metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m643-m644

Poly[[dodeca­aqua­(μ4-benzene-1,4-di­carboxyl­ato)(μ2-4,4′-bi­pyridine-κ2N:N′)dicerium(III)] bis­­(benzene-1,4-di­carboxyl­ate)]

aToyota Central R and D Labs. Inc., Nagakute 41-1, Aichi, Japan, and bDepartment of Chemistry, Fukuoka University, Fukuoka 814-0180, Japan
*Correspondence e-mail: e1254@mosk.tytlabs.co.jp

(Received 29 March 2012; accepted 15 April 2012; online 21 April 2012)

The asymmetric unit of the title compound, {[Ce2(C8H4O4)(C10H8N2)(H2O)12](C8H4O4)2}n, consists of half a CeIII cation, a quarter of a coordinated benzene-1,4-dicarboxyl­ate (bdc2−) dianion, a quarter of a 4,4′-bipyridine (bpy) mol­ecule, three water mol­ecules and a half of an uncoordinated benzene-1,4-dicarboxyl­ate dianion. The CeIII ion is located on a twofold rotation axis and exhibits a distorted trigonal prism square-face tricapped coordination geometry. The coordinated and uncoordinated bdc2− ions and the bpy mol­ecule lie about special positions of site symmetries 2/m, m and 2/m, respectively. The CeIII ions are bridged by the bdc2− and bpy ligands, giving a sheet structure parallel to the ac plane. The uncoordinated bdc2− dianion exists between the sheets and links the sheets by inter­molecular O—H⋯O hydrogen bonds between the uncoordinated bdc2− and coordinated water mol­ecules. A ππ stacking inter­action between the uncoordinated bdc2− dianion and the bpy ligand [centroid–centroid distance = 3.750 (4) Å] is also observed.

Related literature

For coordination polymers, see: Cheetham et al. (1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]); Furukawa et al. (2010[Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q., O'Keeffe, M., Kim, J. & Yaghi, O. M. (2010). Science, 329, 424-428.]). For related host–guest systems, see: Kawata & Kitagawa (2002[Kawata, S. & Kitagawa, S. (2002). Coord. Chem. Rev. 224, 11-34.]).

[Scheme 1]

Experimental

Crystal data
  • [Ce2(C8H4O4)(C10H8N2)(H2O)12](C8H4O4)2

  • Mr = 572.48

  • Orthorhombic, P n n m

  • a = 6.112 (4) Å

  • b = 14.278 (8) Å

  • c = 22.395 (12) Å

  • V = 1954.3 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.40 mm−1

  • T = 293 K

  • 0.60 × 0.20 × 0.10 mm

Data collection
  • Rigaku Mercury70 diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.511, Tmax = 0.787

  • 14945 measured reflections

  • 2246 independent reflections

  • 2163 reflections with F2 > 2σ(F2)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.068

  • S = 1.39

  • 2246 reflections

  • 167 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Ce1—O1 2.479 (3)
Ce1—O1i 2.479 (3)
Ce1—O2 2.530 (3)
Ce1—O2i 2.530 (3)
Ce1—O3 2.551 (3)
Ce1—O3i 2.551 (3)
Ce1—O4 2.533 (3)
Ce1—O4i 2.533 (3)
Ce1—N1 2.873 (5)
Symmetry code: (i) -x+2, -y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5 0.84 (4) 1.93 (4) 2.754 (5) 167 (5)
O2—H3⋯O6ii 0.84 (3) 1.90 (4) 2.725 (5) 166 (4)
O3—H4⋯O5 0.83 (5) 2.02 (5) 2.828 (4) 164 (6)
O3—H5⋯O6iii 0.84 (5) 1.81 (5) 2.650 (4) 175 (6)
O4—H7⋯O5iv 0.84 (4) 1.91 (4) 2.749 (5) 174 (6)
Symmetry codes: (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The design of coordination polymers (CPs), also known as metal-organic frameworks (MOFs), have received considerable attention in recent years due to potential applications for sorption, catalysis, optical, magnetic materials and host-guest interactions (Cheetham et al., 1999; Furukawa et al., 2010; Kawata & Kitagawa, 2002). Here we report synthesis and single-crystal structure of the title compound.

The coordination polymer of the title compound, {[Ce2(C8H4O4)(C10H10N2)(H2O)12](C8H4O4)2}n, consists of CeIII ions, bdc2- dianions and bpy as bridging ligands, and water molecules. In the crystal, two types of bdc2- dianions are found. One bdc2- dianion coordinates to CeIII ions and acts as a bridging ligand to form a two-dimensional network. The other is an uncoordinated bdc2- dianion. Uncoordinated bdc2- dianions are stabilized by intermolecular hydrogen bonds between the uncoordinated bdc2- and coordinated water molecules and ππ stacking interactions between uncoordinated bdc2- dianions and bridging ligands to give a three-dimensional network structure.

Related literature top

For coordination polymers, see: Cheetham et al. (1999); Furukawa et al. (2010). For related host–guest systems, see: Kawata & Kitagawa (2002).

Experimental top

An aqueous solution (5 ml) of cerium nitrate hexahydrate (0.81 g) was transferred to a glass tube, then an ethanol-water mixture (5 ml) of tetrabromoerephthalic acid (0.2 g), NaOH (0.08 g) and 4,4'-bpy (0.19 g) was poured into the glass tube without mixing the two solutions. Colorless crystals began to form at ambient temperature in 1 month. One of these crystals was used for X-ray crystallography.

Refinement top

H atoms bonded to C atoms were introduced at the positions calculated theoretically (C—H = 0.93 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located in a difference Fourier map and were refined isotropically with distance restraints of O—H = 0.84 (2) Å.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. View of the title compound with atomic numbering scheme. Hydrogen atoms have been omitted for clarity. [Symmetry codes: (i) -x + 2, -y, z; (iii) x, y, -z + 1; (iv) -x + 2, -y, -z; (vii) x, y, -z.]
[Figure 2] Fig. 2. Packing diagram of the title compound, showing a sheet structure. Hydrogen atoms have been omitted for clarity.
[Figure 3] Fig. 3. Hydrogen bonding interactions for the title compound. Hydrogen atoms and hydrogen bonding interactions are shown as purple color and dashed line, respectively.
Poly[[dodecaaqua(µ4-benzene-1,4-dicarboxylato)(µ2-4,4'-bipyridine- κ2N:N')dicerium(III)] bis(benzene-1,4-dicarboxylate)] top
Crystal data top
[Ce2(C8H4O4)(C10H8N2)(H2O)12](C8H4O4)2F(000) = 1140.00
Mr = 572.48Dx = 1.946 Mg m3
Orthorhombic, PnnmMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2 2nCell parameters from 3992 reflections
a = 6.112 (4) Åθ = 3.1–27.5°
b = 14.278 (8) ŵ = 2.40 mm1
c = 22.395 (12) ÅT = 293 K
V = 1954.3 (18) Å3Platelet, colorless
Z = 40.60 × 0.20 × 0.10 mm
Data collection top
Rigaku Mercury70
diffractometer
2163 reflections with F2 > 2σ(F2)
Detector resolution: 7.314 pixels mm-1Rint = 0.029
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 77
Tmin = 0.511, Tmax = 0.787k = 1818
14945 measured reflectionsl = 2929
2246 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.39 w = 1/[σ2(Fo2) + (0.P)2 + 7.6254P]
where P = (Fo2 + 2Fc2)/3
2246 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.49 e Å3
6 restraintsΔρmin = 0.42 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Ce2(C8H4O4)(C10H8N2)(H2O)12](C8H4O4)2V = 1954.3 (18) Å3
Mr = 572.48Z = 4
Orthorhombic, PnnmMo Kα radiation
a = 6.112 (4) ŵ = 2.40 mm1
b = 14.278 (8) ÅT = 293 K
c = 22.395 (12) Å0.60 × 0.20 × 0.10 mm
Data collection top
Rigaku Mercury70
diffractometer
2246 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2163 reflections with F2 > 2σ(F2)
Tmin = 0.511, Tmax = 0.787Rint = 0.029
14945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.39Δρmax = 0.49 e Å3
2246 reflectionsΔρmin = 0.42 e Å3
167 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (σt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (σt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce11.00000.00000.286968 (11)0.01450 (9)
O10.6621 (5)0.03486 (19)0.34397 (11)0.0229 (6)
O21.0784 (5)0.1316 (2)0.35957 (13)0.0257 (6)
O30.8063 (5)0.14579 (19)0.24774 (12)0.0234 (6)
O40.6817 (5)0.0885 (2)0.24157 (13)0.0259 (6)
O50.7801 (5)0.2740 (2)0.34373 (11)0.0276 (7)
O60.4224 (6)0.2508 (3)0.34529 (12)0.0331 (8)
N11.00000.00000.15870 (19)0.0230 (10)
C10.50000.00000.4378 (2)0.0152 (9)
C20.6884 (6)0.0245 (3)0.46904 (14)0.0171 (8)
C30.50000.00000.37044 (19)0.0152 (9)
C40.8241 (7)0.0259 (3)0.12810 (16)0.0252 (9)
C50.8174 (7)0.0271 (3)0.06620 (16)0.0244 (9)
C61.00000.00000.0334 (2)0.0187 (10)
C70.6065 (7)0.2588 (3)0.43811 (15)0.0182 (7)
C80.7943 (7)0.2825 (3)0.46897 (16)0.0209 (8)
C90.4180 (7)0.2347 (3)0.46905 (15)0.0218 (8)
C100.6024 (7)0.2610 (3)0.37083 (16)0.0214 (8)
H10.81450.04100.44830.0206*
H20.983 (7)0.174 (3)0.361 (3)0.041 (15)*
H31.197 (5)0.160 (3)0.353 (2)0.030 (14)*
H40.778 (11)0.188 (4)0.272 (2)0.07 (2)*
H50.848 (10)0.176 (4)0.2178 (18)0.062 (19)*
H60.555 (5)0.094 (5)0.255 (3)0.059 (19)*
H70.684 (10)0.130 (3)0.2149 (18)0.053 (17)*
H80.69980.04390.14910.0303*
H90.69080.04610.04660.0293*
H100.92070.29840.44820.0251*
H110.29170.21860.44830.0262*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.01572 (15)0.01786 (15)0.00993 (13)0.00118 (11)0.00000.0000
O10.0214 (14)0.0323 (15)0.0151 (12)0.0021 (12)0.0063 (11)0.0001 (11)
O20.0233 (15)0.0241 (15)0.0296 (15)0.0009 (13)0.0026 (13)0.0080 (12)
O30.0324 (17)0.0219 (14)0.0160 (13)0.0043 (13)0.0037 (12)0.0031 (11)
O40.0189 (15)0.0319 (16)0.0269 (15)0.0084 (13)0.0037 (12)0.0094 (12)
O50.0305 (17)0.0330 (16)0.0191 (13)0.0052 (14)0.0063 (12)0.0056 (11)
O60.0366 (18)0.0413 (18)0.0215 (14)0.0084 (15)0.0094 (13)0.0093 (13)
N10.024 (3)0.022 (3)0.023 (2)0.004 (3)0.00000.0000
C10.017 (3)0.017 (3)0.011 (2)0.001 (3)0.00000.0000
C20.0144 (18)0.0205 (19)0.0165 (17)0.0018 (14)0.0031 (14)0.0010 (13)
C30.020 (3)0.014 (3)0.012 (2)0.002 (3)0.00000.0000
C40.023 (2)0.033 (3)0.0206 (18)0.0004 (17)0.0021 (15)0.0021 (15)
C50.023 (2)0.031 (3)0.0193 (18)0.0004 (17)0.0021 (15)0.0005 (15)
C60.025 (3)0.015 (3)0.016 (3)0.009 (3)0.00000.0000
C70.0205 (19)0.0173 (18)0.0167 (16)0.0034 (15)0.0002 (14)0.0015 (13)
C80.017 (2)0.0222 (19)0.0233 (19)0.0012 (16)0.0033 (15)0.0021 (15)
C90.0181 (19)0.027 (2)0.0199 (18)0.0009 (16)0.0045 (15)0.0000 (15)
C100.029 (2)0.0168 (18)0.0184 (17)0.0037 (16)0.0012 (15)0.0026 (14)
Geometric parameters (Å, º) top
Ce1—O12.479 (3)C5—C61.391 (5)
Ce1—O1i2.479 (3)C6—C6iv1.496 (7)
Ce1—O22.530 (3)C7—C81.382 (6)
Ce1—O2i2.530 (3)C7—C91.388 (6)
Ce1—O32.551 (3)C7—C101.507 (5)
Ce1—O3i2.551 (3)C8—C8iii1.390 (6)
Ce1—O42.533 (3)C9—C9iii1.386 (5)
Ce1—O4i2.533 (3)O2—H20.84 (4)
Ce1—N12.873 (5)O2—H30.84 (4)
O1—C31.257 (4)O3—H40.83 (5)
O5—C101.258 (5)O3—H50.84 (5)
O6—C101.248 (5)O4—H60.84 (4)
N1—C41.327 (5)O4—H70.84 (4)
N1—C4i1.327 (5)C2—H10.930
C1—C21.392 (5)C4—H80.930
C1—C2ii1.392 (5)C5—H90.930
C1—C31.509 (7)C8—H100.930
C2—C2iii1.387 (5)C9—H110.930
C4—C51.387 (6)
C5···C7v3.532 (6)C6···C8vi3.589 (4)
C5···C9v3.544 (6)C7···C23.453 (6)
C6···C7v3.562 (4)C7···C5vii3.532 (6)
C6···C7vi3.562 (4)C7···C6vii3.562 (4)
C6···C8v3.589 (4)C8···C6vii3.589 (4)
O1—Ce1—O1i118.00 (9)C2—C1—C2ii119.7 (4)
O1—Ce1—O271.20 (10)C2—C1—C3120.2 (2)
O1—Ce1—O2i70.15 (10)C2ii—C1—C3120.2 (2)
O1—Ce1—O368.08 (10)C1—C2—C2iii120.2 (4)
O1—Ce1—O3i136.72 (9)O1—C3—O1ii123.7 (4)
O1—Ce1—O470.53 (10)O1—C3—C1118.1 (2)
O1—Ce1—O4i138.31 (10)O1ii—C3—C1118.1 (2)
O1—Ce1—N1121.00 (7)N1—C4—C5122.9 (4)
O1i—Ce1—O270.15 (10)C4—C5—C6120.1 (4)
O1i—Ce1—O2i71.20 (10)C5—C6—C5i116.2 (4)
O1i—Ce1—O3136.72 (9)C5—C6—C6iv121.9 (3)
O1i—Ce1—O3i68.08 (10)C5i—C6—C6iv121.9 (3)
O1i—Ce1—O4138.31 (10)C8—C7—C9120.0 (4)
O1i—Ce1—O4i70.53 (10)C8—C7—C10120.6 (4)
O1i—Ce1—N1121.00 (7)C9—C7—C10119.4 (4)
O2—Ce1—O2i100.03 (11)C7—C8—C8iii120.0 (4)
O2—Ce1—O372.74 (10)C7—C9—C9iii120.0 (4)
O2—Ce1—O3i137.67 (10)O5—C10—O6123.9 (4)
O2—Ce1—O4140.68 (10)O5—C10—C7118.1 (4)
O2—Ce1—O4i75.06 (10)O6—C10—C7118.1 (4)
O2—Ce1—N1129.99 (7)Ce1—O2—H2115 (3)
O2i—Ce1—O3137.67 (10)Ce1—O2—H3114 (3)
O2i—Ce1—O3i72.74 (10)H2—O2—H3104 (4)
O2i—Ce1—O475.06 (10)Ce1—O3—H4117 (4)
O2i—Ce1—O4i140.68 (10)Ce1—O3—H5124 (4)
O2i—Ce1—N1129.99 (7)H4—O3—H5102 (5)
O3—Ce1—O3i139.71 (9)Ce1—O4—H6128 (4)
O3—Ce1—O484.96 (10)Ce1—O4—H7128 (4)
O3—Ce1—O4i79.12 (10)H6—O4—H7102 (6)
O3—Ce1—N169.85 (7)C1—C2—H1119.897
O3i—Ce1—O479.12 (10)C2iii—C2—H1119.930
O3i—Ce1—O4i84.96 (10)N1—C4—H8118.556
O3i—Ce1—N169.85 (7)C5—C4—H8118.540
O4—Ce1—O4i132.66 (10)C4—C5—H9119.957
O4—Ce1—N166.33 (7)C6—C5—H9119.991
O4i—Ce1—N166.33 (7)C7—C8—H10119.995
Ce1—O1—C3145.08 (19)C8iii—C8—H10119.992
Ce1—N1—C4121.1 (3)C7—C9—H11120.023
Ce1—N1—C4i121.1 (3)C9iii—C9—H11120.026
C4—N1—C4i117.8 (4)
O1—Ce1—O1i—C3viii84.2 (3)O4i—Ce1—N1—C4i51.94 (8)
O1i—Ce1—O1—C384.2 (3)Ce1—O1—C3—O1ii75.3 (4)
O2—Ce1—O1—C3138.3 (3)Ce1—O1—C3—C1104.7 (4)
O2i—Ce1—O1—C329.7 (3)Ce1—N1—C4—C5179.8 (2)
O3—Ce1—O1—C3143.3 (4)Ce1—N1—C4i—C5i179.8 (2)
O3i—Ce1—O1—C32.8 (4)C4—N1—C4i—C5i0.2 (5)
O4—Ce1—O1—C350.9 (3)C4i—N1—C4—C50.2 (5)
O4i—Ce1—O1—C3175.9 (3)C2—C1—C2ii—C2ix0.0 (4)
O1—Ce1—N1—C45.40 (8)C2ii—C1—C2—C2iii0.0 (4)
O1—Ce1—N1—C4i174.60 (8)C2—C1—C3—O19.77 (16)
N1—Ce1—O1—C395.8 (3)C2—C1—C3—O1ii170.23 (16)
O2—Ce1—O1i—C3viii29.7 (3)C2ii—C1—C3—O1170.23 (16)
O2i—Ce1—O1i—C3viii138.3 (3)C2ii—C1—C3—O1ii9.77 (16)
O3—Ce1—O1i—C3viii2.8 (4)C1—C2—C2iii—C1ix0.0 (5)
O3i—Ce1—O1i—C3viii143.3 (4)N1—C4—C5—C60.4 (6)
O4—Ce1—O1i—C3viii175.9 (3)C4—C5—C6—C5i0.2 (4)
O4i—Ce1—O1i—C3viii50.9 (3)C4—C5—C6—C6iv179.8 (3)
O1i—Ce1—N1—C4174.60 (8)C5—C6—C6iv—C5iv180.00 (19)
O1i—Ce1—N1—C4i5.40 (8)C5—C6—C6iv—C5x0.00 (19)
N1—Ce1—O1i—C3viii95.8 (3)C5i—C6—C6iv—C5iv0.00 (19)
O2—Ce1—N1—C485.35 (10)C8—C7—C9—C9iii0.2 (6)
O2—Ce1—N1—C4i94.65 (10)C9—C7—C8—C8iii0.2 (6)
O2i—Ce1—N1—C494.65 (10)C8—C7—C10—O58.2 (6)
O2i—Ce1—N1—C4i85.35 (10)C8—C7—C10—O6170.9 (4)
O3—Ce1—N1—C441.42 (8)C10—C7—C8—C8iii178.4 (3)
O3—Ce1—N1—C4i138.58 (8)C9—C7—C10—O5173.2 (4)
O3i—Ce1—N1—C4138.58 (8)C9—C7—C10—O67.6 (5)
O3i—Ce1—N1—C4i41.42 (8)C10—C7—C9—C9iii178.4 (3)
O4—Ce1—N1—C451.94 (8)C7—C8—C8iii—C7iii0.0 (6)
O4—Ce1—N1—C4i128.06 (8)C7—C9—C9iii—C7iii0.0 (6)
O4i—Ce1—N1—C4128.06 (8)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x, y, z+1; (iv) x+2, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+3/2, y1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x+1, y, z; (ix) x+1, y, z+1; (x) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.84 (4)1.93 (4)2.754 (5)167 (5)
O2—H3···O6viii0.84 (3)1.90 (4)2.725 (5)166 (4)
O3—H4···O50.83 (5)2.02 (5)2.828 (4)164 (6)
O3—H5···O6v0.84 (5)1.81 (5)2.650 (4)175 (6)
O4—H7···O5vi0.84 (4)1.91 (4)2.749 (5)174 (6)
Symmetry codes: (v) x+1/2, y+1/2, z+1/2; (vi) x+3/2, y1/2, z+1/2; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ce2(C8H4O4)(C10H8N2)(H2O)12](C8H4O4)2
Mr572.48
Crystal system, space groupOrthorhombic, Pnnm
Temperature (K)293
a, b, c (Å)6.112 (4), 14.278 (8), 22.395 (12)
V3)1954.3 (18)
Z4
Radiation typeMo Kα
µ (mm1)2.40
Crystal size (mm)0.60 × 0.20 × 0.10
Data collection
DiffractometerRigaku Mercury70
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.511, 0.787
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
14945, 2246, 2163
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.068, 1.39
No. of reflections2246
No. of parameters167
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.42

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Selected bond lengths (Å) top
Ce1—O12.479 (3)Ce1—O3i2.551 (3)
Ce1—O1i2.479 (3)Ce1—O42.533 (3)
Ce1—O22.530 (3)Ce1—O4i2.533 (3)
Ce1—O2i2.530 (3)Ce1—N12.873 (5)
Ce1—O32.551 (3)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.84 (4)1.93 (4)2.754 (5)167 (5)
O2—H3···O6ii0.84 (3)1.90 (4)2.725 (5)166 (4)
O3—H4···O50.83 (5)2.02 (5)2.828 (4)164 (6)
O3—H5···O6iii0.84 (5)1.81 (5)2.650 (4)175 (6)
O4—H7···O5iv0.84 (4)1.91 (4)2.749 (5)174 (6)
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2.
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationFurukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q., O'Keeffe, M., Kim, J. & Yaghi, O. M. (2010). Science, 329, 424–428.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKawata, S. & Kitagawa, S. (2002). Coord. Chem. Rev. 224, 11–34.  Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m643-m644
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds