organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1482

(E)-Ethyl 2-cyano-3-(furan-2-yl)acrylate

aDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad 580 001, Karnataka, India, bDepartment of Biotechnology, Dr. M.G.R. Educational and Research Institute, Dr. M.G.R. University, Maduravoyal, Chennai 600 095, India, cPost Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and dDepartment of Image Science and Engineering, Pukyong National University, Busan 608 739, Republic of Korea
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 12 April 2012; accepted 16 April 2012; online 21 April 2012)

There are two independent mol­ecules in the asymmetric unit of the title compound, C10H9NO3, in both of which, all non-H atoms except for the methyl C atom lie nearly in the same plane [maximum deviations = 0.094 (3) and 0.043 (2) Å]. In the crystal, each independent mol­ecules is linked by pairs of C—H⋯O inter­actions, generating inversion dimers with R22(10) ring motifs.

Related literature

For the synthesis of related compounds, see: Yadav et al. (2004[Yadav, J. S., Subba Reddy, B. V., Basak, A. K., Visali, B., Narsaiah, A. V. & Nagaiah, K. (2004). Eur. J. Org. Chem. pp. 546-551.]). For related structures, see: Wang & Jian (2008[Wang, J.-G. & Jian, F.-F. (2008). Acta Cryst. E64, o2145.]); Zhang et al. (2009[Zhang, S.-J., Zheng, X.-M. & Hu, W.-X. (2009). Acta Cryst. E65, o2351.]); Ye et al. (2009[Ye, Y., Shen, W.-L. & Wei, X.-W. (2009). Acta Cryst. E65, o2636.]); Yuvaraj et al. (2011[Yuvaraj, H., Gayathri, D., Kalkhambkar, R. G., Gupta, V. K. & Rajnikant, (2011). Acta Cryst. E67, o2135.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO3

  • Mr = 191.18

  • Monoclinic, P 21 /n

  • a = 4.6611 (2) Å

  • b = 19.8907 (9) Å

  • c = 20.9081 (9) Å

  • β = 91.988 (4)°

  • V = 1937.28 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.933, Tmax = 0.990

  • 12870 measured reflections

  • 4568 independent reflections

  • 2407 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.209

  • S = 1.04

  • 4568 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5A—H5A⋯O2Ai 0.93 2.40 3.242 (3) 151
C5B—H5B⋯O2Bii 0.93 2.46 3.320 (3) 153
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Knoevenagel condensation is an important carbon-carbon bond forming reaction in organic synthesis (Yadav et al., 2004). In continuation of our work on nitrogen and oxygen based heterocycles, we herein report the crystal structure of the title compound.

The title compound crystallizes in monoclinic system with two molecules in the asymmetric unit. Bond lengths and bond angles are comparable with the similar crystal structures solved earlier (Zhang et al., 2009; Wang & Jian, 2008; Ye et al., 2009; Yuvaraj et al., 2011). All the non-hydrogen atoms, except the methyl group, lie nearly in the same plane with a maximum out-of-plane deviation of 0.094 (3) and 0.043 (2) Å (r.m.s deviation = 0.04 and 0.024 Å), respectively, for molecules A and B. Difference in the torsion angles C7A—O3A—C8A—C9A [-167.4 (3)°] and C7B—O3B—C8B—C9B [125.3 (4)°] has been observed, indicating the flexibility of the methyl group. The crystal packing is stabilized by C—H···O intermolecular interactions generating the centrosymmetric dimer of R22(10) ring motif.

Related literature top

For the synthesis of related compounds, see: Yadav et al. (2004). For related structures, see: Wang & Jian (2008); Zhang et al. (2009); Ye et al. (2009); Yuvaraj et al. (2011).

Experimental top

A solution of furan-2-aldehyde (1 mol), ethyl cyanoacetate (1.2 mol) and piperidine (0.1 ml) in ethanol (20 ml) was stirred at room temperature for 8 h. After removal of the volatiles in vacuo, orange solid was obtained in quantitative yield. A sample for analysis was obtained by recrystallization from EtOAc as pale yellow needles: 1H NMR (300 MHz, CDCl3) δ p.p.m.: 1.42 (t, 3H, CH3), 4.40 (q, 2H, CH2), 6.61 (m, 1H, CH), 6.80 (m, 1H, CH), 7.28 (m, 1H, CH), 7.98 (s, 1H, HC=C).

Refinement top

All H-atoms were refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.97 Å and Uiso = 1.2Ueq (C) for CH2, and C—H = 0.96 Å and Uiso = 1.5Ueq(C) for CH3].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A molecular packing view of the title compound, showing intermolecular interactions. For clarity, hydrogen atoms not involved in the hydrogen bonding have been omitted.
(E)-Ethyl 2-cyano-3-(furan-2-yl)acrylate top
Crystal data top
C10H9NO3F(000) = 800
Mr = 191.18Dx = 1.311 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4295 reflections
a = 4.6611 (2) Åθ = 3.6–29.1°
b = 19.8907 (9) ŵ = 0.10 mm1
c = 20.9081 (9) ÅT = 293 K
β = 91.988 (4)°Needle, pale yellow
V = 1937.28 (15) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4568 independent reflections
Radiation source: fine-focus sealed tube2407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1049 pixels mm-1θmax = 29.2°, θmin = 3.6°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2624
Tmin = 0.933, Tmax = 0.990l = 2727
12870 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0908P)2 + 0.185P]
where P = (Fo2 + 2Fc2)/3
4568 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H9NO3V = 1937.28 (15) Å3
Mr = 191.18Z = 8
Monoclinic, P21/nMo Kα radiation
a = 4.6611 (2) ŵ = 0.10 mm1
b = 19.8907 (9) ÅT = 293 K
c = 20.9081 (9) Å0.30 × 0.20 × 0.10 mm
β = 91.988 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4568 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2407 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.990Rint = 0.034
12870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.209H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
4568 reflectionsΔρmin = 0.24 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A1.1671 (4)0.14995 (9)0.41737 (9)0.0642 (5)
O2A0.5561 (4)0.03506 (10)0.58448 (9)0.0724 (6)
O3A0.8013 (4)0.10818 (9)0.64695 (8)0.0617 (5)
N1A1.2730 (5)0.19852 (12)0.56530 (12)0.0695 (7)
C1A0.9635 (5)0.10093 (13)0.41935 (12)0.0524 (6)
C2A0.9058 (6)0.07717 (15)0.35931 (13)0.0658 (8)
H2A0.77470.04370.34780.079*
C3A1.0809 (7)0.11270 (15)0.31803 (14)0.0709 (8)
H3A1.09000.10740.27400.085*
C4A1.2328 (7)0.15591 (16)0.35497 (14)0.0747 (9)
H4A1.36630.18610.33970.090*
C5A0.8457 (5)0.08207 (13)0.47874 (12)0.0520 (6)
H5A0.71040.04770.47610.062*
C6A0.9001 (5)0.10636 (12)0.53795 (11)0.0468 (6)
C7A0.7339 (6)0.07857 (13)0.59153 (12)0.0516 (6)
C8A0.6382 (7)0.08504 (17)0.70119 (14)0.0781 (9)
H8A10.43520.08350.68940.094*
H8A20.69950.04020.71370.094*
C9A0.6886 (10)0.13165 (19)0.75412 (17)0.1063 (13)
H9A10.58200.11730.79020.159*
H9A20.62740.17590.74130.159*
H9A30.88960.13240.76580.159*
C10A1.1070 (6)0.15760 (13)0.55250 (12)0.0511 (6)
O1B1.1874 (4)0.12570 (9)0.88858 (9)0.0650 (5)
O2B0.5452 (4)0.07433 (10)0.94337 (10)0.0763 (6)
O3B0.7859 (4)0.11775 (9)0.86263 (10)0.0737 (6)
N1B1.2343 (6)0.00911 (12)0.79884 (12)0.0752 (8)
C1B0.9833 (5)0.11024 (13)0.93153 (12)0.0526 (6)
C2B0.9368 (6)0.16376 (14)0.96945 (14)0.0654 (8)
H2B0.80810.16591.00240.078*
C3B1.1182 (7)0.21538 (15)0.95001 (15)0.0717 (8)
H3B1.13400.25840.96720.086*
C4B1.2645 (7)0.19017 (15)0.90153 (17)0.0732 (8)
H4B1.40180.21390.87950.088*
C5B0.8538 (5)0.04531 (13)0.93108 (12)0.0545 (7)
H5B0.72220.03840.96290.065*
C6B0.8908 (5)0.00742 (13)0.89236 (11)0.0492 (6)
C7B0.7208 (6)0.06891 (14)0.90287 (13)0.0571 (7)
C8B0.6333 (9)0.18142 (18)0.86891 (18)0.0999 (12)
H8B10.76790.21600.88290.120*
H8B20.49030.17690.90130.120*
C9B0.4999 (11)0.2007 (2)0.8116 (2)0.1386 (19)
H9B10.40300.24280.81730.208*
H9B20.64120.20570.77960.208*
H9B30.36310.16710.79810.208*
C10B1.0847 (6)0.00751 (13)0.84084 (12)0.0541 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0780 (12)0.0690 (13)0.0461 (11)0.0191 (10)0.0102 (9)0.0059 (9)
O2A0.0919 (14)0.0708 (13)0.0550 (12)0.0275 (11)0.0091 (10)0.0000 (10)
O3A0.0759 (12)0.0698 (12)0.0399 (10)0.0140 (10)0.0093 (8)0.0011 (8)
N1A0.0813 (16)0.0642 (16)0.0636 (16)0.0126 (14)0.0113 (13)0.0078 (12)
C1A0.0597 (15)0.0511 (15)0.0467 (15)0.0011 (12)0.0061 (11)0.0023 (11)
C2A0.0812 (19)0.0655 (18)0.0510 (16)0.0147 (15)0.0053 (14)0.0076 (13)
C3A0.091 (2)0.079 (2)0.0434 (16)0.0073 (17)0.0117 (15)0.0046 (14)
C4A0.095 (2)0.081 (2)0.0499 (17)0.0172 (17)0.0225 (16)0.0014 (15)
C5A0.0601 (15)0.0480 (15)0.0480 (15)0.0011 (12)0.0049 (11)0.0014 (11)
C6A0.0537 (14)0.0419 (14)0.0450 (14)0.0002 (11)0.0042 (11)0.0007 (10)
C7A0.0632 (16)0.0495 (15)0.0421 (14)0.0021 (13)0.0044 (11)0.0029 (11)
C8A0.098 (2)0.091 (2)0.0464 (17)0.0161 (18)0.0209 (15)0.0028 (15)
C9A0.150 (4)0.111 (3)0.060 (2)0.021 (3)0.036 (2)0.0106 (19)
C10A0.0634 (15)0.0515 (16)0.0390 (13)0.0055 (13)0.0098 (11)0.0003 (11)
O1B0.0693 (12)0.0633 (13)0.0633 (13)0.0045 (10)0.0132 (9)0.0107 (9)
O2B0.0828 (14)0.0810 (14)0.0665 (14)0.0095 (11)0.0257 (11)0.0105 (11)
O3B0.1015 (15)0.0592 (12)0.0617 (13)0.0246 (11)0.0199 (11)0.0061 (10)
N1B0.0915 (18)0.0755 (18)0.0601 (16)0.0159 (14)0.0255 (14)0.0079 (13)
C1B0.0568 (15)0.0572 (17)0.0438 (14)0.0064 (13)0.0024 (11)0.0014 (11)
C2B0.0736 (18)0.0630 (19)0.0596 (18)0.0083 (15)0.0041 (14)0.0094 (14)
C3B0.085 (2)0.0586 (18)0.071 (2)0.0061 (16)0.0049 (16)0.0118 (15)
C4B0.0759 (19)0.0613 (19)0.083 (2)0.0098 (16)0.0064 (16)0.0059 (16)
C5B0.0578 (15)0.0630 (18)0.0429 (15)0.0028 (13)0.0027 (11)0.0000 (12)
C6B0.0553 (14)0.0531 (15)0.0392 (13)0.0010 (12)0.0028 (10)0.0030 (11)
C7B0.0659 (17)0.0623 (17)0.0433 (15)0.0005 (14)0.0016 (12)0.0049 (13)
C8B0.151 (3)0.075 (2)0.074 (2)0.051 (2)0.011 (2)0.0059 (18)
C9B0.220 (5)0.098 (3)0.096 (3)0.083 (3)0.014 (3)0.009 (2)
C10B0.0702 (17)0.0485 (15)0.0438 (15)0.0059 (12)0.0039 (12)0.0017 (11)
Geometric parameters (Å, º) top
O1A—C4A1.356 (3)O1B—C4B1.357 (3)
O1A—C1A1.362 (3)O1B—C1B1.366 (3)
O2A—C7A1.204 (3)O2B—C7B1.203 (3)
O3A—C7A1.328 (3)O3B—C7B1.327 (3)
O3A—C8A1.461 (3)O3B—C8B1.461 (4)
N1A—C10A1.148 (3)N1B—C10B1.140 (3)
C1A—C2A1.360 (3)C1B—C2B1.349 (4)
C1A—C5A1.425 (3)C1B—C5B1.425 (4)
C2A—C3A1.400 (4)C2B—C3B1.399 (4)
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.341 (4)C3B—C4B1.338 (4)
C3A—H3A0.9300C3B—H3B0.9300
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.345 (3)C5B—C6B1.340 (3)
C5A—H5A0.9300C5B—H5B0.9300
C6A—C10A1.429 (4)C6B—C10B1.430 (3)
C6A—C7A1.490 (3)C6B—C7B1.478 (4)
C8A—C9A1.457 (4)C8B—C9B1.385 (5)
C8A—H8A10.9700C8B—H8B10.9700
C8A—H8A20.9700C8B—H8B20.9700
C9A—H9A10.9600C9B—H9B10.9600
C9A—H9A20.9600C9B—H9B20.9600
C9A—H9A30.9600C9B—H9B30.9600
C4A—O1A—C1A105.8 (2)C4B—O1B—C1B105.5 (2)
C7A—O3A—C8A115.1 (2)C7B—O3B—C8B117.1 (2)
C2A—C1A—O1A109.7 (2)C2B—C1B—O1B109.8 (2)
C2A—C1A—C5A130.0 (3)C2B—C1B—C5B130.0 (3)
O1A—C1A—C5A120.3 (2)O1B—C1B—C5B120.3 (2)
C1A—C2A—C3A107.0 (3)C1B—C2B—C3B107.3 (3)
C1A—C2A—H2A126.5C1B—C2B—H2B126.4
C3A—C2A—H2A126.5C3B—C2B—H2B126.4
C4A—C3A—C2A106.0 (3)C4B—C3B—C2B105.9 (3)
C4A—C3A—H3A127.0C4B—C3B—H3B127.1
C2A—C3A—H3A127.0C2B—C3B—H3B127.1
C3A—C4A—O1A111.5 (3)C3B—C4B—O1B111.5 (3)
C3A—C4A—H4A124.3C3B—C4B—H4B124.2
O1A—C4A—H4A124.3O1B—C4B—H4B124.2
C6A—C5A—C1A129.9 (2)C6B—C5B—C1B130.5 (2)
C6A—C5A—H5A115.1C6B—C5B—H5B114.7
C1A—C5A—H5A115.1C1B—C5B—H5B114.7
C5A—C6A—C10A123.8 (2)C5B—C6B—C10B123.7 (2)
C5A—C6A—C7A118.2 (2)C5B—C6B—C7B118.5 (2)
C10A—C6A—C7A118.0 (2)C10B—C6B—C7B117.9 (2)
O2A—C7A—O3A124.5 (2)O2B—C7B—O3B123.8 (3)
O2A—C7A—C6A123.2 (2)O2B—C7B—C6B124.1 (3)
O3A—C7A—C6A112.2 (2)O3B—C7B—C6B112.1 (2)
C9A—C8A—O3A108.3 (3)C9B—C8B—O3B111.6 (3)
C9A—C8A—H8A1110.0C9B—C8B—H8B1109.3
O3A—C8A—H8A1110.0O3B—C8B—H8B1109.3
C9A—C8A—H8A2110.0C9B—C8B—H8B2109.3
O3A—C8A—H8A2110.0O3B—C8B—H8B2109.3
H8A1—C8A—H8A2108.4H8B1—C8B—H8B2108.0
C8A—C9A—H9A1109.5C8B—C9B—H9B1109.5
C8A—C9A—H9A2109.5C8B—C9B—H9B2109.5
H9A1—C9A—H9A2109.5H9B1—C9B—H9B2109.5
C8A—C9A—H9A3109.5C8B—C9B—H9B3109.5
H9A1—C9A—H9A3109.5H9B1—C9B—H9B3109.5
H9A2—C9A—H9A3109.5H9B2—C9B—H9B3109.5
N1A—C10A—C6A178.8 (3)N1B—C10B—C6B177.9 (3)
C4A—O1A—C1A—C2A0.1 (3)C4B—O1B—C1B—C2B0.1 (3)
C4A—O1A—C1A—C5A179.9 (2)C4B—O1B—C1B—C5B179.8 (2)
O1A—C1A—C2A—C3A0.1 (3)O1B—C1B—C2B—C3B0.0 (3)
C5A—C1A—C2A—C3A179.9 (3)C5B—C1B—C2B—C3B179.7 (3)
C1A—C2A—C3A—C4A0.3 (3)C1B—C2B—C3B—C4B0.1 (3)
C2A—C3A—C4A—O1A0.4 (4)C2B—C3B—C4B—O1B0.2 (4)
C1A—O1A—C4A—C3A0.3 (4)C1B—O1B—C4B—C3B0.2 (3)
C2A—C1A—C5A—C6A178.9 (3)C2B—C1B—C5B—C6B177.4 (3)
O1A—C1A—C5A—C6A1.1 (4)O1B—C1B—C5B—C6B2.2 (4)
C1A—C5A—C6A—C10A2.1 (4)C1B—C5B—C6B—C10B0.5 (4)
C1A—C5A—C6A—C7A177.5 (2)C1B—C5B—C6B—C7B179.0 (2)
C8A—O3A—C7A—O2A1.0 (4)C8B—O3B—C7B—O2B0.2 (4)
C8A—O3A—C7A—C6A177.8 (2)C8B—O3B—C7B—C6B179.4 (3)
C5A—C6A—C7A—O2A0.8 (4)C5B—C6B—C7B—O2B1.7 (4)
C10A—C6A—C7A—O2A179.5 (2)C10B—C6B—C7B—O2B177.8 (3)
C5A—C6A—C7A—O3A178.0 (2)C5B—C6B—C7B—O3B177.9 (2)
C10A—C6A—C7A—O3A1.6 (3)C10B—C6B—C7B—O3B2.6 (3)
C7A—O3A—C8A—C9A167.4 (3)C7B—O3B—C8B—C9B125.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A···O2Ai0.932.403.242 (3)151
C5B—H5B···O2Bii0.932.463.320 (3)153
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC10H9NO3
Mr191.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.6611 (2), 19.8907 (9), 20.9081 (9)
β (°) 91.988 (4)
V3)1937.28 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.933, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
12870, 4568, 2407
Rint0.034
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.209, 1.04
No. of reflections4568
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A···O2Ai0.932.403.242 (3)151
C5B—H5B···O2Bii0.932.463.320 (3)153
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2.
 

Acknowledgements

YTJ is thankful for the support provided by the second stage of the BK-21 program. The authors thank the Director, USIC University of Jammu, Jammu Tawi, India, for the X-ray data collection.

References

First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-G. & Jian, F.-F. (2008). Acta Cryst. E64, o2145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYadav, J. S., Subba Reddy, B. V., Basak, A. K., Visali, B., Narsaiah, A. V. & Nagaiah, K. (2004). Eur. J. Org. Chem. pp. 546–551.  Web of Science CrossRef Google Scholar
First citationYe, Y., Shen, W.-L. & Wei, X.-W. (2009). Acta Cryst. E65, o2636.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYuvaraj, H., Gayathri, D., Kalkhambkar, R. G., Gupta, V. K. & Rajnikant, (2011). Acta Cryst. E67, o2135.  Google Scholar
First citationZhang, S.-J., Zheng, X.-M. & Hu, W.-X. (2009). Acta Cryst. E65, o2351.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1482
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds