organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1393-o1394

(Z)-2-(4-Chloro­benzyl­­idene)benzo[d]thia­zolo[3,2-a]imidazol-3(2H)-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 8 April 2012; accepted 10 April 2012; online 18 April 2012)

The mol­ecule of the title compound, C16H9ClN2OS, is approximately planar, the dihedral angle between the thia­zolo[3,2-a]benzimidazole ring system and the 4-chloro­phenyl ring being 2.10 (5)°. An intra­molecular C—H⋯S inter­action generates an S(6) ring motif. In the crystal, mol­ecules are stacked into columns along the b axis by ππ inter­actions with centroid–centroid distances of 3.6495 (7)–3.9546 (8) Å.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to and the biological activity of thia­zolo[3,2-a]benzimidazoles, see: Abdel-Aziz, El-Zahabi & Dawood (2010[Abdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427-2432.]); Abdel-Aziz, Hamdy et al. (2007[Abdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573-1582.], 2008[Abdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2008). J. Heterocycl. Chem. 45, 1-5.]); Abdel-Aziz, Saleh & El-Zahabi (2010[Abdel-Aziz, H. A., Saleh, T. S. & El-Zahabi, H. S. A. (2010). Arch. Pharm. 343, 24-30.]); Al-Rashood & Abdel-Aziz (2010[Al-Rashood, K. A. & Abdel-Aziz, H. A. (2010). Molecules, 15, 3775-3815.]); Chimirri et al. (1988[Chimirri, A., Grasso, S., Romeo, G. & Zappala, M. (1988). Heterocycles, 27, 1975-2003.]); Farag et al. (2011[Farag, A. M., Dawood, K. M., Abdel-Aziz, H. A., Hamdy, N. A. & Fakhr, I. M. I. (2011). J. Heterocycl. Chem. 48, 355-360.]); Hamdy et al. (2007[Hamdy, N. A., Abdel-Aziz, H. A., Farag, A. M. & Fakhr, I. M. I. (2007). Monatsh. Chem. 138, 1001-1010.]); Mavrova et al. (2005[Mavrova, A. T., Anichina, K. K., Vuchev, D. I., Tsenov, J. A., Kondeva, M. S. & Micheva, M. K. (2005). Bioorg. Med. Chem. 13, 5550-5553.]). For the stability of the temperature controller, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H9ClN2OS

  • Mr = 312.77

  • Triclinic, [P \overline 1]

  • a = 7.0182 (4) Å

  • b = 7.3443 (4) Å

  • c = 13.7142 (8) Å

  • α = 91.742 (1)°

  • β = 100.836 (1)°

  • γ = 112.878 (1)°

  • V = 635.47 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 100 K

  • 0.37 × 0.18 × 0.06 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.848, Tmax = 0.973

  • 14145 measured reflections

  • 3660 independent reflections

  • 3233 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.05

  • 3660 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯S1 0.93 2.50 3.2161 (13) 133

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There are considerable interest in the chemistry of thiazolo[3,2-a]benzimidazoles and their unique pharmaceutical and medicinal applications have been reported. These activities including antibacterial, antifungal, anti-inflammatory, antiulcer, antiviral, anthelmintic and anticancer properties (Al-Rashood et al., 2010; Chimirri et al., 1988). The parasitological study in vitro has also shown that the analogs of the title compound exhibited higher activity than albendazole against T. spiralis (Mavrova et al., 2005). These considerable biological activities as well as in continuation of our interests in the chemistry and biological activities of these compounds (Abdel-Aziz, Hamdy et al., 2007, 2008; Abdel-Aziz, Saleh & El-Zahabi, 2010; Farag et al., 2011; Hamdy et al., 2007) have lead us to synthesize and present the X-ray structural analysis of the title compound (I).

In the molecular structure of (I), C14H11ClN4O4, the thiazolo[3,2-a]benzimidazole ring system is planar with an r.m.s. deviation 0.019 (12) Å for the thirteen non H-atoms (C1–C9/N1/N2/O1/S1) and the 4-chlorobenzilidene unit is also planar with an r.m.s deviation 0.002 (12) Å for the eight non H-atoms (C10–C16/Cl1). The dihedral between the mean plane through the thiazolo[3,2-a]benzimidazole ring system and 4-chlorophenyl ring is 2.10 (5)°. An intramolecular C—H···S weak interaction (Fig. 1 and Table 1) generates an S(6) ring motif (Bernstein et al., 1995) which help to stabilize the planarity of the molecule. The bond distances agree with the literature values (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are stacked into column along the b axis by ππ interactions with the distances of Cg1···Cg1i = 3.8297 (7) Å, Cg2···Cg4ii = 3.9545 (8) Å, Cg3···Cg4i = 3.7691 (8) Å and Cg3···Cg4ii = 3.6495 (7) Å [symmetry codes: (i) 1-x, 1-y, -z; (ii) 1-x, -y, -z]. Cg1, Cg2, Cg3 and Cg4 are the centroids of S1/C1/N2/C8/C9, C1/C2/C7/N1/N2, C2–C7 and C11–C16 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to and the biological activity of thiazolo[3,2-a]benzimidazoles, see: Abdel-Aziz, El-Zahabi & Dawood (2010); Abdel-Aziz, Hamdy et al. (2007, 2008); Abdel-Aziz, Saleh & El-Zahabi (2010); Al-Rashood & Abdel-Aziz (2010); Chimirri et al. (1988); Farag et al. (2011); Hamdy et al. (2007); Mavrova et al. (2005). For the stability of the temperature controller, see: Cosier & Glazer (1986).

Experimental top

The one-pot synthesis of the title compound was carried out by a cyclocondensation of 2-mercaptobenzimidazole, chloroacetic acid, 4-chloro benzaldehyde, acetic anhydride and glacial acetic acid in the presence of sodium acetate to afford the title compound (Mavrova et al., 2005; Abdel-Aziz, El-Zahabi & Dawood, 2010). Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from ethanol by slow evaporation of the solvent at room temperature over several days.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and CH atoms, and the Uiso(H) values were constrained to be 1.2Ueq of the carrier atoms

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular C—H···S weak interaction was shown as dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis.
(Z)-2-(4-Chlorobenzylidene)benzo[d]thiazolo[3,2- a]imidazol-3(2H)-one top
Crystal data top
C16H9ClN2OSZ = 2
Mr = 312.77F(000) = 320
Triclinic, P1Dx = 1.635 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0182 (4) ÅCell parameters from 3660 reflections
b = 7.3443 (4) Åθ = 1.5–30.0°
c = 13.7142 (8) ŵ = 0.46 mm1
α = 91.742 (1)°T = 100 K
β = 100.836 (1)°Needle, yellow
γ = 112.878 (1)°0.37 × 0.18 × 0.06 mm
V = 635.47 (6) Å3
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3660 independent reflections
Radiation source: sealed tube3233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.848, Tmax = 0.973k = 1010
14145 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.3855P]
where P = (Fo2 + 2Fc2)/3
3660 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H9ClN2OSγ = 112.878 (1)°
Mr = 312.77V = 635.47 (6) Å3
Triclinic, P1Z = 2
a = 7.0182 (4) ÅMo Kα radiation
b = 7.3443 (4) ŵ = 0.46 mm1
c = 13.7142 (8) ÅT = 100 K
α = 91.742 (1)°0.37 × 0.18 × 0.06 mm
β = 100.836 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3660 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3233 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.973Rint = 0.026
14145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.05Δρmax = 0.56 e Å3
3660 reflectionsΔρmin = 0.27 e Å3
190 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34693 (4)0.25459 (4)0.03735 (2)0.01299 (8)
Cl10.35675 (5)0.18707 (5)0.43869 (2)0.02057 (9)
O10.88271 (14)0.27130 (14)0.01062 (7)0.01625 (18)
N10.58054 (16)0.43157 (15)0.22785 (8)0.0138 (2)
N20.75134 (15)0.36857 (15)0.11464 (7)0.01179 (19)
C10.56374 (18)0.36129 (17)0.13730 (9)0.0123 (2)
C20.79803 (18)0.49233 (17)0.27094 (9)0.0125 (2)
C30.90598 (19)0.57701 (18)0.36781 (9)0.0147 (2)
H3A0.83650.60300.41440.018*
C41.1227 (2)0.62158 (18)0.39238 (9)0.0156 (2)
H4A1.19880.67880.45660.019*
C51.22857 (19)0.58244 (18)0.32293 (9)0.0149 (2)
H5A1.37310.61380.34220.018*
C61.12230 (18)0.49741 (18)0.22550 (9)0.0135 (2)
H6A1.19180.47130.17890.016*
C70.90738 (18)0.45404 (17)0.20197 (9)0.0117 (2)
C80.73740 (18)0.28632 (17)0.01951 (9)0.0121 (2)
C90.51258 (18)0.21858 (17)0.03702 (9)0.0120 (2)
C100.45896 (18)0.14096 (17)0.13349 (9)0.0129 (2)
H10A0.57080.13620.15910.015*
C110.25559 (18)0.06330 (17)0.20435 (9)0.0125 (2)
C120.25076 (19)0.00568 (18)0.30184 (9)0.0140 (2)
H12A0.37570.00040.31810.017*
C130.0643 (2)0.08267 (18)0.37443 (9)0.0154 (2)
H13A0.06360.12720.43880.018*
C140.12171 (19)0.09177 (18)0.34886 (9)0.0144 (2)
C150.12333 (19)0.02595 (18)0.25342 (9)0.0149 (2)
H15A0.24930.03370.23770.018*
C160.06430 (19)0.05172 (18)0.18134 (9)0.0141 (2)
H16A0.06350.09650.11730.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01026 (13)0.01520 (14)0.01318 (14)0.00536 (10)0.00154 (10)0.00024 (10)
Cl10.01474 (14)0.02600 (17)0.01591 (15)0.00557 (12)0.00226 (11)0.00026 (11)
O10.0137 (4)0.0197 (4)0.0166 (4)0.0080 (3)0.0038 (3)0.0002 (3)
N10.0123 (4)0.0143 (5)0.0146 (5)0.0056 (4)0.0021 (4)0.0006 (4)
N20.0103 (4)0.0130 (4)0.0123 (4)0.0052 (3)0.0018 (3)0.0012 (4)
C10.0108 (5)0.0127 (5)0.0145 (5)0.0056 (4)0.0029 (4)0.0021 (4)
C20.0126 (5)0.0113 (5)0.0140 (5)0.0056 (4)0.0024 (4)0.0015 (4)
C30.0163 (5)0.0142 (5)0.0136 (5)0.0065 (4)0.0029 (4)0.0007 (4)
C40.0176 (5)0.0135 (5)0.0134 (5)0.0057 (4)0.0007 (4)0.0004 (4)
C50.0129 (5)0.0139 (5)0.0163 (6)0.0050 (4)0.0001 (4)0.0021 (4)
C60.0124 (5)0.0131 (5)0.0153 (5)0.0056 (4)0.0028 (4)0.0021 (4)
C70.0131 (5)0.0108 (5)0.0108 (5)0.0050 (4)0.0013 (4)0.0013 (4)
C80.0125 (5)0.0104 (5)0.0126 (5)0.0044 (4)0.0016 (4)0.0013 (4)
C90.0096 (5)0.0112 (5)0.0155 (5)0.0047 (4)0.0023 (4)0.0023 (4)
C100.0125 (5)0.0121 (5)0.0149 (5)0.0059 (4)0.0029 (4)0.0024 (4)
C110.0130 (5)0.0106 (5)0.0135 (5)0.0047 (4)0.0017 (4)0.0017 (4)
C120.0141 (5)0.0141 (5)0.0143 (5)0.0062 (4)0.0030 (4)0.0013 (4)
C130.0176 (5)0.0152 (5)0.0125 (5)0.0064 (4)0.0020 (4)0.0008 (4)
C140.0136 (5)0.0125 (5)0.0142 (5)0.0042 (4)0.0009 (4)0.0016 (4)
C150.0129 (5)0.0158 (5)0.0161 (6)0.0059 (4)0.0033 (4)0.0027 (4)
C160.0148 (5)0.0144 (5)0.0131 (5)0.0061 (4)0.0028 (4)0.0010 (4)
Geometric parameters (Å, º) top
S1—C11.7411 (12)C6—C71.3849 (16)
S1—C91.7692 (12)C6—H6A0.9300
Cl1—C141.7363 (12)C8—C91.4981 (16)
O1—C81.2108 (14)C9—C101.3480 (16)
N1—C11.2967 (15)C10—C111.4556 (16)
N1—C21.4119 (15)C10—H10A0.9300
N2—C11.3903 (14)C11—C121.4049 (16)
N2—C81.3909 (15)C11—C161.4076 (16)
N2—C71.3980 (15)C12—C131.3871 (17)
C2—C31.3895 (16)C12—H12A0.9300
C2—C71.4097 (16)C13—C141.3917 (17)
C3—C41.3955 (17)C13—H13A0.9300
C3—H3A0.9300C14—C151.3850 (17)
C4—C51.3990 (17)C15—C161.3888 (17)
C4—H4A0.9300C15—H15A0.9300
C5—C61.3942 (17)C16—H16A0.9300
C5—H5A0.9300
C1—S1—C990.12 (5)O1—C8—C9126.82 (11)
C1—N1—C2103.32 (10)N2—C8—C9107.93 (10)
C1—N2—C8116.71 (10)C10—C9—C8119.68 (10)
C1—N2—C7105.85 (9)C10—C9—S1128.06 (9)
C8—N2—C7137.35 (10)C8—C9—S1112.26 (8)
N1—C1—N2115.19 (10)C9—C10—C11130.90 (11)
N1—C1—S1131.92 (9)C9—C10—H10A114.5
N2—C1—S1112.88 (9)C11—C10—H10A114.5
C3—C2—C7120.04 (11)C12—C11—C16118.15 (11)
C3—C2—N1128.60 (11)C12—C11—C10117.52 (10)
C7—C2—N1111.36 (10)C16—C11—C10124.33 (11)
C2—C3—C4117.38 (11)C13—C12—C11121.66 (11)
C2—C3—H3A121.3C13—C12—H12A119.2
C4—C3—H3A121.3C11—C12—H12A119.2
C3—C4—C5121.78 (11)C12—C13—C14118.53 (11)
C3—C4—H4A119.1C12—C13—H13A120.7
C5—C4—H4A119.1C14—C13—H13A120.7
C6—C5—C4121.47 (11)C15—C14—C13121.46 (11)
C6—C5—H5A119.3C15—C14—Cl1119.27 (9)
C4—C5—H5A119.3C13—C14—Cl1119.26 (9)
C7—C6—C5116.23 (11)C14—C15—C16119.61 (11)
C7—C6—H6A121.9C14—C15—H15A120.2
C5—C6—H6A121.9C16—C15—H15A120.2
C6—C7—N2132.61 (11)C15—C16—C11120.58 (11)
C6—C7—C2123.10 (11)C15—C16—H16A119.7
N2—C7—C2104.28 (10)C11—C16—H16A119.7
O1—C8—N2125.24 (11)
C2—N1—C1—N20.05 (14)C1—N2—C8—O1176.11 (12)
C2—N1—C1—S1179.02 (10)C7—N2—C8—O10.2 (2)
C8—N2—C1—N1177.22 (10)C1—N2—C8—C93.12 (14)
C7—N2—C1—N10.13 (14)C7—N2—C8—C9178.99 (13)
C8—N2—C1—S11.95 (13)O1—C8—C9—C103.77 (19)
C7—N2—C1—S1179.04 (8)N2—C8—C9—C10177.02 (11)
C9—S1—C1—N1178.97 (13)O1—C8—C9—S1176.23 (11)
C9—S1—C1—N20.01 (9)N2—C8—C9—S12.99 (12)
C1—N1—C2—C3179.20 (12)C1—S1—C9—C10178.28 (12)
C1—N1—C2—C70.20 (13)C1—S1—C9—C81.72 (9)
C7—C2—C3—C40.23 (18)C8—C9—C10—C11179.37 (11)
N1—C2—C3—C4179.15 (12)S1—C9—C10—C110.6 (2)
C2—C3—C4—C50.26 (18)C9—C10—C11—C12178.99 (12)
C3—C4—C5—C60.22 (19)C9—C10—C11—C161.5 (2)
C4—C5—C6—C70.14 (18)C16—C11—C12—C130.28 (18)
C5—C6—C7—N2179.28 (12)C10—C11—C12—C13179.85 (11)
C5—C6—C7—C20.12 (18)C11—C12—C13—C140.30 (19)
C1—N2—C7—C6179.25 (13)C12—C13—C14—C150.04 (19)
C8—N2—C7—C63.1 (2)C12—C13—C14—Cl1179.84 (9)
C1—N2—C7—C20.24 (12)C13—C14—C15—C160.24 (19)
C8—N2—C7—C2176.40 (13)Cl1—C14—C15—C16179.57 (9)
C3—C2—C7—C60.17 (18)C14—C15—C16—C110.26 (19)
N1—C2—C7—C6179.26 (11)C12—C11—C16—C150.01 (18)
C3—C2—C7—N2179.38 (11)C10—C11—C16—C15179.53 (11)
N1—C2—C7—N20.28 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···S10.932.503.2161 (13)133

Experimental details

Crystal data
Chemical formulaC16H9ClN2OS
Mr312.77
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.0182 (4), 7.3443 (4), 13.7142 (8)
α, β, γ (°)91.742 (1), 100.836 (1), 112.878 (1)
V3)635.47 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.37 × 0.18 × 0.06
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.848, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
14145, 3660, 3233
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.05
No. of reflections3660
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···S10.932.503.2161 (13)133
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

HAAA thanks the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and SC thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAbdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427–2432.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573–1582.  CAS Google Scholar
First citationAbdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2008). J. Heterocycl. Chem. 45, 1–5.  Google Scholar
First citationAbdel-Aziz, H. A., Saleh, T. S. & El-Zahabi, H. S. A. (2010). Arch. Pharm. 343, 24–30.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAl-Rashood, K. A. & Abdel-Aziz, H. A. (2010). Molecules, 15, 3775–3815.  Web of Science CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChimirri, A., Grasso, S., Romeo, G. & Zappala, M. (1988). Heterocycles, 27, 1975–2003.  CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarag, A. M., Dawood, K. M., Abdel-Aziz, H. A., Hamdy, N. A. & Fakhr, I. M. I. (2011). J. Heterocycl. Chem. 48, 355–360.  Web of Science CrossRef CAS Google Scholar
First citationHamdy, N. A., Abdel-Aziz, H. A., Farag, A. M. & Fakhr, I. M. I. (2007). Monatsh. Chem. 138, 1001–1010.  Web of Science CrossRef CAS Google Scholar
First citationMavrova, A. T., Anichina, K. K., Vuchev, D. I., Tsenov, J. A., Kondeva, M. S. & Micheva, M. K. (2005). Bioorg. Med. Chem. 13, 5550–5553.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1393-o1394
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds