organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1451-o1452

Absolute configuration of xero­phenone A

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bNatural Products Research Laboratory, School of Science, Mae Fah Luang University, Tasud, Muang Chiang Rai 57100, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 31 March 2012; accepted 7 April 2012; online 21 April 2012)

The title compound, C33H42O5, known as xerophenone A {systematic name: (1R,3R,4R,6S,8E,10R)-10-hy­droxy-8-[hy­droxy(phen­yl)methyl­ene]-4-methyl-1,6-bis­(3-methyl­but-2-en-1-yl)-3-(3-methyl­but-3-en-1-yl)-11-oxatricyclo­[4.3.1.14,10]undecane-7,9-dione} is a naturally occurring rearranged benzophenone compound which was isolated from the twigs of Garcinia propinqua. The absolute configuration was determined by refining the Flack parameter to 0.18 (16). The absolute configurations at positions 1, 3, 4, 6 and 10 of the xerophenone A are R, R, R, S and R. In the mol­ecule, the cyclo­hexane-1,3-dione, tetra­hydro-2H-pyran and tetra­hydro­furan rings adopt twisted boat, standard chair and envelope conformations, respectively. The 3-methyl­but-3-en-1-yl substituent is disordered over two sets of sites in a 0.771 (11):0.229 (11) ratio. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O and weak C—H⋯O inter­actions into a chain along the a axis. A very weak C—H⋯π inter­action and C⋯O short contact [2.989 (2) Å] are also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to plants in the Clusiaceae family, bioactive metabolites and their biological and pharmacological activities, see: Castardo et al. (2008[Castardo, J. C., Prudente, A. S., Ferreira, J., Guimaraes, C. L., Monache, F. D., Filho, V. C., Otuki, M. F. & Cabrini, D. A. (2008). J. Ethnopharmacol. 118, 405-411.]); Henry & Jacobs (1995[Henry, G. E. & Jacobs, H. (1995). Tetrahedron Lett. 36, 4575-4578.]); Nguyen et al. (2011[Nguyen, H. D., Trinh, B. T. D., Tran, Q. N., Nguyen, H. D., Pham, H. D., Hansen, P. E., Duus, F., Connolly, J. D. & Nguyen, L.-H. D. (2011). Phytochemistry, 72, 290-295.]); Phongpaichit et al. (1994[Phongpaichit, S., Ongsakul, M., Nilrat, L., Tharavichitkul, P., Bunchoo, S., Chauprapaisilp, T. & Wiriyachitra, P. (1994). Songklanakarin J. Sci. Technol. 16, 399-405.]); Suksamrarn et al. (2006[Suksamrarn, S., Komutiban, O., Ratananukul, P., Chimnoi, N., Lartpornmatulee, N. & Suksamrarn, A. (2006). Chem. Pharm. Bull. 54, 301-305.]); Thoison et al. (2005[Thoison, O., Cuong, D. D., Gramain, A., Chiaroni, A., Hung, N. V. & Sevenet, T. (2005). Tetrahedron, 61, 8529-8535.]); Xu et al. (2010[Xu, G., Kan, W. L. T., Zhou, Y., Song, J. Z., Han, Q. B., Qiao, C. F., Cho, C. H., Rudd, J. A., Lin, G. & Xu, H. X. (2010). J. Nat. Prod. 73, 104-108.]); Yu et al. (2007[Yu, L., Zhao, M., Yang, B., Zhao, Q. & Jiang, Y. (2007). Food Chem. 104, 176-181.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C33H42O5

  • Mr = 518.67

  • Monoclinic, P 21

  • a = 6.1984 (2) Å

  • b = 17.0998 (4) Å

  • c = 13.7007 (3) Å

  • β = 91.036 (1)°

  • V = 1451.92 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 100 K

  • 0.31 × 0.13 × 0.09 mm

Data collection
  • Bruker APEX Duo CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.944

  • 11622 measured reflections

  • 4746 independent reflections

  • 4661 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.07

  • 4746 reflections

  • 369 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2079 Friedel pairs

  • Flack parameter: 0.18 (16)

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C28–C33 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.82 1.70 2.4446 (19) 151
O4—H1O4⋯O3i 0.82 1.97 2.7499 (18) 159
C21—H21B⋯O3i 0.97 2.48 3.283 (2) 139
C25—H25BCg4ii 0.96 2.99 3.786 (3) 142
Symmetry codes: (i) x+1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Garcinia belongs to the Clusiaceae family which is well recognized to produce a variety of biological active metabolites including xanthones (Phongpaichit et al., 1994), flavanones (Castardo et al., 2008), terpenoids (Nguyen et al., 2011) and benzophenones (Thoison et al., 2005; Xu et al., 2010). Several of these compounds possess interesting biological and pharmacological activities, such as antimicrobial (Xu et al., 2010), antidepressant and anti-HIV (Xu et al., 2010), antioxidant (Yu et al., 2007) and also cytotoxic (Suksamrarn et al., 2006) activities. During the course of our study of bioactive compounds from medicinal plants, the title compound (I), known as xerophenone A (Henry & Jacobs, 1995) was isolated from the twigs of G. propinqua which were collected from Chiang Rai province in the northern part of Thailand. Herein the crystal structure and absolute configuration of (I) was reported.

The title compound (I), C33H42O5, is a rearranged benzophenone and an isoprenylated derivative of 11-oxatricyclo[4.3.1.14,10]undecane-7,9-dione. Figure 1 shows that (I) exists in an E configuration with respect to the C8C27 double bond [1.402 (3) Å] with a C9–C8–C27–C28 torsion angle 177.48 (17)°. In order to view more clearly and gain more information of the ring conformations and the orientations of the rings and how each substituent is in respect to the bound rings, Figure 2 is also shown. It can be clearly seen that the cyclohexane-1,3-dione ring is in a twisted boat with the puckering parameters Q = 0.616 (2) Å, θ = 101.86 (19)° and ϕ = 157.84 (19)° (Cremer & Pople, 1975), the tetrahydro-2H-pyran ring (C1–C4/C10/O5) is in a standard chair conformation and the tetrahydrofuran ring (C4–C6/C10/O5) is in an envelope conformation with the puckering atom O5 of 0.283 (1) Å, and puckering parameter Q = 0.4223 (18) Å and ϕ = 1.0 (3)°. The two 3-methyl-2-buten-1-yl substituents (C11–C15 and C21–C15) are attached to the cyclohexane-1,3-dione moiety at atoms C1 and C6 with the torsion angles C1—C11—C12–C13 = 153.3 (2)° and C6–C21–C22–C23 = -161.87 (19)°, indicating a (+)-anti-periplanar and (-)-anti-periplanar conformations, respectively. The 3-methyl-3-buten-1-yl substituent (C16–C20) is disordered over two positions in a 0.771 (11): 0.229 (11) ratio, and attached to the tetrahydro-2H-pyran ring at atom C3 with the torsion angles C3–C16–C17–C18 = 179.6 (3)° for the major component (A) and -168.3 (8)° for the minor component (B) (Fig. 1). An intramolecular O1—H1O1···O2 hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances in (I) are within normal ranges (Allen et al., 1987). The absolute configuration at atoms C1, C3, C4, C6 and C10 or at positions 1, 3, 4, 6 and 10 of the xerophenone A are R,R,R,S,R configurations.

In the crystal (Fig. 3), molecules are linked by O—H···O hydrogen bonds and weak C—H···O interactions (Table 1) forming an R21(7) motif which connected the molecules into a chain along the a axis. A C—H···π interaction (Table 1) and a C27···O4i short contact [2.989 (2) Å] are observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to plants in the Clusiaceae family, bioactive metabolites and their biological and pharmacological activities, see: Castardo et al. (2008); Henry & Jacobs (1995); Nguyen et al. (2011); Phongpaichit et al. (1994); Suksamrarn et al. (2006); Thoison et al. (2005); Xu et al. (2010); Yu et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Twigs of G. propinqua (1.90 Kg) were successively extracted with acetone over the period of 3 days at room temperature to provide the crude acetone extract (183.72g) which was subjected to quick column chromatography over silica gel and eluted by gradients of EtOAc-hexanes (100% hexanes to 100% EtOAc) to yield fourteen fractions (A-N). Fraction B (268.0 mg) was subjected to sephadex LH-20 using CH3OH as eluent to afford compound (I) (21.8 mg) as white solid. Colorless plate-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from CH2Cl2:acetone (1:1 v/v) by the slow evaporation of the solvent at room temperature after several days, m.p. 451.0-452.4 K [[α]D29 -21.2 (c 0.400, CH3OH)].

Refinement top

H atoms were placed in calculated positions with d(O—H) = 0.82 Å, and d(C—H) = 0.93 Å for aromatic and CH, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The 3-methyl-3-buten-1-yl substituent was found to be disordered over two sites in a 0.771 (11): 0.229 (11) occupancy ratio. In the final refinement, distance restraints were used for the disordered components. 2079 Friedel pairs were used to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Open bond is a minor component. The intramolecular O—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular O—H···O hydrogen bond was shown as a dashed line. Only H atoms of the hydroxy groups and the disordered side chain substituent are shown for clarity.
[Figure 3] Fig. 3. The crystal packing diagram of the major component of the title compound, viewed along the c axis. Only H atoms involving in the hydrogen bonds (dashed lines) are shown.
(1R,3R,4R,6S,8E,10R)-10-hydroxy-8- [hydroxy(phenyl)methylene]-4-methyl-1,6-bis(3-methylbut-2-en-1-yl)-3-(3- methylbut-3-en-1-yl)-11-oxatricyclo[4.3.1.14,10]undecane-7,9-dione top
Crystal data top
C33H42O5F(000) = 560
Mr = 518.67Dx = 1.186 Mg m3
Monoclinic, P21Melting point = 451.0–452.4 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54178 Å
a = 6.1984 (2) ÅCell parameters from 4746 reflections
b = 17.0998 (4) Åθ = 3.2–67.5°
c = 13.7007 (3) ŵ = 0.62 mm1
β = 91.036 (1)°T = 100 K
V = 1451.92 (7) Å3Plate, colorless
Z = 20.31 × 0.13 × 0.09 mm
Data collection top
Bruker APEX Duo CCD area detector
diffractometer
4746 independent reflections
Radiation source: sealed tube4661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 67.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 67
Tmin = 0.830, Tmax = 0.944k = 1920
11622 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.4822P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4746 reflectionsΔρmax = 0.24 e Å3
369 parametersΔρmin = 0.20 e Å3
7 restraintsAbsolute structure: Flack (1983), 2079 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.18 (16)
Crystal data top
C33H42O5V = 1451.92 (7) Å3
Mr = 518.67Z = 2
Monoclinic, P21Cu Kα radiation
a = 6.1984 (2) ŵ = 0.62 mm1
b = 17.0998 (4) ÅT = 100 K
c = 13.7007 (3) Å0.31 × 0.13 × 0.09 mm
β = 91.036 (1)°
Data collection top
Bruker APEX Duo CCD area detector
diffractometer
4746 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4661 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.944Rint = 0.023
11622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.24 e Å3
S = 1.07Δρmin = 0.20 e Å3
4746 reflectionsAbsolute structure: Flack (1983), 2079 Friedel pairs
369 parametersAbsolute structure parameter: 0.18 (16)
7 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2134 (2)0.52353 (8)0.24048 (11)0.0296 (3)
H1O10.13780.53510.28810.084 (13)*
O20.0272 (2)0.50870 (8)0.38262 (10)0.0262 (3)
O30.2215 (2)0.27900 (8)0.24870 (9)0.0200 (3)
O40.4496 (2)0.36790 (8)0.32243 (9)0.0208 (3)
H1O40.52360.33820.29010.031*
O50.4021 (2)0.26998 (8)0.43398 (9)0.0198 (3)
C10.1716 (3)0.38478 (11)0.43458 (13)0.0191 (4)
C20.0072 (3)0.33858 (11)0.49672 (13)0.0191 (4)
H2A0.04710.37250.54740.023*
H2B0.11400.32310.45530.023*
C30.1071 (3)0.26536 (11)0.54423 (13)0.0212 (4)
H3A0.21220.28330.59360.025*
C40.2327 (3)0.21824 (11)0.46743 (14)0.0205 (4)
C50.1006 (3)0.20180 (11)0.37297 (13)0.0193 (4)
H5A0.05170.19700.38670.023*
H5B0.14910.15410.34210.023*
C60.1428 (3)0.27366 (11)0.30699 (13)0.0184 (4)
C70.0628 (3)0.31594 (11)0.27620 (12)0.0192 (4)
C80.0625 (3)0.40194 (12)0.28183 (13)0.0210 (4)
C90.0452 (3)0.43657 (12)0.36486 (14)0.0212 (4)
C100.2965 (3)0.32512 (11)0.37240 (13)0.0189 (4)
C110.3343 (3)0.43234 (12)0.49784 (14)0.0229 (4)
H11A0.44420.39690.52280.027*
H11B0.40500.46990.45610.027*
C120.2397 (3)0.47577 (11)0.58299 (14)0.0236 (4)
H12A0.09540.49030.57730.028*
C130.3434 (3)0.49531 (12)0.66554 (14)0.0251 (4)
C140.2342 (4)0.53943 (14)0.74493 (15)0.0340 (5)
H14A0.08240.54280.73030.051*
H14B0.29380.59120.74950.051*
H14C0.25630.51270.80590.051*
C150.5786 (4)0.47874 (14)0.68566 (16)0.0320 (5)
H15A0.64070.45490.62930.048*
H15B0.59260.44390.74040.048*
H15C0.65250.52680.70020.048*
C160.0659 (3)0.21819 (12)0.59759 (14)0.0262 (4)
H16A0.00410.16910.62000.031*
H16B0.18350.20620.55240.031*
C170.1550 (4)0.26321 (14)0.68556 (17)0.0355 (5)
H17A0.03530.28460.72220.043*
H17B0.21380.31200.66280.043*0.771 (12)
H17C0.23840.30650.66100.043*0.229 (12)
C18A0.3256 (9)0.2211 (3)0.7408 (5)0.0243 (12)0.771 (12)
C19A0.5160 (5)0.2548 (3)0.7573 (2)0.0322 (9)0.771 (12)
H19A0.62090.22790.79160.038 (9)*0.771 (12)
H19B0.54360.30510.73450.051 (11)*0.771 (12)
C20A0.2778 (9)0.1407 (2)0.7766 (3)0.0546 (17)0.771 (12)
H20A0.39320.12300.81680.082*0.771 (12)
H20B0.14540.14100.81410.082*0.771 (12)
H20C0.26370.10600.72190.082*0.771 (12)
C18B0.289 (2)0.2169 (14)0.7528 (18)0.036 (7)*0.229 (12)
C19B0.500 (2)0.2237 (11)0.7641 (10)0.035 (4)*0.229 (12)
H19C0.56940.19400.81100.043*0.229 (12)
H19D0.57940.25820.72500.043*0.229 (12)
C20B0.162 (2)0.1622 (9)0.8146 (11)0.052 (4)*0.229 (12)
H20D0.24290.14890.87140.078*0.229 (12)
H20E0.02890.18660.83430.078*0.229 (12)
H20F0.13210.11560.77810.078*0.229 (12)
C210.2596 (3)0.25027 (11)0.21211 (14)0.0206 (4)
H21A0.27870.29680.17270.025*
H21B0.40200.23070.22960.025*
C220.1440 (3)0.18912 (12)0.15065 (14)0.0223 (4)
H22A0.00180.18090.16190.027*
C230.2358 (3)0.14645 (12)0.08194 (13)0.0230 (4)
C240.4683 (3)0.15337 (14)0.05475 (15)0.0299 (5)
H24A0.54130.18780.09970.045*
H24B0.47760.17400.01020.045*
H24C0.53480.10270.05740.045*
C250.1098 (4)0.08582 (15)0.02536 (17)0.0353 (5)
H25A0.03950.08870.04250.053*
H25B0.16490.03480.04080.053*
H25C0.12350.09540.04330.053*
C260.3406 (3)0.14549 (12)0.50876 (14)0.0245 (4)
H26A0.44670.12710.46400.037*
H26B0.23410.10560.51820.037*
H26C0.40930.15780.57020.037*
C270.1913 (3)0.44964 (11)0.22138 (14)0.0222 (4)
C280.3061 (3)0.42365 (12)0.13087 (14)0.0239 (4)
C290.5102 (4)0.45424 (13)0.11046 (16)0.0297 (5)
H29A0.57350.48870.15390.036*
C300.6192 (4)0.43302 (14)0.02479 (17)0.0358 (5)
H30A0.75620.45300.01160.043*
C310.5257 (4)0.38254 (15)0.04068 (17)0.0389 (6)
H31A0.59930.36860.09780.047*
C320.3208 (4)0.35257 (14)0.02083 (16)0.0345 (5)
H32A0.25720.31860.06490.041*
C330.2112 (3)0.37321 (13)0.06458 (14)0.0277 (4)
H33A0.07400.35330.07750.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0378 (9)0.0196 (7)0.0313 (8)0.0031 (6)0.0018 (6)0.0021 (6)
O20.0342 (8)0.0176 (7)0.0269 (7)0.0002 (6)0.0027 (6)0.0030 (5)
O30.0167 (6)0.0210 (6)0.0224 (6)0.0012 (5)0.0026 (5)0.0013 (5)
O40.0187 (7)0.0196 (6)0.0243 (6)0.0022 (5)0.0074 (5)0.0035 (5)
O50.0166 (6)0.0207 (7)0.0223 (6)0.0002 (5)0.0019 (5)0.0005 (5)
C10.0195 (9)0.0175 (9)0.0204 (8)0.0018 (7)0.0036 (7)0.0037 (7)
C20.0202 (9)0.0171 (9)0.0201 (8)0.0001 (7)0.0051 (6)0.0024 (7)
C30.0223 (10)0.0205 (9)0.0210 (9)0.0002 (7)0.0017 (7)0.0001 (7)
C40.0201 (10)0.0197 (9)0.0218 (9)0.0013 (7)0.0016 (7)0.0000 (7)
C50.0205 (10)0.0164 (9)0.0209 (8)0.0004 (7)0.0019 (7)0.0020 (7)
C60.0172 (9)0.0184 (9)0.0198 (8)0.0014 (7)0.0038 (6)0.0007 (7)
C70.0199 (10)0.0234 (9)0.0145 (8)0.0001 (7)0.0053 (7)0.0013 (7)
C80.0174 (9)0.0232 (9)0.0228 (9)0.0007 (7)0.0060 (7)0.0013 (7)
C90.0186 (9)0.0210 (9)0.0244 (9)0.0015 (7)0.0092 (7)0.0007 (8)
C100.0181 (10)0.0190 (9)0.0196 (8)0.0005 (7)0.0031 (7)0.0011 (7)
C110.0214 (10)0.0221 (9)0.0252 (9)0.0027 (8)0.0019 (7)0.0052 (8)
C120.0235 (10)0.0188 (10)0.0284 (10)0.0026 (7)0.0032 (8)0.0027 (8)
C130.0316 (11)0.0196 (10)0.0243 (10)0.0016 (8)0.0016 (8)0.0009 (8)
C140.0441 (14)0.0328 (12)0.0251 (10)0.0078 (10)0.0014 (9)0.0042 (9)
C150.0347 (12)0.0320 (12)0.0292 (11)0.0016 (9)0.0029 (8)0.0030 (9)
C160.0297 (11)0.0235 (10)0.0255 (10)0.0005 (8)0.0059 (8)0.0035 (8)
C170.0407 (13)0.0322 (12)0.0339 (11)0.0022 (10)0.0106 (9)0.0004 (9)
C18A0.031 (2)0.025 (2)0.0165 (18)0.0018 (15)0.0026 (18)0.0019 (11)
C19A0.0319 (18)0.038 (3)0.0267 (16)0.0004 (15)0.0072 (11)0.0064 (16)
C20A0.087 (4)0.037 (2)0.041 (2)0.011 (2)0.033 (2)0.0124 (16)
C210.0172 (9)0.0237 (9)0.0210 (9)0.0006 (7)0.0048 (7)0.0036 (7)
C220.0203 (10)0.0227 (9)0.0240 (9)0.0014 (7)0.0041 (7)0.0022 (8)
C230.0240 (10)0.0250 (10)0.0201 (9)0.0006 (8)0.0005 (7)0.0000 (8)
C240.0273 (11)0.0349 (12)0.0277 (10)0.0016 (9)0.0058 (8)0.0083 (9)
C250.0318 (12)0.0401 (13)0.0342 (11)0.0028 (10)0.0039 (9)0.0155 (10)
C260.0242 (10)0.0239 (10)0.0255 (9)0.0009 (8)0.0017 (7)0.0006 (8)
C270.0227 (10)0.0204 (10)0.0238 (9)0.0027 (7)0.0080 (7)0.0024 (7)
C280.0262 (10)0.0213 (10)0.0243 (9)0.0018 (8)0.0029 (7)0.0065 (8)
C290.0303 (11)0.0275 (11)0.0313 (11)0.0010 (8)0.0029 (8)0.0084 (8)
C300.0304 (12)0.0370 (12)0.0396 (12)0.0026 (10)0.0070 (9)0.0169 (10)
C310.0451 (14)0.0426 (14)0.0286 (10)0.0095 (10)0.0082 (9)0.0071 (10)
C320.0458 (14)0.0330 (12)0.0248 (10)0.0021 (10)0.0010 (9)0.0008 (9)
C330.0300 (11)0.0273 (10)0.0258 (9)0.0016 (8)0.0034 (8)0.0035 (8)
Geometric parameters (Å, º) top
O1—C271.298 (2)C17—C18A1.497 (4)
O1—H1O10.8200C17—H17A0.9602
O2—C91.262 (2)C17—H17B0.9603
O3—C71.223 (2)C17—H17C0.9603
O4—C101.389 (2)C18A—C19A1.336 (6)
O4—H1O40.8200C18A—C20A1.488 (6)
O5—C101.417 (2)C19A—H19A0.9300
O5—C41.454 (2)C19A—H19B0.9300
C1—C91.511 (3)C20A—H20A0.9600
C1—C101.546 (2)C20A—H20B0.9600
C1—C111.549 (2)C20A—H20C0.9600
C1—C21.555 (2)C18B—C19B1.324 (12)
C2—C31.536 (3)C18B—C20B1.479 (12)
C2—H2A0.9700C19B—H19C0.9300
C2—H2B0.9700C19B—H19D0.9300
C3—C161.537 (3)C20B—H20D0.9600
C3—C41.546 (3)C20B—H20E0.9600
C3—H3A0.9800C20B—H20F0.9600
C4—C261.517 (3)C21—C221.515 (3)
C4—C51.544 (2)C21—H21A0.9700
C5—C61.551 (3)C21—H21B0.9700
C5—H5A0.9700C22—C231.327 (3)
C5—H5B0.9700C22—H22A0.9300
C6—C71.519 (3)C23—C241.499 (3)
C6—C211.552 (2)C23—C251.505 (3)
C6—C101.566 (2)C24—H24A0.9600
C7—C81.473 (3)C24—H24B0.9600
C8—C271.402 (3)C24—H24C0.9600
C8—C91.436 (3)C25—H25A0.9600
C11—C121.510 (3)C25—H25B0.9600
C11—H11A0.9700C25—H25C0.9600
C11—H11B0.9700C26—H26A0.9600
C12—C131.333 (3)C26—H26B0.9600
C12—H12A0.9300C26—H26C0.9600
C13—C141.496 (3)C27—C281.487 (3)
C13—C151.506 (3)C28—C331.391 (3)
C14—H14A0.9600C28—C291.393 (3)
C14—H14B0.9600C29—C301.392 (3)
C14—H14C0.9600C29—H29A0.9300
C15—H15A0.9600C30—C311.380 (4)
C15—H15B0.9600C30—H30A0.9300
C15—H15C0.9600C31—C321.392 (4)
C16—C171.541 (3)C31—H31A0.9300
C16—H16A0.9700C32—C331.388 (3)
C16—H16B0.9700C32—H32A0.9300
C17—C18B1.483 (11)C33—H33A0.9300
C27—O1—H1O1109.5H16A—C16—H16B107.9
C10—O4—H1O4109.5C18B—C17—C16115.6 (12)
C10—O5—C4105.31 (13)C18A—C17—C16114.9 (3)
C9—C1—C10107.31 (14)C18B—C17—H17A108.5
C9—C1—C11111.77 (16)C18A—C17—H17A117.7
C10—C1—C11109.10 (15)C16—C17—H17A108.3
C9—C1—C2107.87 (15)C18B—C17—H17B116.8
C10—C1—C2107.82 (14)C18A—C17—H17B108.4
C11—C1—C2112.76 (15)C16—C17—H17B108.6
C3—C2—C1112.52 (15)H17A—C17—H17B97.1
C3—C2—H2A109.1C18B—C17—H17C108.9
C1—C2—H2A109.1C18A—C17—H17C99.7
C3—C2—H2B109.1C16—C17—H17C108.0
C1—C2—H2B109.1H17A—C17—H17C107.2
H2A—C2—H2B107.8C19A—C18A—C20A121.0 (3)
C2—C3—C16110.48 (16)C19A—C18A—C17120.8 (4)
C2—C3—C4109.89 (15)C20A—C18A—C17118.2 (4)
C16—C3—C4114.47 (16)C18A—C19A—H19A120.0
C2—C3—H3A107.2C18A—C19A—H19B120.0
C16—C3—H3A107.2H19A—C19A—H19B120.0
C4—C3—H3A107.2C19B—C18B—C20B120.4 (12)
O5—C4—C26107.49 (15)C19B—C18B—C17126.3 (12)
O5—C4—C5102.80 (14)C20B—C18B—C17113.1 (10)
C26—C4—C5112.76 (16)C18B—C19B—H19C120.0
O5—C4—C3105.83 (14)C18B—C19B—H19D120.0
C26—C4—C3113.40 (15)H19C—C19B—H19D120.0
C5—C4—C3113.54 (15)C18B—C20B—H20D109.5
C4—C5—C6104.59 (14)C18B—C20B—H20E109.5
C4—C5—H5A110.8H20D—C20B—H20E109.5
C6—C5—H5A110.8C18B—C20B—H20F109.5
C4—C5—H5B110.8H20D—C20B—H20F109.5
C6—C5—H5B110.8H20E—C20B—H20F109.5
H5A—C5—H5B108.9C22—C21—C6114.87 (15)
C7—C6—C5112.93 (15)C22—C21—H21A108.6
C7—C6—C21106.98 (14)C6—C21—H21A108.6
C5—C6—C21111.73 (16)C22—C21—H21B108.6
C7—C6—C10112.97 (15)C6—C21—H21B108.6
C5—C6—C10102.64 (14)H21A—C21—H21B107.5
C21—C6—C10109.64 (14)C23—C22—C21124.69 (18)
O3—C7—C8122.18 (17)C23—C22—H22A117.7
O3—C7—C6120.41 (17)C21—C22—H22A117.7
C8—C7—C6117.41 (16)C22—C23—C24124.00 (18)
C27—C8—C9118.67 (18)C22—C23—C25121.25 (19)
C27—C8—C7123.35 (17)C24—C23—C25114.76 (17)
C9—C8—C7116.96 (17)C23—C24—H24A109.5
O2—C9—C8120.92 (18)C23—C24—H24B109.5
O2—C9—C1119.83 (17)H24A—C24—H24B109.5
C8—C9—C1119.16 (17)C23—C24—H24C109.5
O4—C10—O5109.37 (15)H24A—C24—H24C109.5
O4—C10—C1106.11 (15)H24B—C24—H24C109.5
O5—C10—C1109.97 (14)C23—C25—H25A109.5
O4—C10—C6115.32 (14)C23—C25—H25B109.5
O5—C10—C6103.67 (14)H25A—C25—H25B109.5
C1—C10—C6112.36 (14)C23—C25—H25C109.5
C12—C11—C1115.64 (16)H25A—C25—H25C109.5
C12—C11—H11A108.4H25B—C25—H25C109.5
C1—C11—H11A108.4C4—C26—H26A109.5
C12—C11—H11B108.4C4—C26—H26B109.5
C1—C11—H11B108.4H26A—C26—H26B109.5
H11A—C11—H11B107.4C4—C26—H26C109.5
C13—C12—C11126.22 (18)H26A—C26—H26C109.5
C13—C12—H12A116.9H26B—C26—H26C109.5
C11—C12—H12A116.9O1—C27—C8120.55 (18)
C12—C13—C14121.73 (19)O1—C27—C28114.10 (17)
C12—C13—C15123.94 (19)C8—C27—C28125.31 (18)
C14—C13—C15114.29 (18)C33—C28—C29119.70 (19)
C13—C14—H14A109.5C33—C28—C27121.89 (19)
C13—C14—H14B109.5C29—C28—C27118.34 (18)
H14A—C14—H14B109.5C30—C29—C28119.8 (2)
C13—C14—H14C109.5C30—C29—H29A120.1
H14A—C14—H14C109.5C28—C29—H29A120.1
H14B—C14—H14C109.5C31—C30—C29120.5 (2)
C13—C15—H15A109.5C31—C30—H30A119.7
C13—C15—H15B109.5C29—C30—H30A119.7
H15A—C15—H15B109.5C30—C31—C32119.7 (2)
C13—C15—H15C109.5C30—C31—H31A120.1
H15A—C15—H15C109.5C32—C31—H31A120.1
H15B—C15—H15C109.5C33—C32—C31120.2 (2)
C3—C16—C17111.89 (17)C33—C32—H32A119.9
C3—C16—H16A109.2C31—C32—H32A119.9
C17—C16—H16A109.2C32—C33—C28120.1 (2)
C3—C16—H16B109.2C32—C33—H33A120.0
C17—C16—H16B109.2C28—C33—H33A119.9
C9—C1—C2—C3160.42 (15)C2—C1—C10—C656.49 (19)
C10—C1—C2—C344.83 (19)C7—C6—C10—O491.58 (18)
C11—C1—C2—C375.68 (19)C5—C6—C10—O4146.50 (15)
C1—C2—C3—C16175.28 (15)C21—C6—C10—O427.6 (2)
C1—C2—C3—C448.0 (2)C7—C6—C10—O5148.89 (14)
C10—O5—C4—C26163.91 (14)C5—C6—C10—O526.98 (17)
C10—O5—C4—C544.74 (17)C21—C6—C10—O591.90 (17)
C10—O5—C4—C374.61 (16)C7—C6—C10—C130.2 (2)
C2—C3—C4—O561.30 (18)C5—C6—C10—C191.72 (17)
C16—C3—C4—O5173.72 (15)C21—C6—C10—C1149.40 (16)
C2—C3—C4—C26178.88 (16)C9—C1—C11—C1278.7 (2)
C16—C3—C4—C2656.1 (2)C10—C1—C11—C12162.80 (16)
C2—C3—C4—C550.7 (2)C2—C1—C11—C1243.0 (2)
C16—C3—C4—C574.3 (2)C1—C11—C12—C13153.3 (2)
O5—C4—C5—C625.42 (17)C11—C12—C13—C14179.2 (2)
C26—C4—C5—C6140.85 (15)C11—C12—C13—C152.0 (3)
C3—C4—C5—C688.42 (18)C2—C3—C16—C1766.0 (2)
C4—C5—C6—C7122.38 (16)C4—C3—C16—C17169.32 (16)
C4—C5—C6—C21116.96 (16)C3—C16—C17—C18B168.3 (8)
C4—C5—C6—C100.44 (18)C3—C16—C17—C18A179.6 (3)
C5—C6—C7—O344.1 (2)C18B—C17—C18A—C19A137 (8)
C21—C6—C7—O379.2 (2)C16—C17—C18A—C19A126.4 (5)
C10—C6—C7—O3160.05 (15)C18B—C17—C18A—C20A43 (7)
C5—C6—C7—C8135.35 (16)C16—C17—C18A—C20A53.4 (6)
C21—C6—C7—C8101.31 (18)C18A—C17—C18B—C19B21 (5)
C10—C6—C7—C819.4 (2)C16—C17—C18B—C19B110 (3)
O3—C7—C8—C2728.6 (3)C18A—C17—C18B—C20B163 (9)
C6—C7—C8—C27151.94 (17)C16—C17—C18B—C20B74 (2)
O3—C7—C8—C9139.71 (18)C7—C6—C21—C2267.3 (2)
C6—C7—C8—C939.8 (2)C5—C6—C21—C2256.8 (2)
C27—C8—C9—O21.0 (3)C10—C6—C21—C22169.87 (15)
C7—C8—C9—O2169.84 (17)C6—C21—C22—C23161.87 (19)
C27—C8—C9—C1175.66 (16)C21—C22—C23—C240.6 (3)
C7—C8—C9—C16.8 (2)C21—C22—C23—C25178.91 (19)
C10—C1—C9—O2141.69 (17)C9—C8—C27—O10.3 (3)
C11—C1—C9—O222.1 (2)C7—C8—C27—O1167.77 (18)
C2—C1—C9—O2102.38 (19)C9—C8—C27—C28177.48 (17)
C10—C1—C9—C841.6 (2)C7—C8—C27—C2814.4 (3)
C11—C1—C9—C8161.21 (16)O1—C27—C28—C33137.03 (19)
C2—C1—C9—C874.29 (19)C8—C27—C28—C3340.9 (3)
C4—O5—C10—O4168.82 (14)O1—C27—C28—C2939.7 (3)
C4—O5—C10—C175.03 (16)C8—C27—C28—C29142.3 (2)
C4—O5—C10—C645.31 (16)C33—C28—C29—C301.2 (3)
C9—C1—C10—O467.41 (17)C27—C28—C29—C30177.98 (19)
C11—C1—C10—O453.85 (18)C28—C29—C30—C310.7 (3)
C2—C1—C10—O4176.63 (14)C29—C30—C31—C320.1 (3)
C9—C1—C10—O5174.40 (15)C30—C31—C32—C330.1 (4)
C11—C1—C10—O564.34 (18)C31—C32—C33—C280.3 (3)
C2—C1—C10—O558.44 (18)C29—C28—C33—C321.0 (3)
C9—C1—C10—C659.47 (19)C27—C28—C33—C32177.67 (19)
C11—C1—C10—C6179.27 (15)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C28–C33 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.821.702.4446 (19)151
O4—H1O4···O3i0.821.972.7499 (18)159
C21—H21B···O3i0.972.483.283 (2)139
C25—H25B···Cg4ii0.962.993.786 (3)142
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z.

Experimental details

Crystal data
Chemical formulaC33H42O5
Mr518.67
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)6.1984 (2), 17.0998 (4), 13.7007 (3)
β (°) 91.036 (1)
V3)1451.92 (7)
Z2
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.31 × 0.13 × 0.09
Data collection
DiffractometerBruker APEX Duo CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.830, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
11622, 4746, 4661
Rint0.023
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.07
No. of reflections4746
No. of parameters369
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20
Absolute structureFlack (1983), 2079 Friedel pairs
Absolute structure parameter0.18 (16)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C28–C33 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.821.702.4446 (19)151
O4—H1O4···O3i0.821.972.7499 (18)159
C21—H21B···O3i0.972.483.283 (2)139
C25—H25B···Cg4ii0.962.993.786 (3)142
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

SL and CT are grateful to the Thailand Research Fund and Mae Fah Luang University for financial support. The authors thank Prince of Songkla University for financial support through the Crystal Materials Research Unit and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. We thank Assoc. Professor Dr Chatchanok Karalai for useful discussions.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastardo, J. C., Prudente, A. S., Ferreira, J., Guimaraes, C. L., Monache, F. D., Filho, V. C., Otuki, M. F. & Cabrini, D. A. (2008). J. Ethnopharmacol. 118, 405–411.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHenry, G. E. & Jacobs, H. (1995). Tetrahedron Lett. 36, 4575–4578.  CrossRef CAS Web of Science Google Scholar
First citationNguyen, H. D., Trinh, B. T. D., Tran, Q. N., Nguyen, H. D., Pham, H. D., Hansen, P. E., Duus, F., Connolly, J. D. & Nguyen, L.-H. D. (2011). Phytochemistry, 72, 290–295.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPhongpaichit, S., Ongsakul, M., Nilrat, L., Tharavichitkul, P., Bunchoo, S., Chauprapaisilp, T. & Wiriyachitra, P. (1994). Songklanakarin J. Sci. Technol. 16, 399–405.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuksamrarn, S., Komutiban, O., Ratananukul, P., Chimnoi, N., Lartpornmatulee, N. & Suksamrarn, A. (2006). Chem. Pharm. Bull. 54, 301–305.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThoison, O., Cuong, D. D., Gramain, A., Chiaroni, A., Hung, N. V. & Sevenet, T. (2005). Tetrahedron, 61, 8529–8535.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, G., Kan, W. L. T., Zhou, Y., Song, J. Z., Han, Q. B., Qiao, C. F., Cho, C. H., Rudd, J. A., Lin, G. & Xu, H. X. (2010). J. Nat. Prod. 73, 104–108.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYu, L., Zhao, M., Yang, B., Zhao, Q. & Jiang, Y. (2007). Food Chem. 104, 176–181.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1451-o1452
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds