organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1527-o1528

2-Amino-4-nitro­phenol–1-(2,4,6-trihy­dr­oxy­phen­yl)ethanone (1/1)

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Kurupelit Samsun, Turkey, and bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: cankocabiyik@hotmail.com

(Received 5 April 2012; accepted 19 April 2012; online 25 April 2012)

In the title compound, C6H6N2O3·C8H8O4, the 2-amino-4-nitro­phenol (ANP) and 1-(2,4,6-trihy­droxy­phen­yl)ethanone (THA) mol­ecules are both nearly planar, with r.m.s. deviations of 0.0630 and 0.0313 Å, respectively. The angle between the least-squares planes of THA and ANP is 48.99 (2)°. In THA, an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds lead to the formation of a three-dimensional network. There are also inter­molecular ππ inter­actions between the benzene rings of ANP–ANP and of THA–THA mol­ecules, with centroid–centroid distances of 3.5313 (14) and 3.8440 (16) Å, respectively. Weak C—O⋯π and N—O⋯π inter­actions also occur.

Related literature

For the use of nitro­aromatics as inter­mediates in explosives, dyestuffs, pesticides and organic synthesis, see: Yan et al. (2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. (THEOCHEM), 764, 141-148.]). For the occurrence of nitro­aromatics in industrial wastes and as direct pollutants in the environment, see: Yan et al. (2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. (THEOCHEM), 764, 141-148.]); Soojhawon et al. (2005[Soojhawon, I., Lokhande, P. D., Kodam, K. M. & Gawai, K. R. (2005). Enz. Microb. Technol. 37, 527-533.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Tanak et al. (2009[Tanak, H., Macit, M., Yavuz, M. & Işık, Ş. (2009). Acta Cryst. E65, o3056-o3057.], 2010[Tanak, H., Erşahin, F., Yavuz, M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o2544.]); Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, o913.]); Bi et al. (2009[Bi, S., Wu, Y.-Z., Zhou, Y.-X., Tang, J.-G. & Guo, C. (2009). Acta Cryst. E65, o1378.]); Garden et al. (2004[Garden, S. J., Cunha, F. R. da, Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o12-o14.]); Serdiuk et al. (2011[Serdiuk, I. E., Wera, M., Roshal, A. D., Sowinski, P., Zadykowicz, B. & Błazejowski, J. (2011). Tetrahedron Lett. 52, 2737-2740.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N2O3·C8H8O4

  • Mr = 322.27

  • Monoclinic, P 2/c

  • a = 7.7255 (6) Å

  • b = 13.2184 (11) Å

  • c = 15.8335 (12) Å

  • β = 118.148 (5)°

  • V = 1425.67 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.80 × 0.35 × 0.09 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.942, Tmax = 0.992

  • 15333 measured reflections

  • 2961 independent reflections

  • 1841 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.098

  • S = 0.97

  • 2961 reflections

  • 252 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C7–C12 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O6i 0.93 (3) 2.28 (3) 3.067 (2) 141.5 (19)
N2—H2B⋯O6ii 0.93 (3) 2.36 (3) 3.241 (3) 157 (2)
O3—H3A⋯N1iii 0.84 (3) 2.59 (3) 3.358 (3) 153 (3)
O3—H3A⋯O1iii 0.84 (3) 2.39 (3) 2.953 (3) 125 (3)
O3—H3A⋯O2iii 0.84 (3) 2.13 (3) 2.975 (3) 178 (3)
O4—H4⋯N2 0.86 (3) 1.94 (3) 2.784 (2) 166 (2)
O5—H5A⋯O7i 0.88 (3) 1.87 (3) 2.748 (2) 175 (3)
O6—H6⋯O7 0.92 (3) 1.64 (3) 2.478 (2) 150 (2)
N1—O2⋯Cg2iv 1.22 (1) 3.82 (1) 3.599 (3) 70 (1)
C13—O7⋯Cg1v 1.25 (1) 3.52 (1) 3.722 (3) 89 (1)
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x-1, -y+1, z-{\script{1\over 2}}]; (iv) [-x, y, -z+{\script{1\over 2}}]; (v) -x+2, -y, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitroaromatics are widely used either as materials or as intermediates in explosives, dyestuffs, pesticides and organic synthesis (Yan et al., 2006). Nitroaromatics occur as industrial wastes and direct pollutants in the environment, and are relatively soluble in water and detectable in rivers, ponds and soil (Yan et al., 2006; Soojhawon et al., 2005).

The title compound (Fig. 1) crystallizes in the monoclinic space group P2/c with Z = 4 in the unit cell. The asymmetric unit in the crystal structure therefore contains only one formula unit. The bond lengths and angles of the ANP and THA moieties have normal values. The C4—N1 [1.448 (3) Å] and C13—C14 [1.486 (3) Å] bond distances are comparable to those observed in related structures (Ali et al., 2008; Tanak et al., 2009; Tanak et al., 2010; Bi et al., 2009; Garden et al., 2004; Serdiuk et al. 2011). The ANP and THA molecules are almost planar with the maximum deviations, -0.0694 (18) Å for atom O1 in the ANP and -0.152 (2) Å for atom C14 in the THA molecules. The dihedral angle between these rings is 48.99 (2)°.

The crystal packing of the title compound is stabilized by non-covalent hydrogen bond, π-π and X—Y···π-ring interactions. It can be seen from Fig. 2 that neighbouring ANP moieties are linked by O3—H3A···O1iii and O3—H3A···O2iii (iii: x - 1, -y + 1, z - 1/2) hydrogen bonds to form C(8) chains in direction [201], producing R12(4) rings (Bernstein et al., 1995). In addition, THA moieties are mutually connected to each other by O5—H5A···O7i hydrogen bonds (i: x, -y, z + 1/2), forming a C(8) chain running in direction [001] (Fig. 3). These two chains are further connected by N2—H2A···O6i, N2—H2B···O6ii (ii: -x + 1, -y, -z + 1) and O4—H4···N2 hydrogen bonds between ANP and THA moieties. The arrangement of ANP and THA gives rise to R22(8) and R34(12) rings. The N2 (in ANP) and O6 (in THA) atoms act as both donor and acceptor. Finally, the intra-molecular O6—H6···O7 hydrogen bond of THA generates an S(6) ring motif (Fig. 4).

In the extended structure of the compound, there are weak π-π and X—Y···π-ring interactions. The intermolecular π-π contact occurs between the two symmetry-related ANP (ring A) rings of neighboring molecules. Ring A is oriented in such a way that the distance between the ring centroids is 3.8440 (16) Å. The other π-π interaction is between THA (ring B) rings, with a distance of 3.5313 (14) Å between the ring centroids. Rings A and B are also involved in intermolecular N—O···π and C—O···π interactions through N atom of ANP and C atom of THA. With regard to the N—O···π contact, for two neighboring B rings,the distance between atom O2 and the center of ring B (CgB) is 3.822 (2) Å and the N1—O2···CgB angle is 70.29 (15)°. In addition, there are also C—O···π interactions between C13—O7 and A rings, which can be characterized by the O7···CgA distance of 3.521 (3) Å and the C13—O7···CgA angle of 89.33 (15)°.

Related literature top

For the use of nitroaromatics as intermediates in explosives, dyestuffs, pesticides and organic synthesis, see: Yan et al. (2006). For the occurrence of nitroaromatics in industrial wastes and as direct pollutants in the environment, see: Yan et al. (2006); Soojhawon et al. (2005). For graph-set motifs, see: Bernstein et al. (1995). For related structures, see: Tanak et al. (2009, 2010); Ali et al. (2008); Bi et al. (2009); Garden et al. (2004); Serdiuk et al. (2011).

Experimental top

1-(2,4,6-trihydroxyphenyl)ethanone-2-amino-4-nitrophenol (1/1) was prepared by refluxing a mixture of a solution containing 2,4,6-trihydroxyacetephenone (18,6 mg, 0,1 mmol) in ethanol (25 ml) and a solution containing 2-amino-4-nitrophenol (15,4 mg, 0,1 mmol) in ethanol (20 ml). The reaction mixture was stirred for 4 h under reflux. Single crystals of the title compound for X-ray analysis were obtained by slow evaporation of an ethanol solution (Yield 74%; m.p 442.-446 K).

Refinement top

The H atoms of the methyl group were positioned geometrically and treated using a riding model, with Uiso(H) = 1.5Ueq(C). All other H atoms were located in a difference map and refined freely.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. H-bonds (dotted lines) form R12(4) rings and C(8) chains running in the [201] direction.
[Figure 3] Fig. 3. The C(8) chain structure running along the [001] direction formed by H-bonds (dotted lines) between 2,4,6-trihydroxyacetephenone molecules.
[Figure 4] Fig. 4. H-bonds (dotted lines) form R34(12) and S(6)-rings.
2-Amino-4-nitrophenol–1-(2,4,6-trihydroxyphenyl)ethanone (1/1) top
Crystal data top
C6H6N2O3·C8H8O4F(000) = 672
Mr = 322.27Dx = 1.501 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 12619 reflections
a = 7.7255 (6) Åθ = 2.1–27.3°
b = 13.2184 (11) ŵ = 0.12 mm1
c = 15.8335 (12) ÅT = 296 K
β = 118.148 (5)°Prism, yellow
V = 1425.67 (19) Å30.80 × 0.35 × 0.09 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
2961 independent reflections
Radiation source: fine-focus sealed tube1841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.1°
rotation method scansh = 99
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 1616
Tmin = 0.942, Tmax = 0.992l = 1919
15333 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0466P)2]
where P = (Fo2 + 2Fc2)/3
2961 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H6N2O3·C8H8O4V = 1425.67 (19) Å3
Mr = 322.27Z = 4
Monoclinic, P2/cMo Kα radiation
a = 7.7255 (6) ŵ = 0.12 mm1
b = 13.2184 (11) ÅT = 296 K
c = 15.8335 (12) Å0.80 × 0.35 × 0.09 mm
β = 118.148 (5)°
Data collection top
Stoe IPDS 2
diffractometer
2961 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
1841 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.992Rint = 0.065
15333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.15 e Å3
2961 reflectionsΔρmin = 0.24 e Å3
252 parameters
Special details top

Experimental. IR (KBr, cm-1): 3523 ν(OH)THA, 3383 ν(NH2)asym, 3353 ν(NH2)sym+ν(OH)THA, 3298 ν(OH)THA, 3090–3000 ν(CH), 2850–2700 ν(CH3), 1628 ν(C=O)+δ(OH)THA+ν(ring)THA, 1614 ν(NH2)+ν(ring)ANP, 1571 δ(NH2), 1524 ν(NO2)asym, 1496–1476 δ(CH)+δ(OH)ANP, 1364–1339 δ(CH3)+δ(OH)THA, 1311–1251 ν(NO2)+ν(CO)ANP, 1203–1167–1147 ν(ring)+δ(OH). UV/Visible (nm): 226 (2,212 Å; ε= 19230 L mol-1cm-1) and 288 (1,815 Å; ε= 15780 L mol-1cm-1) ππ* transitions of benzene ring (E bands), 380 nm (0,345 Å; ε= 3000 L mol-1cm-1) ππ* transition of aniline (E2 band).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5977 (3)0.40750 (14)0.66694 (13)0.0394 (5)
C20.6191 (4)0.51128 (15)0.67342 (16)0.0498 (6)
C30.7703 (4)0.55477 (16)0.75249 (17)0.0520 (6)
C40.8964 (3)0.49206 (15)0.82522 (14)0.0456 (5)
C50.8776 (3)0.38806 (15)0.82066 (14)0.0411 (5)
C60.7271 (3)0.34480 (13)0.74077 (13)0.0361 (4)
C70.7798 (3)0.00373 (15)0.64563 (14)0.0411 (5)
C80.7390 (3)0.09742 (14)0.62254 (14)0.0423 (5)
C90.7120 (3)0.13396 (15)0.53533 (15)0.0461 (5)
C100.7236 (3)0.06837 (14)0.47110 (13)0.0409 (5)
C110.7631 (3)0.03665 (14)0.49051 (13)0.0380 (5)
C120.7933 (3)0.06963 (14)0.58187 (14)0.0395 (5)
C130.7601 (3)0.10280 (15)0.41713 (15)0.0466 (5)
C140.7792 (5)0.21463 (17)0.42704 (19)0.0779 (9)
H14A0.77310.24320.37000.117*
H14B0.90270.23160.48100.117*
H14C0.67420.24140.43650.117*
N11.0593 (3)0.53726 (17)0.90766 (15)0.0622 (6)
N20.7059 (3)0.23928 (13)0.72998 (14)0.0473 (5)
O11.0834 (3)0.62880 (15)0.91011 (15)0.0944 (7)
O21.1715 (3)0.48199 (16)0.97227 (13)0.0774 (6)
O30.4543 (3)0.35925 (12)0.59151 (11)0.0571 (5)
O40.8398 (3)0.16790 (11)0.60576 (12)0.0587 (5)
O50.7222 (3)0.16375 (12)0.68295 (12)0.0640 (5)
O60.6904 (3)0.10661 (12)0.38519 (11)0.0579 (5)
O70.7370 (3)0.06669 (11)0.33974 (10)0.0605 (5)
H20.532 (3)0.5607 (15)0.6211 (15)0.053 (6)*
H2A0.764 (3)0.2079 (17)0.7899 (18)0.061 (7)*
H2B0.575 (4)0.2194 (19)0.692 (2)0.078 (9)*
H30.790 (3)0.6232 (17)0.7574 (15)0.050 (6)*
H3A0.375 (5)0.404 (2)0.556 (2)0.100 (11)*
H40.812 (4)0.1827 (18)0.6505 (19)0.063 (8)*
H50.963 (3)0.3471 (14)0.8687 (15)0.042 (6)*
H5A0.734 (4)0.134 (2)0.735 (2)0.093 (10)*
H60.702 (4)0.0539 (18)0.3500 (18)0.067 (8)*
H70.802 (3)0.0289 (14)0.7084 (14)0.041 (5)*
H90.691 (3)0.2043 (18)0.5206 (16)0.060 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0367 (12)0.0479 (11)0.0311 (10)0.0011 (9)0.0139 (9)0.0043 (8)
C20.0508 (15)0.0448 (12)0.0474 (13)0.0077 (10)0.0178 (12)0.0048 (10)
C30.0570 (16)0.0380 (12)0.0619 (15)0.0002 (10)0.0287 (13)0.0089 (10)
C40.0387 (13)0.0540 (12)0.0407 (11)0.0053 (10)0.0161 (10)0.0169 (9)
C50.0402 (13)0.0514 (12)0.0298 (10)0.0053 (10)0.0149 (10)0.0007 (9)
C60.0402 (12)0.0384 (10)0.0328 (10)0.0000 (8)0.0199 (9)0.0029 (8)
C70.0444 (13)0.0483 (11)0.0307 (10)0.0019 (9)0.0178 (10)0.0075 (8)
C80.0452 (14)0.0439 (11)0.0382 (11)0.0033 (9)0.0199 (10)0.0011 (8)
C90.0573 (15)0.0368 (11)0.0455 (12)0.0008 (9)0.0254 (11)0.0066 (9)
C100.0435 (13)0.0450 (11)0.0325 (10)0.0013 (9)0.0165 (9)0.0100 (8)
C110.0346 (12)0.0460 (11)0.0335 (10)0.0017 (9)0.0163 (9)0.0056 (8)
C120.0374 (13)0.0435 (10)0.0381 (11)0.0055 (9)0.0183 (9)0.0108 (8)
C130.0477 (14)0.0534 (12)0.0426 (12)0.0058 (10)0.0245 (11)0.0056 (9)
C140.126 (3)0.0560 (14)0.0640 (17)0.0166 (15)0.0552 (18)0.0019 (12)
N10.0463 (14)0.0798 (15)0.0543 (13)0.0063 (11)0.0188 (11)0.0278 (11)
N20.0591 (14)0.0416 (10)0.0385 (10)0.0016 (9)0.0208 (10)0.0011 (8)
O10.0808 (15)0.0721 (12)0.1081 (17)0.0231 (10)0.0262 (12)0.0512 (11)
O20.0540 (12)0.1078 (14)0.0477 (10)0.0066 (11)0.0053 (9)0.0182 (10)
O30.0502 (11)0.0598 (10)0.0398 (9)0.0014 (8)0.0035 (8)0.0051 (7)
O40.0895 (14)0.0454 (8)0.0572 (10)0.0206 (8)0.0477 (10)0.0197 (7)
O50.1024 (15)0.0491 (8)0.0503 (10)0.0017 (8)0.0441 (10)0.0014 (7)
O60.0865 (13)0.0525 (9)0.0414 (8)0.0089 (8)0.0358 (9)0.0143 (7)
O70.0853 (13)0.0634 (9)0.0410 (8)0.0037 (8)0.0366 (9)0.0027 (7)
Geometric parameters (Å, º) top
C1—O31.346 (2)C10—O61.357 (2)
C1—C21.380 (3)C10—C111.424 (3)
C1—C61.396 (3)C11—C121.421 (3)
C2—C31.372 (3)C11—C131.445 (3)
C2—H21.02 (2)C12—O41.353 (2)
C3—C41.380 (3)C13—O71.247 (2)
C3—H30.91 (2)C13—C141.487 (3)
C4—C51.381 (3)C14—H14A0.9600
C4—N11.447 (3)C14—H14B0.9600
C5—C61.375 (3)C14—H14C0.9600
C5—H50.91 (2)N1—O11.222 (3)
C6—N21.405 (2)N1—O21.222 (3)
C7—C121.374 (3)N2—H2A0.93 (3)
C7—C81.383 (3)N2—H2B0.93 (3)
C7—H70.98 (2)O3—H3A0.84 (3)
C8—O51.348 (2)O4—H40.86 (3)
C8—C91.383 (3)O5—H5A0.88 (3)
C9—C101.371 (3)O6—H60.92 (3)
C9—H90.95 (2)
O3—C1—C2123.81 (19)O6—C10—C11119.96 (18)
O3—C1—C6115.21 (17)C9—C10—C11122.61 (18)
C2—C1—C6120.98 (19)C12—C11—C10115.75 (17)
C3—C2—C1120.3 (2)C12—C11—C13124.43 (17)
C3—C2—H2115.1 (11)C10—C11—C13119.73 (17)
C1—C2—H2124.5 (11)O4—C12—C7120.34 (17)
C2—C3—C4118.2 (2)O4—C12—C11118.28 (17)
C2—C3—H3121.8 (13)C7—C12—C11121.37 (17)
C4—C3—H3120.0 (14)O7—C13—C11119.92 (17)
C3—C4—C5122.63 (19)O7—C13—C14116.4 (2)
C3—C4—N1118.4 (2)C11—C13—C14123.62 (19)
C5—C4—N1118.9 (2)C13—C14—H14A109.5
C6—C5—C4118.97 (19)C13—C14—H14B109.5
C6—C5—H5119.0 (12)H14A—C14—H14B109.5
C4—C5—H5122.0 (12)C13—C14—H14C109.5
C5—C6—C1118.94 (17)H14A—C14—H14C109.5
C5—C6—N2121.59 (19)H14B—C14—H14C109.5
C1—C6—N2119.41 (18)O1—N1—O2121.9 (2)
C12—C7—C8120.37 (18)O1—N1—C4119.5 (2)
C12—C7—H7119.3 (11)O2—N1—C4118.7 (2)
C8—C7—H7120.3 (11)C6—N2—H2A110.2 (14)
O5—C8—C9117.50 (17)C6—N2—H2B112.7 (16)
O5—C8—C7121.84 (18)H2A—N2—H2B112 (2)
C9—C8—C7120.66 (19)C1—O3—H3A107 (2)
C10—C9—C8119.21 (18)C12—O4—H4108.3 (16)
C10—C9—H9119.9 (14)C8—O5—H5A112.0 (19)
C8—C9—H9120.9 (14)C10—O6—H6107.3 (15)
O6—C10—C9117.41 (17)
O3—C1—C2—C3179.5 (2)O6—C10—C11—C12179.20 (18)
C6—C1—C2—C30.9 (4)C9—C10—C11—C121.0 (3)
C1—C2—C3—C41.2 (4)O6—C10—C11—C132.4 (3)
C2—C3—C4—C50.9 (3)C9—C10—C11—C13175.8 (2)
C2—C3—C4—N1178.3 (2)C8—C7—C12—O4177.8 (2)
C3—C4—C5—C60.2 (3)C8—C7—C12—C111.0 (3)
N1—C4—C5—C6177.64 (19)C10—C11—C12—O4177.22 (19)
C4—C5—C6—C10.2 (3)C13—C11—C12—O46.2 (3)
C4—C5—C6—N2177.0 (2)C10—C11—C12—C71.6 (3)
O3—C1—C6—C5179.80 (19)C13—C11—C12—C7175.0 (2)
C2—C1—C6—C50.1 (3)C12—C11—C13—O7178.3 (2)
O3—C1—C6—N23.0 (3)C10—C11—C13—O75.2 (3)
C2—C1—C6—N2177.3 (2)C12—C11—C13—C142.9 (4)
C12—C7—C8—O5179.1 (2)C10—C11—C13—C14173.5 (2)
C12—C7—C8—C90.3 (3)C3—C4—N1—O11.4 (3)
O5—C8—C9—C10178.5 (2)C5—C4—N1—O1176.1 (2)
C7—C8—C9—C100.8 (3)C3—C4—N1—O2180.0 (2)
C8—C9—C10—O6178.1 (2)C5—C4—N1—O22.5 (3)
C8—C9—C10—C110.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C12 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6i0.93 (3)2.28 (3)3.067 (2)141.5 (19)
N2—H2B···O6ii0.93 (3)2.36 (3)3.241 (3)157 (2)
O3—H3A···N1iii0.84 (3)2.59 (3)3.358 (3)153 (3)
O3—H3A···O1iii0.84 (3)2.39 (3)2.953 (3)125 (3)
O3—H3A···O2iii0.84 (3)2.13 (3)2.975 (3)178 (3)
O4—H4···N20.86 (3)1.94 (3)2.784 (2)166 (2)
O5—H5A···O7i0.88 (3)1.87 (3)2.748 (2)175 (3)
O6—H6···O70.92 (3)1.64 (3)2.478 (2)150 (2)
N1—O2···Cg2iv1.22 (1)3.82 (1)3.599 (3)70 (1)
C13—O7···Cg1v1.25 (1)3.52 (1)3.722 (3)89 (1)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1; (iii) x1, y+1, z1/2; (iv) x, y, z+1/2; (v) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H6N2O3·C8H8O4
Mr322.27
Crystal system, space groupMonoclinic, P2/c
Temperature (K)296
a, b, c (Å)7.7255 (6), 13.2184 (11), 15.8335 (12)
β (°) 118.148 (5)
V3)1425.67 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.80 × 0.35 × 0.09
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.942, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
15333, 2961, 1841
Rint0.065
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.098, 0.97
No. of reflections2961
No. of parameters252
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.24

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C12 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6i0.93 (3)2.28 (3)3.067 (2)141.5 (19)
N2—H2B···O6ii0.93 (3)2.36 (3)3.241 (3)157 (2)
O3—H3A···N1iii0.84 (3)2.59 (3)3.358 (3)153 (3)
O3—H3A···O1iii0.84 (3)2.39 (3)2.953 (3)125 (3)
O3—H3A···O2iii0.84 (3)2.13 (3)2.975 (3)178 (3)
O4—H4···N20.86 (3)1.94 (3)2.784 (2)166 (2)
O5—H5A···O7i0.88 (3)1.87 (3)2.748 (2)175 (3)
O6—H6···O70.92 (3)1.64 (3)2.478 (2)150 (2)
N1—O2···Cg2iv1.223 (3)3.822 (2)3.599 (3)70.29 (15)
C13—O7···Cg1v1.247 (3)3.521 (3)3.722 (3)89.33 (15)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1; (iii) x1, y+1, z1/2; (iv) x, y, z+1/2; (v) x+2, y, z+1.
 

Acknowledgements

The authors sincerely thank Professor Dr Orhan Büyükgüngör and Dr Gökhan Kaştaş for their contributions.

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, o913.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBi, S., Wu, Y.-Z., Zhou, Y.-X., Tang, J.-G. & Guo, C. (2009). Acta Cryst. E65, o1378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGarden, S. J., Cunha, F. R. da, Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o12–o14.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSerdiuk, I. E., Wera, M., Roshal, A. D., Sowinski, P., Zadykowicz, B. & Błazejowski, J. (2011). Tetrahedron Lett. 52, 2737–2740.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoojhawon, I., Lokhande, P. D., Kodam, K. M. & Gawai, K. R. (2005). Enz. Microb. Technol. 37, 527–533.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTanak, H., Erşahin, F., Yavuz, M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o2544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTanak, H., Macit, M., Yavuz, M. & Işık, Ş. (2009). Acta Cryst. E65, o3056–o3057.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. (THEOCHEM), 764, 141–148.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1527-o1528
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds