organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1439-o1440

3-(1-Adamant­yl)-4-amino-1-(2-benzoyl-1-phenyl­eth­yl)-1H-1,2,4-triazol-5(4H)-thione

aDepartment of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 4 April 2012; accepted 12 April 2012; online 18 April 2012)

In the title compound, C27H30N4OS, the 3-(adamantan-1-yl)-4-amino-1H-1,2,4-triazole-5(4H)-thione unit and the O atom are each disordered over two sets of sites with refined site-occupancies of 0.7630 (13) and 0.2370 (13). The 1,2,4-triazole ring of the major component forms dihedral angles of 62.61 (17) and 61.93 (16)° with the benzene rings, while that of the minor component makes corresponding angles of 86.3 (4) and 79.1 (4)°. The dihedral angle between the benzene rings is 39.21 (16)°. The mol­ecular structure is stabilized by an intra­molecular C—H⋯N hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯S hydrogen bonds.

Related literature

For the biological activity of adamantane derivatives, see: Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.], 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]); Al-Abdullah et al. (2007[Al-Abdullah, E. S., Shehata, I. A., Al-Deeb, O. A. & El-Emam, A. A. (2007). Heterocycles 71, 379-388.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]). For related adamantyl-1,2,4-triazole structures, see: Al-Abdullah et al. (2012[Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o345.]); Almutairi et al. (2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]); Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]). For related amino-1,2,4-triazole structures, see: Song et al. (2011[Song, X., Ye, L. & Wang, H. (2011). Acta Cryst. E67, o347.]); Gao et al. (2011[Gao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.]); Wang et al. (2011[Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o348.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C27H30N4OS

  • Mr = 458.61

  • Monoclinic, P 21 /c

  • a = 11.9409 (3) Å

  • b = 9.5478 (3) Å

  • c = 22.0034 (6) Å

  • β = 103.610 (2)°

  • V = 2438.15 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.38 mm−1

  • T = 296 K

  • 0.98 × 0.66 × 0.33 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.345, Tmax = 0.662

  • 18569 measured reflections

  • 4512 independent reflections

  • 3341 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.140

  • S = 1.04

  • 4512 reflections

  • 371 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯S1i 0.90 2.60 3.475 (3) 166
C4—H4B⋯N4 0.97 2.53 3.177 (4) 124
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivative were recently reported to exhibit marked antibacterial activity (Kadi et al., 2007, 2010). In continuation to our interest in the reactions of amino-1,2,4-triazoles (Al-Abdullah et al., 2007), we report herein the synthesis and structure of the title compound (I) as potential chemotherapeutic agent.

In the title molecule, Fig. 1, the 3-(adamantan-1-yl)-4-amino-1H-1,2,4-triazole-5(4H)-thione moiety and an oxygen atom are disordered over two positions with refined site-occupancies of 0.763 (1):0.237 (1). The mean plane of major component of 1,2,4-triazole ring (N1-N3/C1/C2, r.m.s deviation = 0.003 Å) forms dihedral angles of 62.61 (17) and 61.93 (16)° with the two benzene rings (C16–C21 and C22–C27). The corresponding angles for minor component of 1,2,4-triazole ring (r.m.s deviation = 0.010 Å) are 86.3 (4) and 79.1 (4)°. The dihedral angle between the two benzene rings is 39.21 (16)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The molecular structure is stabilized by an intramolecular C4—H4B···N4 hydrogen bond (Table 1), which generates an S(6) ring motif (Fig. 2; Bernstein et al., 1995).

In the crystal (Fig. 3), molecules are linked into inversion dimers by pairs of N4—H1N4···S1 hydrogen bonds (Table 1).

Related literature top

For the biological activity of adamantyl-1,2,4-triazole derivatives, see: Vernier et al. (1969); Kadi et al. (2007, 2010); Al-Abdullah et al. (2007); El-Emam et al. (2004). For related adamantyl-1,2,4-triazole structures, see: Al-Abdullah et al. (2012); Almutairi et al. (2012); Al-Tamimi et al. (2010). For related amino-1,2,4-triazole structures, see: Song et al. (2011); Gao et al. (2011); Wang et al. (2011). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 3-(1-adamantyl)-4-amino-4H-1,2,4-triazole-5-thiol (2.5 g, 0.01 mol) and (E)-1-(4-phenyl)-3-phenylprop-2-en-1-one (2.08 g, 0.01 mol), in ethanol (15 ml), was heated under reflux for 10 h and the solvent was then distilled off in vacuo. The resulted residue was eluted from silica gel column using hexane:ethyl acetate (4:1) to yield 1.01 g (22%) of the title compound (I) as pale yellow powder. M.p. 191-193°C. Crystals of (I) suitable for single crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1) at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 1.66 (s, 6H, Adamantane-H), 1.95 (s, 9H, Adamantane-H), 3.45-3.49 (m, 1Ha, CH2CO), 4.23-4.29 (m, 1Hb, CH2CO), 4.51 (s, 2H, NH2), 6.48-6.51 (m, 1H, CH), 7.18-7.27 (m, 3H, Ar-H), 7.36-7.48 (m, 5H, Ar-H), 7.88-7.90 (m, 2H, Ar-H). 13C NMR (CDCl3, 125.76 MHz): δ 27.84, 35.0, 36.42, 38.41 (Adamantane-C), 42.75 (CH), 58.09 (CH2), 127.54, 128.14, 128.24, 128.60, 128.71, 133.30, 136.66, 138.71 (Ar-C), 156.25 (Triazole C-3), 167.55 (C=S), 196.09 (C=O).

Refinement top

The 3-(adamantan-1-yl)-4-amino-1H-1,2,4-triazole-5(4H)-thione moiety and the oxygen atom are disordered over two positions with refined site-occupancies of 0.763 (1) : 0.237 (1). All minor disordered components were refined isotropically. All hydrogen atoms were positioned geometrically (N—H = 0.8979 Å and C—H = 0.93–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2 Ueq(N,C). The adamantyl (C3–C12) moiety was subjected to similarity restraints.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. All disorder components are shown.
[Figure 2] Fig. 2. The molecular structure of the major component of the title compound showing 30% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 3] Fig. 3. Part of the crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only the major disorder component is shown.
3-(1-Adamantyl)-4-amino-1-(2-benzoyl-1-phenylethyl)-1H-1,2,4-triazol- 5(4H)-thione top
Crystal data top
C27H30N4OSF(000) = 976
Mr = 458.61Dx = 1.249 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3061 reflections
a = 11.9409 (3) Åθ = 3.8–67.9°
b = 9.5478 (3) ŵ = 1.38 mm1
c = 22.0034 (6) ÅT = 296 K
β = 103.610 (2)°Plate, colourless
V = 2438.15 (12) Å30.98 × 0.66 × 0.33 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4512 independent reflections
Radiation source: fine-focus sealed tube3341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 69.6°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1413
Tmin = 0.345, Tmax = 0.662k = 1111
18569 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.3343P]
where P = (Fo2 + 2Fc2)/3
4512 reflections(Δ/σ)max = 0.001
371 parametersΔρmax = 0.17 e Å3
30 restraintsΔρmin = 0.18 e Å3
Crystal data top
C27H30N4OSV = 2438.15 (12) Å3
Mr = 458.61Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.9409 (3) ŵ = 1.38 mm1
b = 9.5478 (3) ÅT = 296 K
c = 22.0034 (6) Å0.98 × 0.66 × 0.33 mm
β = 103.610 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3341 reflections with I > 2σ(I)
Tmin = 0.345, Tmax = 0.662Rint = 0.041
18569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05730 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
4512 reflectionsΔρmin = 0.18 e Å3
371 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.52127 (8)0.89181 (9)0.08864 (4)0.0666 (3)0.7630 (13)
O10.5192 (2)0.6892 (3)0.05575 (12)0.0788 (7)0.7630 (13)
N10.7014 (2)0.7645 (2)0.00707 (12)0.0514 (6)0.7630 (13)
N20.7971 (2)0.7977 (2)0.03974 (12)0.0524 (6)0.7630 (13)
N30.7028 (2)0.9862 (2)0.00087 (11)0.0506 (6)0.7630 (13)
N40.6719 (2)1.1284 (2)0.00704 (13)0.0632 (7)0.7630 (13)
H1N40.61191.12170.01100.076*0.7630 (13)
H2N40.66651.17410.04330.076*0.7630 (13)
C10.6410 (3)0.8782 (3)0.03184 (14)0.0517 (7)0.7630 (13)
C20.7961 (2)0.9338 (3)0.04378 (14)0.0485 (7)0.7630 (13)
C30.8827 (3)1.0177 (3)0.08935 (15)0.0498 (7)0.7630 (13)
C40.9397 (3)1.1307 (3)0.05715 (15)0.0600 (8)0.7630 (13)
H4A0.97631.08710.02700.072*0.7630 (13)
H4B0.88131.19480.03480.072*0.7630 (13)
C51.0292 (4)1.2118 (4)0.1049 (2)0.0706 (11)0.7630 (13)
H5A1.06481.28280.08340.085*0.7630 (13)
C60.9684 (9)1.2830 (7)0.1497 (5)0.089 (4)0.7630 (13)
H6A0.90941.34530.12660.107*0.7630 (13)
H6B1.02341.33870.17950.107*0.7630 (13)
C70.9138 (4)1.1753 (4)0.18449 (18)0.0736 (10)0.7630 (13)
H7A0.87571.22250.21370.088*0.7630 (13)
C80.8246 (3)1.0891 (4)0.13665 (16)0.0619 (8)0.7630 (13)
H8A0.79051.01850.15840.074*0.7630 (13)
H8B0.76351.15030.11470.074*0.7630 (13)
C91.0063 (5)1.0770 (5)0.22011 (19)0.0914 (13)0.7630 (13)
H9A0.97171.00770.24230.110*0.7630 (13)
H9B1.06251.12960.25060.110*0.7630 (13)
C100.9749 (5)0.9195 (4)0.1271 (4)0.0670 (19)0.7630 (13)
H10A1.01180.86900.09890.080*0.7630 (13)
H10B0.93890.85160.14920.080*0.7630 (13)
C111.0660 (5)1.0035 (5)0.1744 (4)0.0763 (16)0.7630 (13)
H11A1.12560.93990.19730.092*0.7630 (13)
C121.1208 (3)1.1131 (5)0.1397 (2)0.0857 (12)0.7630 (13)
H12A1.17881.16530.16930.103*0.7630 (13)
H12B1.15811.06700.11040.103*0.7630 (13)
S1A0.4172 (2)0.8775 (3)0.06445 (13)0.0634 (8)*0.2370 (13)
O1A0.5678 (6)0.6617 (8)0.0404 (3)0.0661 (19)*0.2370 (13)
N1A0.6323 (6)0.7602 (8)0.0891 (4)0.0496 (18)*0.2370 (13)
N2A0.7482 (6)0.7939 (8)0.1048 (4)0.0496 (18)*0.2370 (13)
N3A0.6374 (6)0.9813 (8)0.0936 (3)0.0494 (18)*0.2370 (13)
N4A0.6033 (7)1.1229 (8)0.0904 (4)0.058 (2)*0.2370 (13)
H3N40.56131.15660.05400.069*0.2370 (13)
H4N40.53941.13750.10430.069*0.2370 (13)
C1A0.5601 (8)0.8693 (10)0.0806 (4)0.050 (2)*0.2370 (13)
C2A0.7469 (8)0.9328 (9)0.1069 (4)0.049 (2)*0.2370 (13)
C3A0.8582 (8)1.0163 (10)0.1242 (5)0.046 (2)*0.2370 (13)
C4A0.8573 (9)1.0991 (12)0.1852 (5)0.060 (3)*0.2370 (13)
H4AA0.79291.16380.17780.072*0.2370 (13)
H4AB0.84921.03470.21800.072*0.2370 (13)
C5A0.9693 (11)1.1783 (15)0.2048 (7)0.071 (4)*0.2370 (13)
H5AA0.96961.22880.24360.086*0.2370 (13)
C6A0.9765 (19)1.2860 (16)0.1539 (10)0.048 (6)*0.2370 (13)
H6AA0.90951.34660.14620.058*0.2370 (13)
H6AB1.04471.34360.16750.058*0.2370 (13)
C7A0.9818 (10)1.2081 (15)0.0943 (7)0.061 (4)*0.2370 (13)
H7AA0.98761.27550.06160.074*0.2370 (13)
C8A0.8709 (10)1.1192 (12)0.0728 (5)0.067 (3)*0.2370 (13)
H8AA0.80431.18040.06280.080*0.2370 (13)
H8AB0.87421.06760.03520.080*0.2370 (13)
C9A1.0848 (12)1.1107 (16)0.1064 (7)0.083 (4)*0.2370 (13)
H9AA1.15511.16450.12030.099*0.2370 (13)
H9AB1.08841.06300.06800.099*0.2370 (13)
C10A0.9617 (16)0.919 (2)0.1325 (18)0.111 (13)*0.2370 (13)
H10C0.96230.87500.09290.133*0.2370 (13)
H10D0.95600.84620.16230.133*0.2370 (13)
C11A1.0752 (17)1.003 (2)0.1563 (8)0.070 (7)*0.2370 (13)
H11B1.14150.93910.16380.084*0.2370 (13)
C12A1.0707 (12)1.0799 (15)0.2168 (6)0.076 (4)*0.2370 (13)
H12C1.06381.01270.24870.091*0.2370 (13)
H12D1.14141.13240.23170.091*0.2370 (13)
C130.6623 (2)0.6114 (3)0.01934 (12)0.0623 (6)
H13A0.58090.61170.04160.075*0.7630 (13)
C140.6717 (2)0.5413 (2)0.04345 (11)0.0569 (6)
H14A0.65180.44310.03670.068*
H14B0.75100.54650.06740.068*
C150.5944 (2)0.6070 (2)0.08101 (12)0.0579 (6)
H15A0.51360.60090.05800.069*0.2370 (13)
C160.6068 (2)0.5602 (3)0.14704 (12)0.0580 (6)
C170.6457 (2)0.4278 (3)0.16673 (13)0.0662 (7)
H17A0.67130.36750.13970.079*
C180.6462 (3)0.3853 (4)0.22695 (15)0.0832 (9)
H18A0.67050.29520.23970.100*
C190.6121 (3)0.4727 (5)0.26767 (15)0.0919 (10)
H19A0.61450.44320.30820.110*
C200.5742 (3)0.6041 (4)0.24904 (16)0.0988 (11)
H20A0.55090.66420.27700.119*
C210.5702 (3)0.6486 (3)0.18866 (15)0.0837 (9)
H21A0.54290.73770.17600.100*
C220.7301 (2)0.5415 (2)0.06068 (12)0.0600 (6)
C230.6899 (2)0.5500 (3)0.12483 (13)0.0745 (8)
H23A0.62290.60000.14170.089*
C240.7487 (3)0.4843 (4)0.16410 (15)0.0911 (10)
H24A0.72080.49000.20720.109*
C250.8477 (3)0.4111 (3)0.13989 (17)0.0886 (9)
H25A0.88640.36630.16640.106*
C260.8892 (3)0.4041 (3)0.07700 (17)0.0907 (10)
H26A0.95710.35570.06050.109*
C270.8312 (3)0.4684 (3)0.03757 (14)0.0814 (8)
H27B0.86060.46270.00540.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0676 (5)0.0682 (5)0.0566 (5)0.0009 (4)0.0002 (4)0.0033 (4)
O10.0770 (15)0.0821 (16)0.0802 (16)0.0303 (14)0.0244 (13)0.0188 (14)
N10.0547 (13)0.0405 (12)0.0571 (14)0.0021 (10)0.0095 (12)0.0025 (11)
N20.0521 (13)0.0414 (13)0.0613 (15)0.0027 (10)0.0083 (12)0.0001 (11)
N30.0565 (14)0.0391 (12)0.0541 (14)0.0057 (10)0.0087 (12)0.0009 (11)
N40.0701 (16)0.0409 (13)0.0739 (18)0.0090 (12)0.0078 (14)0.0095 (12)
C10.0547 (16)0.0493 (16)0.0510 (16)0.0035 (13)0.0124 (13)0.0017 (14)
C20.0515 (15)0.0411 (15)0.0538 (17)0.0041 (12)0.0141 (13)0.0011 (12)
C30.0520 (16)0.0426 (16)0.0537 (18)0.0045 (12)0.0100 (14)0.0000 (13)
C40.0642 (19)0.0578 (18)0.0619 (19)0.0034 (15)0.0228 (17)0.0013 (16)
C50.067 (3)0.065 (2)0.078 (3)0.013 (2)0.013 (2)0.0013 (19)
C60.099 (5)0.058 (3)0.103 (5)0.010 (2)0.008 (3)0.017 (2)
C70.086 (3)0.077 (3)0.058 (2)0.005 (2)0.016 (2)0.0122 (19)
C80.068 (2)0.063 (2)0.058 (2)0.0005 (17)0.0218 (17)0.0007 (16)
C90.108 (4)0.097 (4)0.060 (2)0.011 (3)0.000 (2)0.002 (2)
C100.056 (2)0.041 (2)0.090 (4)0.0084 (14)0.009 (2)0.0022 (16)
C110.058 (3)0.065 (3)0.091 (5)0.0053 (17)0.014 (3)0.004 (3)
C120.062 (2)0.082 (3)0.106 (4)0.002 (2)0.005 (2)0.013 (3)
C130.0650 (14)0.0609 (14)0.0593 (14)0.0091 (12)0.0114 (12)0.0032 (12)
C140.0601 (13)0.0457 (12)0.0648 (14)0.0013 (10)0.0148 (12)0.0034 (11)
C150.0566 (13)0.0487 (12)0.0684 (15)0.0003 (11)0.0148 (12)0.0010 (11)
C160.0515 (12)0.0600 (14)0.0624 (14)0.0037 (11)0.0133 (11)0.0042 (12)
C170.0625 (15)0.0697 (16)0.0674 (16)0.0046 (12)0.0174 (13)0.0077 (13)
C180.0720 (17)0.096 (2)0.080 (2)0.0040 (16)0.0148 (16)0.0204 (18)
C190.0706 (18)0.141 (3)0.0634 (18)0.003 (2)0.0134 (15)0.005 (2)
C200.102 (2)0.125 (3)0.074 (2)0.002 (2)0.0295 (19)0.026 (2)
C210.094 (2)0.0781 (19)0.084 (2)0.0046 (16)0.0306 (18)0.0135 (16)
C220.0697 (15)0.0491 (13)0.0631 (15)0.0009 (11)0.0192 (13)0.0049 (11)
C230.0679 (16)0.088 (2)0.0664 (17)0.0045 (15)0.0134 (14)0.0070 (15)
C240.102 (2)0.110 (3)0.0661 (18)0.016 (2)0.0285 (18)0.0176 (18)
C250.117 (3)0.0713 (19)0.091 (2)0.0007 (18)0.051 (2)0.0122 (17)
C260.114 (3)0.0713 (18)0.098 (2)0.0306 (18)0.048 (2)0.0051 (17)
C270.102 (2)0.0725 (18)0.0740 (18)0.0263 (17)0.0294 (17)0.0056 (15)
Geometric parameters (Å, º) top
S1—C11.668 (3)C4A—C5A1.509 (13)
O1—C151.223 (3)C4A—H4AA0.9700
N1—C11.345 (4)C4A—H4AB0.9700
N1—N21.383 (3)C5A—C12A1.507 (15)
N1—C131.539 (3)C5A—C6A1.54 (2)
N2—C21.303 (4)C5A—H5AA0.9800
N3—C11.370 (4)C6A—C7A1.522 (19)
N3—C21.373 (4)C6A—H6AA0.9700
N3—N41.407 (3)C6A—H6AB0.9700
N4—H1N40.8979C7A—C9A1.515 (15)
N4—H2N40.8979C7A—C8A1.551 (13)
C2—C31.493 (4)C7A—H7AA0.9800
C3—C101.532 (5)C8A—H8AA0.9700
C3—C41.535 (4)C8A—H8AB0.9700
C3—C81.539 (4)C9A—C11A1.530 (18)
C4—C51.522 (5)C9A—H9AA0.9700
C4—H4A0.9700C9A—H9AB0.9700
C4—H4B0.9700C10A—C11A1.554 (16)
C5—C121.509 (6)C10A—H10C0.9700
C5—C61.517 (11)C10A—H10D0.9700
C5—H5A0.9800C11A—C12A1.532 (18)
C6—C71.517 (10)C11A—H11B0.9800
C6—H6A0.9700C12A—H12C0.9700
C6—H6B0.9700C12A—H12D0.9700
C7—C91.518 (6)C13—C221.509 (3)
C7—C81.547 (6)C13—C141.516 (3)
C7—H7A0.9800C13—H13A0.9800
C8—H8A0.9700C14—C151.513 (3)
C8—H8B0.9700C14—H14A0.9700
C9—C111.534 (10)C14—H14B0.9700
C9—H9A0.9700C15—C161.494 (3)
C9—H9B0.9700C15—H15A0.9800
C10—C111.542 (6)C16—C171.381 (3)
C10—H10A0.9700C16—C211.390 (4)
C10—H10B0.9700C17—C181.384 (4)
C11—C121.530 (8)C17—H17A0.9300
C11—H11A0.9800C18—C191.356 (5)
C12—H12A0.9700C18—H18A0.9300
C12—H12B0.9700C19—C201.364 (5)
S1A—C1A1.660 (9)C19—H19A0.9300
O1A—C131.213 (7)C20—C211.385 (5)
N1A—C1A1.337 (11)C20—H20A0.9300
N1A—N2A1.383 (10)C21—H21A0.9300
N1A—C151.529 (8)C22—C231.382 (4)
N2A—C2A1.327 (11)C22—C271.383 (4)
N3A—C2A1.353 (11)C23—C241.386 (4)
N3A—C1A1.398 (11)C23—H23A0.9300
N3A—N4A1.409 (11)C24—C251.368 (5)
N4A—H3N40.8979C24—H24A0.9300
N4A—H4N40.8979C25—C261.357 (4)
C2A—C3A1.519 (13)C25—H25A0.9300
C3A—C10A1.521 (16)C26—C271.375 (4)
C3A—C8A1.532 (12)C26—H26A0.9300
C3A—C4A1.561 (12)C27—H27B0.9300
C1—N1—N2112.8 (2)C12A—C5A—H5AA108.5
C1—N1—C13125.7 (2)C4A—C5A—H5AA108.5
N2—N1—C13120.7 (2)C6A—C5A—H5AA108.5
C2—N2—N1105.1 (2)C7A—C6A—C5A108.8 (11)
C1—N3—C2109.7 (2)C7A—C6A—H6AA109.9
C1—N3—N4124.6 (2)C5A—C6A—H6AA109.9
C2—N3—N4125.7 (2)C7A—C6A—H6AB109.9
N3—N4—H1N495.2C5A—C6A—H6AB109.9
N3—N4—H2N4122.7H6AA—C6A—H6AB108.3
H1N4—N4—H2N4121.9C9A—C7A—C6A110.2 (12)
N1—C1—N3102.9 (2)C9A—C7A—C8A108.5 (11)
N1—C1—S1130.5 (2)C6A—C7A—C8A109.0 (12)
N3—C1—S1126.6 (2)C9A—C7A—H7AA109.7
N2—C2—N3109.6 (3)C6A—C7A—H7AA109.7
N2—C2—C3124.4 (3)C8A—C7A—H7AA109.7
N3—C2—C3126.0 (2)C3A—C8A—C7A110.5 (9)
C2—C3—C10109.4 (3)C3A—C8A—H8AA109.5
C2—C3—C4112.3 (3)C7A—C8A—H8AA109.5
C10—C3—C4109.9 (4)C3A—C8A—H8AB109.5
C2—C3—C8109.9 (2)C7A—C8A—H8AB109.5
C10—C3—C8106.6 (5)H8AA—C8A—H8AB108.1
C4—C3—C8108.7 (2)C7A—C9A—C11A110.2 (12)
C5—C4—C3110.7 (3)C7A—C9A—H9AA109.6
C5—C4—H4A109.5C11A—C9A—H9AA109.6
C3—C4—H4A109.5C7A—C9A—H9AB109.6
C5—C4—H4B109.5C11A—C9A—H9AB109.6
C3—C4—H4B109.5H9AA—C9A—H9AB108.1
H4A—C4—H4B108.1C3A—C10A—C11A110.3 (14)
C12—C5—C6110.5 (5)C3A—C10A—H10C109.6
C12—C5—C4109.9 (3)C11A—C10A—H10C109.6
C6—C5—C4108.2 (5)C3A—C10A—H10D109.6
C12—C5—H5A109.4C11A—C10A—H10D109.6
C6—C5—H5A109.4H10C—C10A—H10D108.1
C4—C5—H5A109.4C9A—C11A—C12A108.9 (13)
C5—C6—C7110.6 (4)C9A—C11A—C10A108.1 (17)
C5—C6—H6A109.5C12A—C11A—C10A109.5 (18)
C7—C6—H6A109.5C9A—C11A—H11B110.1
C5—C6—H6B109.5C12A—C11A—H11B110.1
C7—C6—H6B109.5C10A—C11A—H11B110.1
H6A—C6—H6B108.1C5A—C12A—C11A109.8 (12)
C6—C7—C9109.4 (5)C5A—C12A—H12C109.7
C6—C7—C8109.1 (4)C11A—C12A—H12C109.7
C9—C7—C8108.8 (3)C5A—C12A—H12D109.7
C6—C7—H7A109.8C11A—C12A—H12D109.7
C9—C7—H7A109.8H12C—C12A—H12D108.2
C8—C7—H7A109.8O1A—C13—C22121.9 (4)
C3—C8—C7110.3 (3)O1A—C13—C14112.7 (4)
C3—C8—H8A109.6C22—C13—C14114.8 (2)
C7—C8—H8A109.6O1A—C13—N184.7 (4)
C3—C8—H8B109.6C22—C13—N1110.0 (2)
C7—C8—H8B109.6C14—C13—N1107.8 (2)
H8A—C8—H8B108.1O1A—C13—H13A23.7
C7—C9—C11109.7 (4)C22—C13—H13A108.0
C7—C9—H9A109.7C14—C13—H13A108.0
C11—C9—H9A109.7N1—C13—H13A108.0
C7—C9—H9B109.7C15—C14—C13113.0 (2)
C11—C9—H9B109.7C15—C14—H14A109.0
H9A—C9—H9B108.2C13—C14—H14A109.0
C3—C10—C11110.5 (3)C15—C14—H14B109.0
C3—C10—H10A109.5C13—C14—H14B109.0
C11—C10—H10A109.5H14A—C14—H14B107.8
C3—C10—H10B109.5O1—C15—C16121.9 (2)
C11—C10—H10B109.5O1—C15—C14119.7 (2)
H10A—C10—H10B108.1C16—C15—C14118.3 (2)
C12—C11—C9109.5 (4)O1—C15—N1A66.7 (3)
C12—C11—C10109.6 (7)C16—C15—N1A102.4 (3)
C9—C11—C10108.5 (5)C14—C15—N1A105.0 (3)
C12—C11—H11A109.7O1—C15—H15A43.6
C9—C11—H11A109.7C16—C15—H15A110.2
C10—C11—H11A109.7C14—C15—H15A110.2
C5—C12—C11109.6 (3)N1A—C15—H15A110.2
C5—C12—H12A109.7C17—C16—C21119.0 (3)
C11—C12—H12A109.7C17—C16—C15121.9 (2)
C5—C12—H12B109.7C21—C16—C15119.0 (2)
C11—C12—H12B109.7C16—C17—C18119.6 (3)
H12A—C12—H12B108.2C16—C17—H17A120.2
C1A—N1A—N2A115.4 (7)C18—C17—H17A120.2
C1A—N1A—C15124.4 (7)C19—C18—C17121.2 (3)
N2A—N1A—C15120.2 (6)C19—C18—H18A119.4
C2A—N2A—N1A102.8 (7)C17—C18—H18A119.4
C2A—N3A—C1A109.9 (7)C18—C19—C20119.9 (3)
C2A—N3A—N4A126.3 (8)C18—C19—H19A120.1
C1A—N3A—N4A123.7 (7)C20—C19—H19A120.1
N3A—N4A—H3N4118.9C19—C20—C21120.3 (3)
N3A—N4A—H4N4112.9C19—C20—H20A119.8
H3N4—N4A—H4N484.7C21—C20—H20A119.8
N1A—C1A—N3A101.2 (7)C20—C21—C16120.0 (3)
N1A—C1A—S1A131.6 (7)C20—C21—H21A120.0
N3A—C1A—S1A127.1 (7)C16—C21—H21A120.0
N2A—C2A—N3A110.7 (8)C23—C22—C27118.0 (3)
N2A—C2A—C3A121.1 (8)C23—C22—C13118.9 (2)
N3A—C2A—C3A128.2 (8)C27—C22—C13123.2 (2)
C2A—C3A—C10A110.3 (11)C22—C23—C24120.3 (3)
C2A—C3A—C8A112.6 (8)C22—C23—H23A119.8
C10A—C3A—C8A105.1 (16)C24—C23—H23A119.8
C2A—C3A—C4A107.4 (9)C25—C24—C23120.4 (3)
C10A—C3A—C4A112.0 (14)C25—C24—H24A119.8
C8A—C3A—C4A109.5 (8)C23—C24—H24A119.8
C5A—C4A—C3A108.3 (9)C26—C25—C24119.8 (3)
C5A—C4A—H4AA110.0C26—C25—H25A120.1
C3A—C4A—H4AA110.0C24—C25—H25A120.1
C5A—C4A—H4AB110.0C25—C26—C27120.3 (3)
C3A—C4A—H4AB110.0C25—C26—H26A119.9
H4AA—C4A—H4AB108.4C27—C26—H26A119.9
C12A—C5A—C4A111.1 (11)C26—C27—C22121.2 (3)
C12A—C5A—C6A111.3 (12)C26—C27—H27B119.4
C4A—C5A—C6A109.0 (12)C22—C27—H27B119.4
C1—N1—N2—C20.2 (3)C10A—C3A—C4A—C5A56.4 (16)
C13—N1—N2—C2170.9 (2)C8A—C3A—C4A—C5A59.8 (11)
N2—N1—C1—N30.5 (3)C3A—C4A—C5A—C12A59.7 (13)
C13—N1—C1—N3170.5 (2)C3A—C4A—C5A—C6A63.2 (13)
N2—N1—C1—S1179.8 (2)C12A—C5A—C6A—C7A58.1 (17)
C13—N1—C1—S110.1 (5)C4A—C5A—C6A—C7A64.7 (16)
C2—N3—C1—N10.5 (3)C5A—C6A—C7A—C9A58.3 (17)
N4—N3—C1—N1178.1 (3)C5A—C6A—C7A—C8A60.7 (16)
C2—N3—C1—S1179.9 (2)C2A—C3A—C8A—C7A176.5 (10)
N4—N3—C1—S12.5 (4)C10A—C3A—C8A—C7A63.3 (14)
N1—N2—C2—N30.1 (3)C4A—C3A—C8A—C7A57.1 (12)
N1—N2—C2—C3178.8 (3)C9A—C7A—C8A—C3A62.0 (13)
C1—N3—C2—N20.4 (3)C6A—C7A—C8A—C3A58.0 (14)
N4—N3—C2—N2178.0 (3)C6A—C7A—C9A—C11A60.5 (16)
C1—N3—C2—C3178.5 (3)C8A—C7A—C9A—C11A58.8 (15)
N4—N3—C2—C30.9 (5)C2A—C3A—C10A—C11A174.6 (18)
N2—C2—C3—C103.2 (6)C8A—C3A—C10A—C11A64 (2)
N3—C2—C3—C10178.1 (5)C4A—C3A—C10A—C11A55 (3)
N2—C2—C3—C4125.5 (3)C7A—C9A—C11A—C12A59.8 (17)
N3—C2—C3—C455.8 (4)C7A—C9A—C11A—C10A59.1 (18)
N2—C2—C3—C8113.4 (3)C3A—C10A—C11A—C9A63 (3)
N3—C2—C3—C865.3 (4)C3A—C10A—C11A—C12A56 (3)
C2—C3—C4—C5178.8 (3)C4A—C5A—C12A—C11A62.8 (15)
C10—C3—C4—C556.8 (5)C6A—C5A—C12A—C11A58.8 (16)
C8—C3—C4—C559.5 (4)C9A—C11A—C12A—C5A58.7 (17)
C3—C4—C5—C1259.5 (4)C10A—C11A—C12A—C5A59.2 (17)
C3—C4—C5—C661.2 (5)C1—N1—C13—O1A14.9 (5)
C12—C5—C6—C758.6 (7)N2—N1—C13—O1A154.5 (4)
C4—C5—C6—C761.7 (7)C1—N1—C13—C22107.2 (3)
C5—C6—C7—C958.6 (7)N2—N1—C13—C2283.5 (3)
C5—C6—C7—C860.3 (7)C1—N1—C13—C14127.0 (3)
C2—C3—C8—C7179.5 (3)N2—N1—C13—C1442.3 (3)
C10—C3—C8—C761.1 (4)O1A—C13—C14—C1529.6 (5)
C4—C3—C8—C757.3 (4)C22—C13—C14—C15175.0 (2)
C6—C7—C8—C358.0 (5)N1—C13—C14—C1562.1 (3)
C9—C7—C8—C361.3 (4)C13—C14—C15—O112.7 (3)
C6—C7—C9—C1159.2 (6)C13—C14—C15—C16172.1 (2)
C8—C7—C9—C1159.9 (5)C13—C14—C15—N1A58.7 (4)
C2—C3—C10—C11179.7 (6)C1A—N1A—C15—O118.2 (7)
C4—C3—C10—C1156.0 (8)N2A—N1A—C15—O1160.4 (8)
C8—C3—C10—C1161.6 (8)C1A—N1A—C15—C16101.5 (8)
C7—C9—C11—C1259.6 (5)N2A—N1A—C15—C1680.0 (7)
C7—C9—C11—C1060.0 (6)C1A—N1A—C15—C14134.4 (8)
C3—C10—C11—C1257.8 (8)N2A—N1A—C15—C1444.1 (7)
C3—C10—C11—C961.7 (8)O1—C15—C16—C17147.4 (3)
C6—C5—C12—C1158.4 (6)C14—C15—C16—C1727.7 (3)
C4—C5—C12—C1160.9 (5)N1A—C15—C16—C17142.5 (4)
C9—C11—C12—C558.9 (5)O1—C15—C16—C2127.7 (4)
C10—C11—C12—C560.0 (6)C14—C15—C16—C21157.1 (2)
C1A—N1A—N2A—C2A0.7 (10)N1A—C15—C16—C2142.4 (4)
C15—N1A—N2A—C2A179.4 (7)C21—C16—C17—C180.7 (4)
N2A—N1A—C1A—N3A1.4 (10)C15—C16—C17—C18174.5 (2)
C15—N1A—C1A—N3A179.9 (6)C16—C17—C18—C191.7 (4)
N2A—N1A—C1A—S1A177.2 (7)C17—C18—C19—C201.3 (5)
C15—N1A—C1A—S1A4.2 (14)C18—C19—C20—C210.1 (5)
C2A—N3A—C1A—N1A1.6 (10)C19—C20—C21—C161.2 (5)
N4A—N3A—C1A—N1A179.1 (8)C17—C16—C21—C200.7 (4)
C2A—N3A—C1A—S1A177.6 (7)C15—C16—C21—C20176.0 (3)
N4A—N3A—C1A—S1A4.9 (13)O1A—C13—C22—C238.0 (6)
N1A—N2A—C2A—N3A0.4 (10)C14—C13—C22—C23149.9 (2)
N1A—N2A—C2A—C3A178.7 (8)N1—C13—C22—C2388.4 (3)
C1A—N3A—C2A—N2A1.3 (11)O1A—C13—C22—C27171.8 (5)
N4A—N3A—C2A—N2A178.7 (8)C14—C13—C22—C2730.0 (4)
C1A—N3A—C2A—C3A179.5 (9)N1—C13—C22—C2791.8 (3)
N4A—N3A—C2A—C3A3.1 (15)C27—C22—C23—C241.3 (4)
N2A—C2A—C3A—C10A4 (2)C13—C22—C23—C24178.6 (3)
N3A—C2A—C3A—C10A177.6 (18)C22—C23—C24—C250.4 (5)
N2A—C2A—C3A—C8A121.5 (10)C23—C24—C25—C260.8 (5)
N3A—C2A—C3A—C8A60.5 (14)C24—C25—C26—C271.0 (5)
N2A—C2A—C3A—C4A118.0 (10)C25—C26—C27—C220.1 (5)
N3A—C2A—C3A—C4A60.1 (12)C23—C22—C27—C261.0 (4)
C2A—C3A—C4A—C5A177.7 (9)C13—C22—C27—C26178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···S1i0.902.603.475 (3)166
C4—H4B···N40.972.533.177 (4)124
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC27H30N4OS
Mr458.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.9409 (3), 9.5478 (3), 22.0034 (6)
β (°) 103.610 (2)
V3)2438.15 (12)
Z4
Radiation typeCu Kα
µ (mm1)1.38
Crystal size (mm)0.98 × 0.66 × 0.33
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.345, 0.662
No. of measured, independent and
observed [I > 2σ(I)] reflections
18569, 4512, 3341
Rint0.041
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.140, 1.04
No. of reflections4512
No. of parameters371
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···S1i0.902.603.475 (3)166
C4—H4B···N40.972.533.177 (4)124
Symmetry code: (i) x+1, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAl-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Abdullah, E. S., Shehata, I. A., Al-Deeb, O. A. & El-Emam, A. A. (2007). Heterocycles 71, 379–388.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X., Ye, L. & Wang, H. (2011). Acta Cryst. E67, o347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o348.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1439-o1440
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds