organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1396

1-Eth­­oxy­methyl-5-methyl-9-phenyl-6,7,8,9-tetra­hydro-1H-pyrimido[4,5-b][1,4]diazepine-2,4(3H,5H)-dione

aDepartment of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
*Correspondence e-mail: jyliu@bjmu.edu.cn

(Received 14 March 2012; accepted 5 April 2012; online 18 April 2012)

The title compound, C17H22N4O3, comprises a 1,4-diazepine ring in a twist-boat conformation fused to a pyrimidine ring. The dihedral angle between the pyrimidine and phenyl rings is 80.8 (1)°. The crystal packing features N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the preparation of 2,4-dimeth­oxy-5-methyl-9-phenyl-8,9-dihydro-5H- pyrimido[4,5-b][1,4]diazepin-6(7H), see: Li et al. (2012[Li, G., Wang, X., Tian, C., Zhang, T., Zhang, Z. & Liu, J. (2012). Tetrahedron Lett. Submitted.]). For the biological activity of compounds with a pyrimidodiazepine scaffold, see: Ferreira et al. (2009[Ferreira, M. D. R. R., Cecere, G., Pace, P. & Summa, V. (2009). Tetrahedron Lett. 50, 148-151.]); Gracias et al. (2008[Gracias, V., Ji, Z., Akritopoulou-Zanze, I., Abad-Zapatero, C., Huth, J. R., Song, D., Hajduk, P. J., Johnson, E. F., Glaser, K. B., Marcotte, P. A., Pease, L., Soni, N. B., Stewart, K. D., Davidsen, S. K., Michaelides, M. R. & Djuric, S. W. (2008). Bioorg. Med. Chem. Lett. 18, 2691-2695.]); Insuasty et al. (2008[Insuasty, B., Orozco, F., Quiroga, J., Abonia, R., Nogueras, M. & Cobo, J. (2008). Eur. J. Med. Chem. 43, 1955-1962.]); Chen et al. (2012[Chen, S., Bartkovitz, D., Cai, J., Chen, Y., Chen, Z., Chu, X., Le, K., Le, N., Luk, K., Mischke, S., Naderi-Oboodi, G., Boylan, J., Nevins, T., Qing, W., Chen, Y. & Wovkulich, P. M. (2012). Bioorg. Med. Chem. Lett. 22, 1247-1250.]). The title compound was obtained during work on the structural modification of our previously reported HIV-1 reverse transcriptase inhibitor, see: Wang et al. (2006[Wang, X., Lou, Q., Guo, Y., Zhang, Z. & Liu, J. (2006). Org. Biomol. Chem. 4, 3252-3258.]).

[Scheme 1]

Experimental

Crystal data
  • C17H22N4O3

  • Mr = 330.39

  • Monoclinic, P 21 /n

  • a = 13.831 (3) Å

  • b = 8.9904 (18) Å

  • c = 14.978 (3) Å

  • β = 112.79 (3)°

  • V = 1717.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID IPdiffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.965, Tmax = 0.974

  • 7151 measured reflections

  • 3921 independent reflections

  • 1601 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.250

  • S = 0.86

  • 3921 reflections

  • 218 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.95 (4) 1.91 (4) 2.862 (4) 175 (3)
C13—H13⋯O1ii 0.93 2.49 3.397 (5) 164
Symmetry codes: (i) -x+1, -y, -z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2000[Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2000[Rigaku/MSC (2000). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (Fig. 1) belongs to a class having pyrimidodiazepine scaffold which in recent years has exhibited a range of biological activities such as antitumor agents (Insuasty et al., 2008; Chen et al., 2012), HIV-integrase inhibitors (Ferreira et al., 2009) and receptor tyrosine kinase inhibitors (Gracias et al., 2008). The title compound is gained during the structural modification work of our previously reported HIV-1 reverse transcriptase inhibitor (Wang et al., 2006). The main goal of this modification is to enhance the physicochemical properties and the flexibility of the seven-membered ring fused to the pyrimidine ring.

In the title compound, the dihedral angle between the phenyl ring and the pyrimidine ring is 80.8 (1)°. The diazepine ring exhibits a twist-boat conformation. To make a clear description of this boat conformation, the C4, C6, N3 and N4 atoms are regarded as coplanar, so that the C2, C7 and C5 atoms lie at the same side of the plane.

In the crystal structure, the molecules are linked by an intermolecular hydrogen bond [N1-H···O 2.862 (4) and C13-H···O1 3.397 (5)Å] (Table 1, Fig. 2).

Related literature top

For the preparation of 2,4-dimethoxy-5-methyl-9-phenyl-8,9-dihydro-5H- pyrimido[4,5-b][1,4]diazepin-6(7H), see: Li et al. (2012). For the biological activity of compounds with a pyrimidodiazepine scaffold, see: Ferreira et al. (2009); Gracias et al. (2008); Insuasty et al. (2008); Chen et al. (2012). The title compound was obtained during work on the structural modification of our previously reported HIV-1 reverse transcriptase inhibitor, see: Wang et al. (2006).

Experimental top

The important intermediate 2,4-dimethoxy-5-methyl-9-phenyl-8,9-dihydro-5H- pyrimido[4,5-b][1,4]diazepin-6(7H)-one was prepared according to our procedure (Li et al., 2012). To a suspension of LiAlH4 (13 mg, 0.34 mmol, 2 equiv) in dry Et2O (15 mL) the above-mentioned intermediate lactam (0.17 mmol) was slowly added. Then the mixture was refluxed for 15 min, monitored by TLC. The mixture was cooled to rt, and quenched with a minimum amount of saturated aqueous sodium sulfate solution. Then the mixture was diluted with EtOAc, washed with brine. The organic layer was dried over anhydrous Na2SO4 and concentrated in vacuo to give a yellow oil. This was purified by column chromatograpy on silica gel. Elution with solvent mixture petroleum ether: EtOAc = 7: 1 gave the 2,4-dimethoxy-5-methyl-9-phenyl-6,7,8,9-tetrahydro-5H-pyrimido[4,5-b][1,4]diazepine in 76% yield. The reduction product (70 mg, 0.23 mmol) was dissolved in THF (25 mL) at room temperature and then concentrated hydrochloric acid (0.5 mL) was added. The mixture was refluxed for 8 h and monitored by TLC. Then the mixture was neutralised by saturated sodium bicarbonate solution and extracted twice with EtOAc (20 mL). The combined organic fractions were washed with brine, dried over anhydrous Na2SO4 and concentrated. Then recrystallization from MeOH/EtOAc/petroleum ether gave the colourless crystal product 43 mg, in 73% yield. To a suspension of the corresponding uracil (0.1 mmol) in chloroform (2 mL) N,O-bis(trimethylsilyl)acetamide (BSA) (0.25 mmol, 2.5equiv) was added and the stirring was continued until a clear solution was observed. Then chloromethyl ethyl ether (0.13 mmol) was added and the reaction mixture was stirred until no change in amount of the starting material. The reaction was quenched with a saturated solution of NaHCO3 and extracted twice with CHCl3 (10 mL). The combined organic fractions were washed with brine, dried over anhydrous Na2SO4 and concentrated in vacuo to give a yellow oil. This was purified by a thin layer chromatograpy on silica gel. Developing with dichloromethane: MeOH = 50: 1 gave the pure title compound in 69% yield. Then recrystallization from EtOAc/petroleum ether gave the colourless crystal. 1H NMR (400 MHz, CDCl3) δ 8.72 (s, 1H), 7.31 (t, J = 7.6 Hz,2H), 6.96 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 7.6 Hz, 2H), 4.93 (s, 2H),3.77 (br s, 2H), 3.47 (q, J = 7.2 Hz, 2H), 3.01 (t, J = 5.6 Hz, 2H), 2.81(s, 3H), 1.89 (t, J = 5.6 Hz, 2H),1.11 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 162.14, 151.14, 145.05, 129.81, 121.32, 116.09, 72.96, 64.80, 51.25, 48.93,39.79, 23.01, 15.03. Anal. Calcd. for C17H22N4O3: C, 61.80; H, 6.71; N, 16. 96. Found: C, 61.71; H, 6.616; N, 17.00.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aryl, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms, N—H = 0.93 Å. Uiso(H) = 1.5Ueq(C) for the methyl groups, 1.2Ueq(C) for methylene, and 0.07Ueq(N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of compound (I), showing the atom-labelling scheme. The non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis. The intermolecular hydrogen bonds are denoted by dashed lines.
1-Ethoxymethyl-5-methyl-9-phenyl-6,7,8,9-tetrahydro-1H- pyrimido[4,5-b][1,4]diazepine-2,4(3H,5H)-dione top
Crystal data top
C17H22N4O3F(000) = 704
Mr = 330.39Dx = 1.278 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.831 (3) Åθ = 2.6–27.5°
b = 8.9904 (18) ŵ = 0.09 mm1
c = 14.978 (3) ÅT = 298 K
β = 112.79 (3)°Block, colourless
V = 1717.1 (6) Å30.40 × 0.30 × 0.30 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3921 independent reflections
Radiation source: fine-focus sealed tube1601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 2.6°
Ω scansh = 1717
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.965, Tmax = 0.974l = 1919
7151 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.250 w = 1/[σ2(Fo2) + (0.151P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.004
3921 reflectionsΔρmax = 0.70 e Å3
218 parametersΔρmin = 0.59 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.062 (7)
Crystal data top
C17H22N4O3V = 1717.1 (6) Å3
Mr = 330.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.831 (3) ŵ = 0.09 mm1
b = 8.9904 (18) ÅT = 298 K
c = 14.978 (3) Å0.40 × 0.30 × 0.30 mm
β = 112.79 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3921 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1601 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.974Rint = 0.041
7151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.250H atoms treated by a mixture of independent and constrained refinement
S = 0.86Δρmax = 0.70 e Å3
3921 reflectionsΔρmin = 0.59 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3598 (3)0.0927 (4)0.1226 (2)0.0529 (8)
C20.3869 (3)0.1940 (4)0.2044 (2)0.0509 (8)
C30.2088 (3)0.2532 (6)0.1902 (3)0.1021 (16)
H3A0.20260.28440.12690.153*
H3B0.18550.33170.22050.153*
H3C0.16650.16640.18470.153*
C40.3437 (4)0.1949 (5)0.3481 (3)0.0979 (15)
H4A0.30720.10670.35580.118*
H4B0.31810.27840.37380.118*
C50.4578 (4)0.1761 (5)0.4074 (3)0.0916 (15)
H5A0.46650.15150.47310.110*
H5B0.48340.09250.38200.110*
C60.5239 (4)0.3082 (5)0.4105 (3)0.0927 (15)
H6A0.50430.38860.44330.111*
H6B0.59660.28360.44850.111*
C70.4813 (3)0.2614 (3)0.2368 (2)0.0481 (8)
C80.5306 (3)0.1445 (4)0.1140 (2)0.0540 (9)
C90.6648 (3)0.2706 (4)0.2460 (2)0.0624 (10)
H9A0.70250.26560.20340.075*
H9B0.67230.36990.27320.075*
C100.7968 (4)0.1714 (8)0.3765 (4)0.1291 (15)
H10A0.80760.26880.40670.155*
H10B0.83900.16730.33770.155*
C110.8383 (4)0.0601 (7)0.4539 (4)0.1291 (15)
H11A0.79530.05770.49110.194*
H11B0.90880.08600.49540.194*
H11C0.83790.03600.42590.194*
C120.5293 (2)0.5115 (4)0.3007 (2)0.0483 (8)
C130.5958 (3)0.5994 (4)0.3752 (3)0.0632 (10)
H130.63390.55860.43580.076*
C140.6045 (3)0.7501 (4)0.3579 (3)0.0729 (11)
H140.64770.81010.40810.087*
C150.5513 (3)0.8117 (4)0.2692 (3)0.0785 (12)
H150.55900.91210.25860.094*
C160.4866 (3)0.7244 (4)0.1964 (3)0.0732 (11)
H160.44970.76620.13590.088*
C170.4749 (3)0.5758 (4)0.2106 (2)0.0590 (9)
H170.43050.51790.15980.071*
H1A0.420 (3)0.018 (4)0.027 (3)0.070 (10)*
N10.4323 (2)0.0844 (3)0.07953 (19)0.0533 (7)
N20.55515 (19)0.2347 (3)0.19371 (18)0.0505 (7)
N30.5151 (2)0.3599 (3)0.31555 (17)0.0561 (8)
N40.3169 (2)0.2189 (4)0.2482 (2)0.0805 (10)
O10.2790 (2)0.0204 (3)0.08886 (18)0.0761 (8)
O20.59235 (19)0.1200 (3)0.07421 (17)0.0757 (8)
O30.7038 (2)0.1625 (4)0.3210 (2)0.1100 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.067 (2)0.046 (2)0.0511 (18)0.0031 (17)0.0282 (17)0.0018 (16)
C20.061 (2)0.0484 (19)0.0545 (18)0.0016 (16)0.0342 (16)0.0008 (15)
C30.078 (3)0.119 (4)0.127 (4)0.010 (3)0.060 (3)0.012 (3)
C40.135 (4)0.098 (4)0.098 (3)0.014 (3)0.085 (3)0.013 (3)
C50.143 (4)0.081 (3)0.076 (3)0.009 (3)0.070 (3)0.016 (2)
C60.152 (4)0.084 (3)0.053 (2)0.028 (3)0.052 (3)0.007 (2)
C70.067 (2)0.0424 (18)0.0439 (16)0.0054 (16)0.0318 (16)0.0012 (14)
C80.069 (2)0.052 (2)0.0523 (18)0.0014 (17)0.0350 (17)0.0020 (17)
C90.063 (2)0.070 (3)0.057 (2)0.0059 (19)0.0268 (17)0.0037 (19)
C100.106 (3)0.161 (4)0.096 (3)0.004 (3)0.013 (2)0.026 (3)
C110.106 (3)0.161 (4)0.096 (3)0.004 (3)0.013 (2)0.026 (3)
C120.0493 (18)0.051 (2)0.0492 (18)0.0033 (15)0.0242 (15)0.0057 (16)
C130.066 (2)0.066 (3)0.060 (2)0.0027 (19)0.0265 (18)0.0080 (19)
C140.076 (3)0.060 (3)0.089 (3)0.014 (2)0.039 (2)0.024 (2)
C150.094 (3)0.048 (2)0.105 (3)0.002 (2)0.051 (3)0.001 (2)
C160.085 (3)0.058 (3)0.076 (3)0.009 (2)0.031 (2)0.008 (2)
C170.062 (2)0.054 (2)0.061 (2)0.0036 (17)0.0227 (18)0.0037 (18)
N10.0655 (19)0.0505 (17)0.0509 (16)0.0029 (14)0.0304 (14)0.0101 (14)
N20.0560 (17)0.0541 (17)0.0502 (15)0.0006 (13)0.0303 (13)0.0030 (13)
N30.082 (2)0.0504 (18)0.0420 (14)0.0028 (14)0.0310 (14)0.0031 (13)
N40.075 (2)0.114 (3)0.070 (2)0.0053 (19)0.0478 (18)0.0150 (19)
O10.0730 (17)0.0815 (19)0.0795 (17)0.0219 (15)0.0360 (14)0.0220 (15)
O20.0804 (18)0.088 (2)0.0769 (17)0.0075 (14)0.0507 (15)0.0232 (14)
O30.073 (2)0.168 (3)0.0755 (19)0.009 (2)0.0146 (16)0.035 (2)
Geometric parameters (Å, º) top
C1—O11.221 (4)C9—O31.424 (4)
C1—N11.389 (4)C9—N21.448 (4)
C1—C21.454 (4)C9—H9A0.9700
C2—C71.347 (4)C9—H9B0.9700
C2—N41.382 (4)C10—O31.235 (5)
C3—N41.442 (5)C10—C111.470 (7)
C3—H3A0.9600C10—H10A0.9700
C3—H3B0.9600C10—H10B0.9700
C3—H3C0.9600C11—H11A0.9600
C4—N41.412 (5)C11—H11B0.9600
C4—C51.491 (6)C11—H11C0.9600
C4—H4A0.9700C12—C131.386 (4)
C4—H4B0.9700C12—C171.392 (4)
C5—C61.488 (6)C12—N31.407 (4)
C5—H5A0.9700C13—C141.393 (5)
C5—H5B0.9700C13—H130.9300
C6—N31.456 (4)C14—C151.362 (5)
C6—H6A0.9700C14—H140.9300
C6—H6B0.9700C15—C161.360 (5)
C7—N31.403 (4)C15—H150.9300
C7—N21.424 (4)C16—C171.372 (5)
C8—O21.235 (4)C16—H160.9300
C8—N11.366 (4)C17—H170.9300
C8—N21.373 (4)N1—H1A0.95 (4)
O1—C1—N1119.3 (3)O3—C10—H10A107.7
O1—C1—C2125.4 (3)C11—C10—H10A107.7
N1—C1—C2115.3 (3)O3—C10—H10B107.7
C7—C2—N4121.0 (3)C11—C10—H10B107.7
C7—C2—C1118.9 (3)H10A—C10—H10B107.1
N4—C2—C1120.1 (3)C10—C11—H11A109.5
N4—C3—H3A109.5C10—C11—H11B109.5
N4—C3—H3B109.5H11A—C11—H11B109.5
H3A—C3—H3B109.5C10—C11—H11C109.5
N4—C3—H3C109.5H11A—C11—H11C109.5
H3A—C3—H3C109.5H11B—C11—H11C109.5
H3B—C3—H3C109.5C13—C12—C17119.0 (3)
N4—C4—C5115.5 (3)C13—C12—N3121.0 (3)
N4—C4—H4A108.4C17—C12—N3120.0 (3)
C5—C4—H4A108.4C12—C13—C14118.9 (3)
N4—C4—H4B108.4C12—C13—H13120.6
C5—C4—H4B108.4C14—C13—H13120.6
H4A—C4—H4B107.5C15—C14—C13121.6 (4)
C6—C5—C4115.1 (4)C15—C14—H14119.2
C6—C5—H5A108.5C13—C14—H14119.2
C4—C5—H5A108.5C16—C15—C14119.1 (4)
C6—C5—H5B108.5C16—C15—H15120.4
C4—C5—H5B108.5C14—C15—H15120.4
H5A—C5—H5B107.5C15—C16—C17121.2 (4)
N3—C6—C5114.0 (3)C15—C16—H16119.4
N3—C6—H6A108.8C17—C16—H16119.4
C5—C6—H6A108.8C16—C17—C12120.2 (3)
N3—C6—H6B108.8C16—C17—H17119.9
C5—C6—H6B108.8C12—C17—H17119.9
H6A—C6—H6B107.7C8—N1—C1126.6 (3)
C2—C7—N3123.2 (3)C8—N1—H1A113 (2)
C2—C7—N2121.8 (3)C1—N1—H1A119 (2)
N3—C7—N2115.0 (3)C8—N2—C7120.9 (3)
O2—C8—N1121.3 (3)C8—N2—C9117.1 (3)
O2—C8—N2122.8 (3)C7—N2—C9120.2 (3)
N1—C8—N2115.9 (3)C7—N3—C12120.0 (2)
O3—C9—N2105.8 (3)C7—N3—C6119.6 (3)
O3—C9—H9A110.6C12—N3—C6120.0 (3)
N2—C9—H9A110.6C2—N4—C4122.3 (3)
O3—C9—H9B110.6C2—N4—C3120.2 (3)
N2—C9—H9B110.6C4—N4—C3117.1 (3)
H9A—C9—H9B108.7C10—O3—C9117.7 (4)
O3—C10—C11118.3 (5)
O1—C1—C2—C7176.9 (3)N1—C8—N2—C9165.3 (3)
N1—C1—C2—C75.3 (4)C2—C7—N2—C83.3 (5)
O1—C1—C2—N42.4 (5)N3—C7—N2—C8177.8 (3)
N1—C1—C2—N4175.4 (3)C2—C7—N2—C9161.2 (3)
N4—C4—C5—C663.4 (5)N3—C7—N2—C917.8 (4)
C4—C5—C6—N356.3 (5)O3—C9—N2—C893.3 (3)
N4—C2—C7—N30.1 (5)O3—C9—N2—C771.8 (4)
C1—C2—C7—N3179.5 (3)C2—C7—N3—C12112.7 (4)
N4—C2—C7—N2178.7 (3)N2—C7—N3—C1268.4 (4)
C1—C2—C7—N20.6 (5)C2—C7—N3—C660.4 (5)
C17—C12—C13—C141.1 (5)N2—C7—N3—C6118.5 (4)
N3—C12—C13—C14177.8 (3)C13—C12—N3—C7156.5 (3)
C12—C13—C14—C151.5 (5)C17—C12—N3—C724.5 (4)
C13—C14—C15—C161.2 (6)C13—C12—N3—C630.4 (5)
C14—C15—C16—C170.5 (6)C17—C12—N3—C6148.6 (4)
C15—C16—C17—C120.2 (5)C5—C6—N3—C723.0 (6)
C13—C12—C17—C160.5 (5)C5—C6—N3—C12150.2 (4)
N3—C12—C17—C16178.4 (3)C7—C2—N4—C455.7 (5)
O2—C8—N1—C1173.7 (3)C1—C2—N4—C4123.6 (4)
N2—C8—N1—C17.3 (5)C7—C2—N4—C3132.0 (4)
O1—C1—N1—C8172.3 (3)C1—C2—N4—C348.7 (5)
C2—C1—N1—C89.8 (5)C5—C4—N4—C213.9 (6)
O2—C8—N2—C7179.3 (3)C5—C4—N4—C3173.6 (4)
N1—C8—N2—C70.4 (4)C11—C10—O3—C9179.7 (5)
O2—C8—N2—C915.7 (5)N2—C9—O3—C10179.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.95 (4)1.91 (4)2.862 (4)175 (3)
C13—H13···O1ii0.932.493.397 (5)164
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H22N4O3
Mr330.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)13.831 (3), 8.9904 (18), 14.978 (3)
β (°) 112.79 (3)
V3)1717.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.965, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
7151, 3921, 1601
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.250, 0.86
No. of reflections3921
No. of parameters218
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.59

Computer programs: RAPID-AUTO (Rigaku, 2000), CrystalStructure (Rigaku/MSC, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.95 (4)1.91 (4)2.862 (4)175 (3)
C13—H13···O1ii0.932.493.397 (5)164
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China. We also express our appreciation to Mr Wenxiong Zhang and Nengdong Wang for helping in the resolution of the title compound.

References

First citationChen, S., Bartkovitz, D., Cai, J., Chen, Y., Chen, Z., Chu, X., Le, K., Le, N., Luk, K., Mischke, S., Naderi-Oboodi, G., Boylan, J., Nevins, T., Qing, W., Chen, Y. & Wovkulich, P. M. (2012). Bioorg. Med. Chem. Lett. 22, 1247–1250.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFerreira, M. D. R. R., Cecere, G., Pace, P. & Summa, V. (2009). Tetrahedron Lett. 50, 148–151.  Web of Science CrossRef CAS Google Scholar
First citationGracias, V., Ji, Z., Akritopoulou-Zanze, I., Abad-Zapatero, C., Huth, J. R., Song, D., Hajduk, P. J., Johnson, E. F., Glaser, K. B., Marcotte, P. A., Pease, L., Soni, N. B., Stewart, K. D., Davidsen, S. K., Michaelides, M. R. & Djuric, S. W. (2008). Bioorg. Med. Chem. Lett. 18, 2691–2695.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationInsuasty, B., Orozco, F., Quiroga, J., Abonia, R., Nogueras, M. & Cobo, J. (2008). Eur. J. Med. Chem. 43, 1955–1962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, G., Wang, X., Tian, C., Zhang, T., Zhang, Z. & Liu, J. (2012). Tetrahedron Lett. Submitted.  Google Scholar
First citationRigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2000). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Lou, Q., Guo, Y., Zhang, Z. & Liu, J. (2006). Org. Biomol. Chem. 4, 3252–3258.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1396
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds