 (6)0.117 (9)0.011 (6)0.065 (7)
C160.076 (3)0.249 (8)0.081 (3)0.005 (3)0.010 (2)0.032 (4)
C170.111 (4)0.213 (8)0.106 (4)0.015 (4)0.003 (3)0.066 (5)
Geometric parameters (Å, º) top
O1—C61.228 (5)C7—C81.497 (6)
O2—C81.200 (6)C7—C111.509 (7)
O3—C81.335 (5)C7—C101.528 (6)
O3—C91.454 (7)C9—H9A0.9600
O4—C121.234 (4)C9—H9B0.9600
O5—C141.341 (9)C9—H9C0.9600
O5—C151.444 (8)C10—H10A0.9600
O6—C141.191 (6)C10—H10B0.9600
N1—C11.332 (5)C10—H10C0.9600
N1—C51.347 (4)C11—H11A0.9600
N2—C61.309 (5)C11—H11B0.9600
N2—C71.466 (5)C11—H11C0.9600
N2—H1N20.84 (4)C13—C171.516 (9)
N3—C121.326 (5)C13—C141.518 (8)
N3—C131.447 (6)C13—C161.538 (7)
N3—H1N30.95 (5)C15—H15A0.9600
C1—C21.387 (5)C15—H15B0.9600
C1—C61.527 (5)C15—H15C0.9600
C2—C31.379 (6)C16—H16A0.9600
C2—H2A0.9300C16—H16B0.9600
C3—C41.361 (6)C16—H16C0.9600
C3—H3A0.9300C17—H17A0.9600
C4—C51.382 (5)C17—H17B0.9600
C4—H4A0.9300C17—H17C0.9600
C5—C121.491 (6)
C8—O3—C9116.4 (4)C7—C10—H10A109.5
C14—O5—C15116.6 (7)C7—C10—H10B109.5
C1—N1—C5116.8 (3)H10A—C10—H10B109.5
C6—N2—C7127.2 (4)C7—C10—H10C109.5
C6—N2—H1N2123 (3)H10A—C10—H10C109.5
C7—N2—H1N2109 (3)H10B—C10—H10C109.5
C12—N3—C13125.2 (3)C7—C11—H11A109.5
C12—N3—H1N3111 (3)C7—C11—H11B109.5
C13—N3—H1N3123 (3)H11A—C11—H11B109.5
N1—C1—C2123.4 (3)C7—C11—H11C109.5
N1—C1—C6115.8 (3)H11A—C11—H11C109.5
C2—C1—C6120.7 (3)H11B—C11—H11C109.5
C3—C2—C1118.6 (4)O4—C12—N3122.9 (4)
C3—C2—H2A120.7O4—C12—C5120.8 (3)
C1—C2—H2A120.7N3—C12—C5116.3 (3)
C4—C3—C2119.0 (4)N3—C13—C17110.1 (5)
C4—C3—H3A120.5N3—C13—C14110.1 (4)
C2—C3—H3A120.5C17—C13—C14111.3 (5)
C3—C4—C5119.1 (4)N3—C13—C16107.6 (4)
C3—C4—H4A120.4C17—C13—C16110.4 (5)
C5—C4—H4A120.4C14—C13—C16107.2 (5)
N1—C5—C4123.1 (4)O6—C14—O5123.7 (7)
N1—C5—C12116.1 (3)O6—C14—C13124.6 (8)
C4—C5—C12120.8 (3)O5—C14—C13111.4 (4)
O1—C6—N2126.4 (4)O5—C15—H15A109.5
O1—C6—C1119.7 (4)O5—C15—H15B109.5
N2—C6—C1114.0 (3)H15A—C15—H15B109.5
N2—C7—C8104.9 (3)O5—C15—H15C109.5
N2—C7—C11111.0 (4)H15A—C15—H15C109.5
C8—C7—C11109.9 (4)H15B—C15—H15C109.5
N2—C7—C10110.5 (3)C13—C16—H16A109.5
C8—C7—C10108.8 (4)C13—C16—H16B109.5
C11—C7—C10111.6 (4)H16A—C16—H16B109.5
O2—C8—O3122.6 (4)C13—C16—H16C109.5
O2—C8—C7125.8 (4)H16A—C16—H16C109.5
O3—C8—C7111.7 (4)H16B—C16—H16C109.5
O3—C9—H9A109.5C13—C17—H17A109.5
O3—C9—H9B109.5C13—C17—H17B109.5
H9A—C9—H9B109.5H17A—C17—H17B109.5
O3—C9—H9C109.5C13—C17—H17C109.5
H9A—C9—H9C109.5H17A—C17—H17C109.5
H9B—C9—H9C109.5H17B—C17—H17C109.5
C5—N1—C1—C20.2 (5)C11—C7—C8—O2114.7 (6)
C5—N1—C1—C6175.6 (4)C10—C7—C8—O2122.9 (5)
N1—C1—C2—C30.6 (6)N2—C7—C8—O3176.8 (4)
C6—C1—C2—C3176.2 (4)C11—C7—C8—O363.8 (5)
C1—C2—C3—C41.5 (6)C10—C7—C8—O358.6 (5)
C2—C3—C4—C51.6 (7)C13—N3—C12—O42.3 (8)
C1—N1—C5—C40.1 (6)C13—N3—C12—C5178.6 (4)
C1—N1—C5—C12178.4 (4)N1—C5—C12—O4173.0 (4)
C3—C4—C5—N10.8 (7)C4—C5—C12—O45.5 (7)
C3—C4—C5—C12179.2 (4)N1—C5—C12—N36.1 (6)
C7—N2—C6—O14.9 (7)C4—C5—C12—N3175.4 (4)
C7—N2—C6—C1174.3 (3)C12—N3—C13—C1770.9 (6)
N1—C1—C6—O1178.9 (4)C12—N3—C13—C1452.2 (7)
C2—C1—C6—O13.0 (6)C12—N3—C13—C16168.7 (5)
N1—C1—C6—N20.3 (5)C15—O5—C14—O62.2 (10)
C2—C1—C6—N2176.3 (4)C15—O5—C14—C13172.4 (6)
C6—N2—C7—C8176.8 (4)N3—C13—C14—O6141.2 (6)
C6—N2—C7—C1158.1 (6)C17—C13—C14—O618.8 (8)
C6—N2—C7—C1066.1 (5)C16—C13—C14—O6102.1 (8)
C9—O3—C8—O21.1 (8)N3—C13—C14—O544.3 (6)
C9—O3—C8—C7179.6 (5)C17—C13—C14—O5166.7 (5)
N2—C7—C8—O24.7 (6)C16—C13—C14—O572.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O20.85 (4)2.08 (4)2.614 (5)120 (3)
C3—H3A···O6i0.932.493.204 (6)134
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H23N3O6
Mr365.38
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)10.2307 (10), 9.3038 (11), 20.652 (2)
V3)1965.8 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.79
Crystal size (mm)0.63 × 0.52 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.560, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
7477, 1898, 1249
Rint0.043
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.133, 0.91
No. of reflections1898
No. of parameters250
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O20.85 (4)2.08 (4)2.614 (5)120 (3)
C3—H3A···O6i0.93002.49003.204 (6)134.00
Symmetry code: (i) x+1/2, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project No. RGP-VPP-099.

References

First citationAbou-Ghalia, M. H. & Amr, A. E. (2004). Amino Acids, 26, 283–289.  Web of Science PubMed Google Scholar
First citationAbou-Ghalia, M. H., Amr, A. E. & Abdulla, M. M. (2003). Z. Naturforsch. Teil B, 58, 903–910.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAl-Omar, M. A. & Amr, A. E. (2010). Molecules, 15, 4711–4721.  Web of Science CAS PubMed Google Scholar
First citationAmr, A. E. (2000). Indian J. Heterocycl. Chem. 10, 49–58.  Google Scholar
First citationAmr, A. E., Sabrry, N. M., Abdalla, M. M. & Abdel-Wahab, B. F. (2009). Eur. J. Med. Chem. 44, 725–735.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAttia, A., Abdel-Salam, O. I. & Amr, A. E. (1997). Egypt. J. Chem. 40, 317–325.  CAS Google Scholar
First citationAttia, A., Abdel-Salam, O. I. & Amr, A. E. (2000). Egypt. J. Chem. 43, 297–307.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFakhr, I. M., Amr, A. E., Sabry, N. M. & Abdalah, M. M. (2008). Arch. Pharm. Chem. Life Sci. 341, 174–180.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1377-o1378
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds