organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1512-o1513

(Z)-7-[2-(4-Bromo­phen­yl)hydrazin-1-yl­­idene]-6-methyl-3-(pyridin-4-yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 18 April 2012; accepted 19 April 2012; online 25 April 2012)

In the asymmetric unit of the title compound, C16H12BrN7S, there are two crystallographically independent mol­ecules with similar conformations. Both mol­ecules are slightly twisted; the central 1,2,4-triazolo[3,4-b]-1,3,4-thia­diazine ring system makes dihedral angles of 9.65 (15) and 13.29 (15)° with the pyridine and benzene rings, respectively, in one mol­ecule, whereas the corresponding values in the other mol­ecule are 9.30 (15) and 4.84 (15)°. A weak intra­molecular C—H⋯N inter­action with an S(6) ring motif is observed in each mol­ecule. In the crystal, the independent mol­ecules are each linked through N—H⋯N hydrogen bonds and weak C—H⋯N interactions into ribbons along the c axis. The ribbons are further linked together by weak C—H⋯N, C—H⋯π and ππ [centroid–centroid distances = 3.572 (2)–3.884 (2) Å] inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to and the biological activity of [1,2,4]thia­zolo[3,4-b][1,3,4]thia­diazine derivatives, see: Abdel-Aziz et al. (2007[Abdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573-1582.]); Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601-605.]); Dawood et al. (2005[Dawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem. 16, 621-627.]); Holla et al. (2001[Holla, B. S., Akberali, P. M. & Shivananda, M. K. (2001). Farmaco, 56, 919-927.]); Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]); Prasad et al. (1998[Prasad, A. R., Ramalingam, T., Rao, A. B., Diwan, P. V. & Sattur, P. B. (1998). Eur. J. Med. Chem. 24, 199-201.]). For the stability of the temperature controller, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12BrN7S

  • Mr = 414.30

  • Monoclinic, P 21 /c

  • a = 17.9868 (7) Å

  • b = 10.3830 (3) Å

  • c = 21.2154 (6) Å

  • β = 124.671 (2)°

  • V = 3258.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.67 mm−1

  • T = 100 K

  • 0.19 × 0.19 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.629, Tmax = 0.644

  • 30220 measured reflections

  • 9252 independent reflections

  • 4788 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.112

  • S = 0.99

  • 9252 reflections

  • 453 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C6A/N4A/C7A/N5A/N6A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—HN1A⋯N7Ai 0.82 2.18 2.979 (4) 165
N1B—HN1B⋯N7Bi 0.88 2.15 3.015 (4) 167
C1A—H1AA⋯N3A 0.95 2.40 3.022 (5) 123
C2A—H2AA⋯N5Bii 0.95 2.61 3.512 (4) 159
C4A—H4AA⋯N6Biii 0.95 2.46 3.257 (5) 141
C1B—H1BA⋯N3B 0.95 2.39 3.023 (5) 123
C4B—H4BA⋯N6Aiii 0.95 2.41 3.210 (5) 142
C16A—H16B⋯N3B 0.98 2.57 3.445 (5) 149
C16A—H16CCg1iv 0.98 2.72 3.469 (4) 133
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+2; (iv) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL (and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

One of the most effective first-line anti-TB drugs is isoniazid (INH). Many analogues featuring the structure of INH have been synthesized and tested as antimycobacterials (Janin, 2007). On the other hand, 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine derivatives have been well documented (Holla et al., 2001; Prasad et al., 1998). In continuation of our interests in the chemistry of the analogs of the title compound (Abdel-Aziz et al., 2007; Abdel-Wahab et al., 2009; Dawood et al., 2005), we reported the synthesis and crystal structure of the title compound (I).

In Fig. 1, there are two crystallographic independent molecules A and B in the asymmetric unit of (I) with differences in bond angles. The molecule of (I), C16H12BrN7S, is slightly twisted. The middle 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine ring system (C6–C9/N3–N6/S1) makes the dihedral angles of 9.65 (15) and 13.29 (15)° with the pyridyl and benzene rings, respectively in molecule A whereas these values are 9.30 (15) and 4.84 (15)° in molecule B. Atoms of the 4-bromophenyl-hydrazono fragment (C10–C15/N1/N2/Br1) lie on the same plane with an r.m.s. deviation of 0.0270 (1) Å for molecule A and 0.0176 (1) Å for molecule B. In each molecule a weak intramolecular C—H···N interaction (Fig.1 and Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances agree with the literature values (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are linked into ribbons along the c axis by N—H···N hydrogen bonds together with weak C—H···N interactions (Table 1). These ribbons are further stacked along the a axis by ππ interactions with the distances of Cg2···Cg5 = 3.572 (2) Å, Cg3···Cg4v = 3.884 (2) Å and Cg6···Cg7iv = 3.617 (2) Å [symmetry code (v) = 1-x, 2-y, 2-z]; Cg2, Cg3, Cg4, Cg5, Cg6 and Cg7 are the centroids of C7A–C9A/N3A/N4A/S1A, C1A–C5A/N7A, C10A–C15A, C6B–C7B/N4B–N6B, C7B–C9B/N3B/N4B/S1B and C10B–C15B rings, respectively. A C—H···π interaction was presented (see Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to and the biological activity of [1,2,4]thiazolo[3,4-b][1,3,4]thiadiazine derivatives, see: Abdel-Aziz et al. (2007); Abdel-Wahab et al. (2009); Dawood et al. (2005); Holla et al. (2001); Janin (2007); Prasad et al. (1998). For the stability of the temperature controller, see: Cosier & Glazer (1986).

Experimental top

To a mixture of 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol (0.49 g, 2 mmol) and (Z)-N'-(4-bromophenyl)-2-oxopropanehydrazonoyl chloride (0.55 g, 2 mmol) in ethanol (30 mL), triethylamine (0.2 mL, 2 mmol) was added. The reaction mixture was heated under reflux for 3 h, then left to cool. The precipitated solid was collected by filtration, washed with ethanol, and dried. Golden block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature after several days.

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 0.95 Å for aromatic and 0.98 Å CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are drawn as dash lines.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(Z)-7-[2-(4-Bromophenyl)hydrazin-1-ylidene]-6-methyl-3-(pyridin-4-yl)- 7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine top
Crystal data top
C16H12BrN7SF(000) = 1664
Mr = 414.30Dx = 1.689 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9252 reflections
a = 17.9868 (7) Åθ = 1.9–30.0°
b = 10.3830 (3) ŵ = 2.67 mm1
c = 21.2154 (6) ÅT = 100 K
β = 124.671 (2)°Block, gold
V = 3258.6 (2) Å30.19 × 0.19 × 0.18 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9252 independent reflections
Radiation source: sealed tube4788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2416
Tmin = 0.629, Tmax = 0.644k = 1414
30220 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0435P)2]
where P = (Fo2 + 2Fc2)/3
9252 reflections(Δ/σ)max = 0.002
453 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
C16H12BrN7SV = 3258.6 (2) Å3
Mr = 414.30Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.9868 (7) ŵ = 2.67 mm1
b = 10.3830 (3) ÅT = 100 K
c = 21.2154 (6) Å0.19 × 0.19 × 0.18 mm
β = 124.671 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9252 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4788 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.644Rint = 0.058
30220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.99Δρmax = 0.58 e Å3
9252 reflectionsΔρmin = 0.87 e Å3
453 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.21285 (2)0.04237 (3)1.17919 (2)0.02953 (11)
S1A0.47832 (6)0.62207 (8)1.11464 (5)0.0252 (2)
N1A0.36955 (18)0.4220 (2)1.11905 (15)0.0209 (6)
HN1A0.39360.48001.15110.025*
N2A0.35167 (19)0.4379 (2)1.04891 (15)0.0213 (6)
N3A0.40347 (18)0.6140 (3)0.93433 (15)0.0211 (6)
N4A0.46926 (18)0.7005 (3)0.98702 (14)0.0200 (6)
N5A0.56814 (19)0.8050 (3)1.09318 (15)0.0254 (7)
N6A0.56960 (19)0.8564 (3)1.03296 (15)0.0262 (7)
N7A0.46123 (19)0.9059 (3)0.75564 (15)0.0246 (7)
C1A0.4377 (2)0.7531 (3)0.82800 (18)0.0239 (8)
H1AA0.40950.67610.82840.029*
C2A0.4246 (2)0.7974 (3)0.76041 (18)0.0255 (8)
H2AA0.38750.74780.71520.031*
C3A0.5160 (2)0.9708 (3)0.82084 (19)0.0256 (8)
H3AB0.54471.04620.81910.031*
C4A0.5333 (2)0.9342 (3)0.89063 (19)0.0252 (8)
H4AA0.57250.98420.93520.030*
C5A0.4928 (2)0.8238 (3)0.89486 (18)0.0211 (8)
C6A0.5110 (2)0.7934 (3)0.97021 (18)0.0192 (7)
C7A0.5078 (2)0.7137 (3)1.06399 (18)0.0214 (8)
C8A0.3948 (2)0.5257 (3)1.03816 (19)0.0223 (8)
C9A0.3703 (2)0.5347 (3)0.95940 (18)0.0195 (7)
C10A0.3285 (2)0.3169 (3)1.13031 (18)0.0197 (7)
C11A0.3397 (2)0.3044 (3)1.20077 (18)0.0228 (8)
H11A0.37160.36851.23910.027*
C12A0.3042 (2)0.1983 (3)1.21474 (19)0.0250 (8)
H12A0.31180.18931.26270.030*
C13A0.2580 (2)0.1064 (3)1.15898 (19)0.0221 (8)
C14A0.2448 (2)0.1186 (3)1.08789 (18)0.0241 (8)
H14A0.21210.05471.04960.029*
C15A0.2797 (2)0.2241 (3)1.07330 (18)0.0231 (8)
H15A0.27050.23361.02480.028*
C16A0.2991 (2)0.4455 (3)0.89978 (18)0.0251 (8)
H16A0.29130.46080.85070.038*
H16B0.24190.46150.89400.038*
H16C0.31780.35610.91570.038*
Br1B0.05294 (3)0.04795 (4)1.15572 (2)0.03264 (11)
S1B0.20433 (6)0.63491 (8)1.09173 (4)0.0215 (2)
N1B0.11302 (18)0.4113 (3)1.10112 (15)0.0224 (7)
HN1B0.14180.47041.13700.027*
N2B0.09887 (18)0.4247 (2)1.03202 (15)0.0206 (6)
N3B0.14408 (18)0.6097 (3)0.91571 (14)0.0204 (6)
N4B0.20336 (17)0.7039 (2)0.96629 (13)0.0175 (6)
N5B0.2957 (2)0.8157 (3)1.07072 (15)0.0266 (7)
N6B0.30106 (19)0.8623 (3)1.01197 (15)0.0256 (7)
N7B0.19972 (19)0.9085 (3)0.73658 (15)0.0246 (7)
C1B0.1683 (2)0.7606 (3)0.80669 (17)0.0213 (8)
H1BA0.13530.68800.80550.026*
C2B0.1566 (2)0.8074 (3)0.74018 (18)0.0228 (8)
H2BA0.11440.76400.69360.027*
C3B0.2610 (2)0.9640 (3)0.80338 (19)0.0255 (8)
H3BB0.29441.03450.80290.031*
C4B0.2795 (2)0.9255 (3)0.87374 (18)0.0248 (8)
H4BA0.32480.96760.91970.030*
C5B0.2301 (2)0.8236 (3)0.87509 (18)0.0200 (8)
C6B0.2458 (2)0.7942 (3)0.94951 (18)0.0203 (8)
C7B0.2370 (2)0.7218 (3)1.04183 (18)0.0203 (7)
C8B0.1359 (2)0.5194 (3)1.01993 (17)0.0197 (8)
C9B0.1158 (2)0.5258 (3)0.94249 (18)0.0202 (8)
C10B0.0730 (2)0.3056 (3)1.11196 (18)0.0203 (8)
C11B0.0878 (2)0.2884 (3)1.18328 (18)0.0266 (8)
H11B0.12440.34771.22350.032*
C12B0.0489 (2)0.1838 (3)1.19575 (19)0.0281 (9)
H12B0.05900.17151.24440.034*
C13B0.0038 (2)0.0990 (3)1.1373 (2)0.0247 (8)
C14B0.0197 (2)0.1152 (3)1.06614 (19)0.0250 (8)
H14B0.05700.05601.02610.030*
C15B0.0189 (2)0.2178 (3)1.05332 (19)0.0242 (8)
H15B0.00870.22861.00450.029*
C16B0.0553 (2)0.4243 (3)0.88683 (18)0.0285 (9)
H16D0.04130.44470.83600.043*
H16E0.00080.42090.88430.043*
H16F0.08580.34060.90370.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0337 (2)0.0289 (2)0.0316 (2)0.00298 (18)0.02195 (19)0.00247 (17)
S1A0.0290 (5)0.0318 (5)0.0180 (4)0.0060 (4)0.0152 (4)0.0021 (4)
N1A0.0248 (17)0.0234 (15)0.0168 (14)0.0031 (13)0.0133 (13)0.0014 (11)
N2A0.0245 (17)0.0243 (16)0.0159 (14)0.0023 (13)0.0119 (13)0.0016 (12)
N3A0.0201 (16)0.0252 (16)0.0195 (15)0.0024 (14)0.0122 (13)0.0040 (13)
N4A0.0198 (16)0.0267 (15)0.0144 (14)0.0002 (13)0.0103 (13)0.0007 (12)
N5A0.0294 (18)0.0316 (17)0.0175 (15)0.0040 (15)0.0148 (14)0.0003 (13)
N6A0.0287 (18)0.0312 (17)0.0186 (15)0.0044 (14)0.0134 (15)0.0008 (13)
N7A0.0254 (18)0.0296 (16)0.0210 (15)0.0036 (14)0.0146 (14)0.0035 (13)
C1A0.026 (2)0.0269 (19)0.0203 (18)0.0006 (16)0.0140 (17)0.0012 (15)
C2A0.020 (2)0.035 (2)0.0160 (18)0.0024 (18)0.0072 (16)0.0011 (16)
C3A0.026 (2)0.029 (2)0.0249 (19)0.0016 (17)0.0158 (17)0.0027 (16)
C4A0.0192 (19)0.031 (2)0.0198 (18)0.0011 (16)0.0079 (16)0.0012 (15)
C5A0.0165 (19)0.0266 (19)0.0212 (18)0.0062 (16)0.0113 (16)0.0027 (15)
C6A0.0160 (19)0.0242 (18)0.0167 (17)0.0004 (15)0.0088 (16)0.0000 (15)
C7A0.022 (2)0.0267 (18)0.0158 (17)0.0005 (16)0.0107 (16)0.0017 (15)
C8A0.0216 (19)0.028 (2)0.0178 (17)0.0022 (17)0.0115 (16)0.0008 (15)
C9A0.0172 (18)0.0246 (18)0.0169 (17)0.0029 (16)0.0098 (15)0.0011 (15)
C10A0.0158 (18)0.0219 (17)0.0209 (17)0.0024 (15)0.0102 (16)0.0031 (14)
C11A0.0205 (19)0.0308 (19)0.0181 (17)0.0032 (16)0.0116 (16)0.0019 (15)
C12A0.025 (2)0.031 (2)0.0224 (19)0.0028 (17)0.0152 (17)0.0016 (16)
C13A0.020 (2)0.0263 (18)0.0213 (18)0.0025 (16)0.0127 (16)0.0028 (15)
C14A0.024 (2)0.0242 (19)0.0214 (18)0.0004 (17)0.0110 (17)0.0014 (15)
C15A0.0193 (19)0.031 (2)0.0185 (18)0.0030 (17)0.0102 (16)0.0034 (16)
C16A0.027 (2)0.0300 (19)0.0217 (18)0.0035 (17)0.0162 (17)0.0045 (16)
Br1B0.0373 (2)0.0280 (2)0.0405 (2)0.00200 (19)0.0268 (2)0.00421 (18)
S1B0.0253 (5)0.0267 (5)0.0144 (4)0.0035 (4)0.0124 (4)0.0015 (4)
N1B0.0283 (18)0.0259 (15)0.0159 (15)0.0047 (14)0.0143 (14)0.0020 (12)
N2B0.0185 (16)0.0257 (16)0.0177 (15)0.0020 (13)0.0103 (13)0.0016 (12)
N3B0.0212 (16)0.0213 (15)0.0192 (15)0.0031 (13)0.0117 (14)0.0046 (12)
N4B0.0174 (15)0.0235 (15)0.0113 (13)0.0003 (13)0.0079 (13)0.0000 (11)
N5B0.0315 (18)0.0340 (17)0.0162 (15)0.0068 (15)0.0146 (14)0.0012 (13)
N6B0.0284 (18)0.0310 (16)0.0185 (15)0.0072 (14)0.0140 (14)0.0008 (13)
N7B0.0292 (18)0.0309 (16)0.0171 (15)0.0028 (14)0.0151 (15)0.0016 (13)
C1B0.023 (2)0.0227 (18)0.0177 (17)0.0019 (16)0.0116 (16)0.0027 (14)
C2B0.026 (2)0.0247 (19)0.0165 (17)0.0066 (17)0.0110 (17)0.0002 (15)
C3B0.028 (2)0.0287 (19)0.0247 (19)0.0005 (18)0.0180 (17)0.0041 (16)
C4B0.022 (2)0.034 (2)0.0142 (17)0.0019 (17)0.0085 (16)0.0015 (15)
C5B0.0199 (19)0.0259 (18)0.0144 (17)0.0042 (16)0.0098 (16)0.0042 (14)
C6B0.021 (2)0.0224 (18)0.0178 (17)0.0001 (16)0.0112 (16)0.0013 (15)
C7B0.0190 (19)0.0259 (18)0.0167 (17)0.0007 (16)0.0105 (16)0.0010 (15)
C8B0.0182 (18)0.0262 (19)0.0155 (17)0.0019 (16)0.0102 (15)0.0010 (15)
C9B0.0198 (19)0.0256 (19)0.0181 (17)0.0005 (16)0.0125 (16)0.0033 (15)
C10B0.022 (2)0.0219 (18)0.0221 (18)0.0018 (16)0.0153 (17)0.0008 (15)
C11B0.034 (2)0.0278 (19)0.0216 (19)0.0062 (18)0.0175 (18)0.0042 (15)
C12B0.033 (2)0.034 (2)0.0225 (19)0.0019 (18)0.0188 (18)0.0031 (16)
C13B0.022 (2)0.0236 (18)0.031 (2)0.0010 (17)0.0168 (18)0.0042 (16)
C14B0.022 (2)0.0259 (19)0.0236 (19)0.0023 (17)0.0110 (17)0.0021 (16)
C15B0.023 (2)0.032 (2)0.0195 (18)0.0016 (17)0.0127 (17)0.0017 (16)
C16B0.033 (2)0.034 (2)0.0200 (18)0.0089 (18)0.0166 (18)0.0064 (15)
Geometric parameters (Å, º) top
Br1A—C13A1.904 (3)Br1B—C13B1.912 (3)
S1A—C7A1.728 (3)S1B—C7B1.728 (3)
S1A—C8A1.766 (4)S1B—C8B1.772 (3)
N1A—N2A1.342 (3)N1B—N2B1.345 (3)
N1A—C10A1.413 (4)N1B—C10B1.401 (4)
N1A—HN1A0.8231N1B—HN1B0.8809
N2A—C8A1.298 (4)N2B—C8B1.293 (4)
N3A—C9A1.295 (4)N3B—C9B1.292 (4)
N3A—N4A1.397 (3)N3B—N4B1.394 (3)
N4A—C7A1.371 (4)N4B—C7B1.366 (4)
N4A—C6A1.388 (4)N4B—C6B1.377 (4)
N5A—C7A1.303 (4)N5B—C7B1.306 (4)
N5A—N6A1.398 (3)N5B—N6B1.391 (3)
N6A—C6A1.309 (4)N6B—C6B1.322 (4)
N7A—C3A1.337 (4)N7B—C3B1.333 (4)
N7A—C2A1.338 (4)N7B—C2B1.333 (4)
C1A—C5A1.391 (4)C1B—C2B1.390 (4)
C1A—C2A1.392 (4)C1B—C5B1.391 (4)
C1A—H1AA0.9500C1B—H1BA0.9500
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.381 (4)C3B—C4B1.391 (4)
C3A—H3AB0.9500C3B—H3BB0.9500
C4A—C5A1.388 (4)C4B—C5B1.393 (4)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.472 (4)C5B—C6B1.469 (4)
C8A—C9A1.469 (4)C8B—C9B1.469 (4)
C9A—C16A1.501 (4)C9B—C16B1.493 (4)
C10A—C11A1.396 (4)C10B—C11B1.391 (4)
C10A—C15A1.397 (4)C10B—C15B1.396 (4)
C11A—C12A1.387 (4)C11B—C12B1.396 (4)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.371 (4)C12B—C13B1.368 (5)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.393 (4)C13B—C14B1.378 (4)
C14A—C15A1.382 (4)C14B—C15B1.380 (4)
C14A—H14A0.9500C14B—H14B0.9500
C15A—H15A0.9500C15B—H15B0.9500
C16A—H16A0.9800C16B—H16D0.9800
C16A—H16B0.9800C16B—H16E0.9800
C16A—H16C0.9800C16B—H16F0.9800
C7A—S1A—C8A98.18 (16)C7B—S1B—C8B97.95 (16)
N2A—N1A—C10A117.7 (3)N2B—N1B—C10B117.6 (3)
N2A—N1A—HN1A120.6N2B—N1B—HN1B121.6
C10A—N1A—HN1A120.2C10B—N1B—HN1B120.5
C8A—N2A—N1A119.4 (3)C8B—N2B—N1B119.7 (3)
C9A—N3A—N4A117.3 (3)C9B—N3B—N4B117.0 (3)
C7A—N4A—C6A104.8 (3)C7B—N4B—C6B105.7 (3)
C7A—N4A—N3A129.9 (3)C7B—N4B—N3B129.3 (3)
C6A—N4A—N3A125.2 (3)C6B—N4B—N3B124.9 (2)
C7A—N5A—N6A106.7 (3)C7B—N5B—N6B106.8 (3)
C6A—N6A—N5A108.4 (3)C6B—N6B—N5B108.4 (3)
C3A—N7A—C2A116.8 (3)C3B—N7B—C2B115.8 (3)
C5A—C1A—C2A118.7 (3)C2B—C1B—C5B117.7 (3)
C5A—C1A—H1AA120.6C2B—C1B—H1BA121.2
C2A—C1A—H1AA120.6C5B—C1B—H1BA121.2
N7A—C2A—C1A123.6 (3)N7B—C2B—C1B125.2 (3)
N7A—C2A—H2AA118.2N7B—C2B—H2BA117.4
C1A—C2A—H2AA118.2C1B—C2B—H2BA117.4
N7A—C3A—C4A123.7 (3)N7B—C3B—C4B124.4 (3)
N7A—C3A—H3AB118.2N7B—C3B—H3BB117.8
C4A—C3A—H3AB118.2C4B—C3B—H3BB117.8
C3A—C4A—C5A119.3 (3)C3B—C4B—C5B118.3 (3)
C3A—C4A—H4AA120.4C3B—C4B—H4BA120.8
C5A—C4A—H4AA120.4C5B—C4B—H4BA120.8
C4A—C5A—C1A117.8 (3)C1B—C5B—C4B118.4 (3)
C4A—C5A—C6A116.6 (3)C1B—C5B—C6B125.1 (3)
C1A—C5A—C6A125.7 (3)C4B—C5B—C6B116.5 (3)
N6A—C6A—N4A109.0 (3)N6B—C6B—N4B108.5 (3)
N6A—C6A—C5A123.3 (3)N6B—C6B—C5B122.8 (3)
N4A—C6A—C5A127.6 (3)N4B—C6B—C5B128.6 (3)
N5A—C7A—N4A111.0 (3)N5B—C7B—N4B110.6 (3)
N5A—C7A—S1A124.9 (2)N5B—C7B—S1B124.6 (2)
N4A—C7A—S1A124.0 (3)N4B—C7B—S1B124.8 (3)
N2A—C8A—C9A115.0 (3)N2B—C8B—C9B115.4 (3)
N2A—C8A—S1A121.2 (3)N2B—C8B—S1B121.9 (2)
C9A—C8A—S1A123.8 (3)C9B—C8B—S1B122.7 (3)
N3A—C9A—C8A126.7 (3)N3B—C9B—C8B127.9 (3)
N3A—C9A—C16A114.7 (3)N3B—C9B—C16B114.9 (3)
C8A—C9A—C16A118.6 (3)C8B—C9B—C16B117.2 (3)
C11A—C10A—C15A120.0 (3)C11B—C10B—C15B119.4 (3)
C11A—C10A—N1A118.8 (3)C11B—C10B—N1B118.8 (3)
C15A—C10A—N1A121.2 (3)C15B—C10B—N1B121.9 (3)
C12A—C11A—C10A119.9 (3)C10B—C11B—C12B120.0 (3)
C12A—C11A—H11A120.0C10B—C11B—H11B120.0
C10A—C11A—H11A120.0C12B—C11B—H11B120.0
C13A—C12A—C11A119.6 (3)C13B—C12B—C11B119.5 (3)
C13A—C12A—H12A120.2C13B—C12B—H12B120.3
C11A—C12A—H12A120.2C11B—C12B—H12B120.3
C12A—C13A—C14A121.2 (3)C12B—C13B—C14B121.3 (3)
C12A—C13A—Br1A119.8 (3)C12B—C13B—Br1B119.4 (3)
C14A—C13A—Br1A119.1 (3)C14B—C13B—Br1B119.3 (3)
C15A—C14A—C13A119.7 (3)C13B—C14B—C15B119.7 (3)
C15A—C14A—H14A120.2C13B—C14B—H14B120.1
C13A—C14A—H14A120.2C15B—C14B—H14B120.1
C14A—C15A—C10A119.6 (3)C14B—C15B—C10B120.1 (3)
C14A—C15A—H15A120.2C14B—C15B—H15B119.9
C10A—C15A—H15A120.2C10B—C15B—H15B119.9
C9A—C16A—H16A109.5C9B—C16B—H16D109.5
C9A—C16A—H16B109.5C9B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C9A—C16A—H16C109.5C9B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
C10A—N1A—N2A—C8A173.4 (3)C10B—N1B—N2B—C8B178.7 (3)
C9A—N3A—N4A—C7A2.0 (5)C9B—N3B—N4B—C7B0.1 (5)
C9A—N3A—N4A—C6A178.9 (3)C9B—N3B—N4B—C6B174.5 (3)
C7A—N5A—N6A—C6A0.7 (4)C7B—N5B—N6B—C6B0.5 (4)
C3A—N7A—C2A—C1A2.7 (5)C3B—N7B—C2B—C1B2.7 (5)
C5A—C1A—C2A—N7A0.9 (5)C5B—C1B—C2B—N7B0.2 (5)
C2A—N7A—C3A—C4A2.5 (5)C2B—N7B—C3B—C4B2.0 (5)
N7A—C3A—C4A—C5A0.5 (5)N7B—C3B—C4B—C5B1.1 (5)
C3A—C4A—C5A—C1A1.4 (5)C2B—C1B—C5B—C4B3.0 (5)
C3A—C4A—C5A—C6A177.5 (3)C2B—C1B—C5B—C6B174.8 (3)
C2A—C1A—C5A—C4A1.2 (5)C3B—C4B—C5B—C1B3.6 (5)
C2A—C1A—C5A—C6A177.6 (3)C3B—C4B—C5B—C6B174.4 (3)
N5A—N6A—C6A—N4A0.4 (4)N5B—N6B—C6B—N4B0.6 (4)
N5A—N6A—C6A—C5A178.4 (3)N5B—N6B—C6B—C5B175.8 (3)
C7A—N4A—C6A—N6A0.1 (3)C7B—N4B—C6B—N6B0.4 (4)
N3A—N4A—C6A—N6A179.4 (3)N3B—N4B—C6B—N6B176.1 (3)
C7A—N4A—C6A—C5A177.9 (3)C7B—N4B—C6B—C5B175.3 (3)
N3A—N4A—C6A—C5A2.8 (5)N3B—N4B—C6B—C5B9.0 (5)
C4A—C5A—C6A—N6A7.5 (5)C1B—C5B—C6B—N6B175.5 (3)
C1A—C5A—C6A—N6A173.8 (3)C4B—C5B—C6B—N6B2.3 (5)
C4A—C5A—C6A—N4A170.1 (3)C1B—C5B—C6B—N4B1.3 (5)
C1A—C5A—C6A—N4A8.6 (5)C4B—C5B—C6B—N4B176.5 (3)
N6A—N5A—C7A—N4A0.6 (4)N6B—N5B—C7B—N4B0.2 (4)
N6A—N5A—C7A—S1A178.5 (2)N6B—N5B—C7B—S1B178.3 (2)
C6A—N4A—C7A—N5A0.4 (4)C6B—N4B—C7B—N5B0.1 (4)
N3A—N4A—C7A—N5A178.9 (3)N3B—N4B—C7B—N5B175.5 (3)
C6A—N4A—C7A—S1A178.8 (2)C6B—N4B—C7B—S1B178.6 (2)
N3A—N4A—C7A—S1A1.9 (5)N3B—N4B—C7B—S1B5.9 (5)
C8A—S1A—C7A—N5A179.2 (3)C8B—S1B—C7B—N5B174.2 (3)
C8A—S1A—C7A—N4A0.1 (3)C8B—S1B—C7B—N4B7.5 (3)
N1A—N2A—C8A—C9A179.8 (3)N1B—N2B—C8B—C9B179.7 (3)
N1A—N2A—C8A—S1A1.4 (4)N1B—N2B—C8B—S1B0.8 (4)
C7A—S1A—C8A—N2A179.7 (3)C7B—S1B—C8B—N2B175.8 (3)
C7A—S1A—C8A—C9A1.5 (3)C7B—S1B—C8B—C9B5.5 (3)
N4A—N3A—C9A—C8A0.0 (5)N4B—N3B—C9B—C8B2.4 (5)
N4A—N3A—C9A—C16A179.3 (3)N4B—N3B—C9B—C16B177.8 (3)
N2A—C8A—C9A—N3A179.9 (3)N2B—C8B—C9B—N3B179.8 (3)
S1A—C8A—C9A—N3A1.8 (5)S1B—C8B—C9B—N3B1.3 (5)
N2A—C8A—C9A—C16A0.7 (5)N2B—C8B—C9B—C16B0.4 (4)
S1A—C8A—C9A—C16A179.0 (2)S1B—C8B—C9B—C16B178.5 (2)
N2A—N1A—C10A—C11A174.6 (3)N2B—N1B—C10B—C11B178.9 (3)
N2A—N1A—C10A—C15A7.4 (4)N2B—N1B—C10B—C15B1.1 (4)
C15A—C10A—C11A—C12A1.5 (5)C15B—C10B—C11B—C12B0.1 (5)
N1A—C10A—C11A—C12A176.5 (3)N1B—C10B—C11B—C12B179.9 (3)
C10A—C11A—C12A—C13A0.2 (5)C10B—C11B—C12B—C13B0.1 (5)
C11A—C12A—C13A—C14A1.0 (5)C11B—C12B—C13B—C14B0.3 (5)
C11A—C12A—C13A—Br1A177.8 (2)C11B—C12B—C13B—Br1B177.5 (3)
C12A—C13A—C14A—C15A0.8 (5)C12B—C13B—C14B—C15B0.8 (5)
Br1A—C13A—C14A—C15A178.0 (2)Br1B—C13B—C14B—C15B177.1 (2)
C13A—C14A—C15A—C10A0.6 (5)C13B—C14B—C15B—C10B0.7 (5)
C11A—C10A—C15A—C14A1.7 (5)C11B—C10B—C15B—C14B0.3 (5)
N1A—C10A—C15A—C14A176.3 (3)N1B—C10B—C15B—C14B179.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6A/N4A/C7A/N5A/N6A ring.
D—H···AD—HH···AD···AD—H···A
N1A—HN1A···N7Ai0.822.182.979 (4)165
N1B—HN1B···N7Bi0.882.153.015 (4)167
C1A—H1AA···N3A0.952.403.022 (5)123
C2A—H2AA···N5Bii0.952.613.512 (4)159
C4A—H4AA···N6Biii0.952.463.257 (5)141
C1B—H1BA···N3B0.952.393.023 (5)123
C4B—H4BA···N6Aiii0.952.413.210 (5)142
C16A—H16B···N3B0.982.573.445 (5)149
C16A—H16C···Cg1iv0.982.723.469 (4)133
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+2, z+2; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H12BrN7S
Mr414.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)17.9868 (7), 10.3830 (3), 21.2154 (6)
β (°) 124.671 (2)
V3)3258.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.67
Crystal size (mm)0.19 × 0.19 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.629, 0.644
No. of measured, independent and
observed [I > 2σ(I)] reflections
30220, 9252, 4788
Rint0.058
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.112, 0.99
No. of reflections9252
No. of parameters453
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.87

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6A/N4A/C7A/N5A/N6A ring.
D—H···AD—HH···AD···AD—H···A
N1A—HN1A···N7Ai0.822.182.979 (4)165
N1B—HN1B···N7Bi0.882.153.015 (4)167
C1A—H1AA···N3A0.952.403.022 (5)123
C2A—H2AA···N5Bii0.952.613.512 (4)159
C4A—H4AA···N6Biii0.952.463.257 (5)141
C1B—H1BA···N3B0.952.393.023 (5)123
C4B—H4BA···N6Aiii0.952.413.210 (5)142
C16A—H16B···N3B0.982.573.445 (5)149
C16A—H16C···Cg1iv0.982.723.469 (4)133
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+2, z+2; (iv) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and SC thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAbdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573–1582.  CAS Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem. 16, 621–627.  Web of Science CrossRef CAS Google Scholar
First citationHolla, B. S., Akberali, P. M. & Shivananda, M. K. (2001). Farmaco, 56, 919–927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrasad, A. R., Ramalingam, T., Rao, A. B., Diwan, P. V. & Sattur, P. B. (1998). Eur. J. Med. Chem. 24, 199–201.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1512-o1513
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds