metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m585-m586

catena-Poly[(trans-di­aqua­cadmium)-bis­­{μ-5-[4-(1H-imidazol-1-yl)phen­yl]tetra­zol-1-ido}]

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bSchool of Enviroment Science and Engineering, Donghua University, Shanghai 200051, People's Republic of China, and cCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 17 March 2012; accepted 4 April 2012; online 13 April 2012)

In the title compound, [Cd(C10H7N6)2(H2O)2], the CdII atom lies on an inversion centre and is coordinated by four N atoms from 5-[4-(1H-imidazol-1-yl)phen­yl]tetra­zol-1-ide ligands and two O atoms from the coordinated water mol­ecules in an octa­hedral arrangement. The complex polymeric chains are inter­connected via inter­molecular water O—H⋯N hydrogen bonds into a three-dimensional network.

Related literature

For our previous work based on imidazole derivatives as ligands, see: Tong, Li et al. (2011[Tong, S.-W., Li, S.-J., Song, W.-D., Miao, D.-L. & An, J.-B. (2011). Acta Cryst. E67, m1870-m1871.]); Li et al. (2010[Li, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096-m1097.]). For related structures, see: Huang et al. (2009[Huang, R. Y., Zhu, K., Chen, H., Liu, G. X. & Ren, X. M. (2009). Wuji Huaxue Xuebao, 25, 162-165.]); Cheng (2011[Cheng, X.-C. (2011). Acta Cryst. E67, m1757.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H7N6)2(H2O)2]

  • Mr = 570.86

  • Triclinic, [P \overline 1]

  • a = 7.6070 (6) Å

  • b = 8.0621 (8) Å

  • c = 9.1509 (9) Å

  • α = 102.762 (1)°

  • β = 97.495 (1)°

  • γ = 106.073 (2)°

  • V = 514.84 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 298 K

  • 0.22 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.792, Tmax = 0.851

  • 2591 measured reflections

  • 1768 independent reflections

  • 1708 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.14

  • 1768 reflections

  • 160 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N6 2.264 (2)
Cd1—N1 2.385 (2)
Cd1—O1W 2.461 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N4i 0.85 2.06 2.903 (3) 171
O1W—H2W⋯N3ii 0.85 2.11 2.953 (3) 171
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The ligands having more N atoms can be used to synthesize complexes of variety of cordination modes. Our research group has show great interest in the metal-organic complexes with imidazole and tetrazole derivatives, such as 2-propyl-imidazole-4,5-dicarboxylic acid (Tong, Li et al., 2011; Li et al., 2010) and 1-tetrazole-4-imidazolebenzene. In this paper, we report the synthesis and structure of a new CdII complex, [Cd(C8H9N2O4)4(H2O)2]n obtained under hydrothermal conditions. An asymmmetric unit of the title complex molecule includes one CdII, 1-tetrazole-4-imidazolebenzene ligand and a coordinated water molecule (Fig. 1). The CdII atom is octahedrally coordinated and lies on an inversion centre, connected with four ligands [two imidazole N and two tetrazole N, Cd—N =2.264 (2) and 2.385 (2) Å] and two coordinated water molecules [Cd—O=2.461 (2) Å] (Table 1). The polymer chains (Fig. 2) are interconnected via water O—H···O and O—H···N hydrogen bonds (Table 2). For related structures of complexes with this ligand, see Huang et al. (2009) and Cheng (2011).

Related literature top

For our previous work based on imidazole derivatives as ligands, see: Tong, Li et al. (2011); Li et al. (2010). For related structures, see: Huang et al. (2009); Cheng (2011).

Experimental top

A mixture of cadmium nitrate (0.1 mmol, 0.020 g) and 1-tetrazole-4-imidazole-benzene (0.2 mmol, 0.043 g) in 12 mL of water and 3 mL of alcohol was sealed in an autoclave equipped with a Teflon liner (25 mL) and then heated at 413 K for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

H atoms of the water molecule were located in a difference-Fourier map and refined as riding with an O—H distance restraint of 0.85 Å, with Uiso(H) = 1.5 Ueq. The imidazolyl and phenyl H atoms were located in a difference-Fourier but were refined as riding with C—H = 0.93 Å and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An asymmetric unit of (I)and atom numbering scheme for the title complex showing 30% probability ellipsoids. For symmetry codes: (i) -x + 3, -y + 1, -z + 1; (ii) -x + 2, -y, -z; (iii) x + 1, y + 1, z + 1.
[Figure 2] Fig. 2. Polymeric chain of Cd(II) octahedra.
catena-Poly[(trans-diaquacadmium)-bis{µ- 5-[4-(1H-imidazol-1-yl)phenyl]tetrazol-1-ido}] top
Crystal data top
[Cd(C10H7N6)2(H2O)2]Z = 1
Mr = 570.86F(000) = 286
Triclinic, P1Dx = 1.841 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6070 (6) ÅCell parameters from 1702 reflections
b = 8.0621 (8) Åθ = 2.5–25.9°
c = 9.1509 (9) ŵ = 1.11 mm1
α = 102.762 (1)°T = 298 K
β = 97.495 (1)°Block, colourless
γ = 106.073 (2)°0.22 × 0.21 × 0.15 mm
V = 514.84 (8) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1768 independent reflections
Radiation source: fine-focus sealed tube1708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 59
Tmin = 0.792, Tmax = 0.851k = 98
2591 measured reflectionsl = 108
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.1705P]
where P = (Fo2 + 2Fc2)/3
1768 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.48 e Å3
3 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Cd(C10H7N6)2(H2O)2]γ = 106.073 (2)°
Mr = 570.86V = 514.84 (8) Å3
Triclinic, P1Z = 1
a = 7.6070 (6) ÅMo Kα radiation
b = 8.0621 (8) ŵ = 1.11 mm1
c = 9.1509 (9) ÅT = 298 K
α = 102.762 (1)°0.22 × 0.21 × 0.15 mm
β = 97.495 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1768 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1708 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.851Rint = 0.015
2591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.14Δρmax = 0.48 e Å3
1768 reflectionsΔρmin = 0.62 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.02370 (13)
N10.2660 (3)0.6294 (3)0.4304 (3)0.0252 (6)
N20.3282 (3)0.8094 (3)0.4926 (3)0.0280 (6)
N30.2042 (3)0.8776 (3)0.4406 (3)0.0278 (6)
N40.0567 (3)0.7454 (3)0.3421 (3)0.0274 (6)
N50.3041 (3)0.1036 (3)0.0476 (3)0.0218 (5)
N60.4348 (3)0.3262 (3)0.2564 (3)0.0242 (5)
O1W0.6896 (3)0.7364 (3)0.4031 (3)0.0297 (5)
H2W0.70790.84540.44920.045*
H1W0.79190.72680.38060.045*
C10.0999 (4)0.5951 (4)0.3384 (3)0.0215 (6)
C20.0149 (4)0.4151 (4)0.2423 (3)0.0214 (6)
C30.0003 (4)0.2630 (4)0.2830 (4)0.0258 (7)
H30.07630.27560.37570.031*
C40.0950 (4)0.0934 (4)0.1889 (3)0.0259 (7)
H40.08180.00710.21730.031*
C50.2105 (4)0.0742 (4)0.0518 (3)0.0207 (6)
C60.2325 (4)0.2233 (4)0.0103 (4)0.0284 (7)
H60.31230.21000.08060.034*
C70.1346 (4)0.3928 (4)0.1053 (4)0.0284 (7)
H70.14890.49310.07730.034*
C80.3743 (4)0.1495 (4)0.2001 (3)0.0241 (6)
H80.37930.06830.25730.029*
C90.4018 (4)0.3952 (4)0.1350 (4)0.0272 (7)
H90.43040.51670.14060.033*
C100.3218 (4)0.2606 (4)0.0065 (4)0.0272 (7)
H100.28570.27170.09100.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02649 (19)0.02043 (18)0.02061 (19)0.00771 (13)0.00038 (12)0.00108 (12)
N10.0254 (14)0.0177 (12)0.0279 (14)0.0069 (10)0.0013 (11)0.0009 (11)
N20.0273 (14)0.0175 (12)0.0335 (15)0.0036 (11)0.0016 (11)0.0025 (11)
N30.0287 (14)0.0188 (13)0.0337 (15)0.0072 (11)0.0035 (11)0.0043 (11)
N40.0273 (14)0.0208 (13)0.0311 (15)0.0078 (11)0.0007 (11)0.0040 (11)
N50.0237 (13)0.0185 (12)0.0198 (13)0.0049 (10)0.0007 (10)0.0026 (10)
N60.0262 (13)0.0199 (12)0.0237 (14)0.0065 (10)0.0030 (10)0.0028 (10)
O1W0.0283 (11)0.0214 (11)0.0388 (13)0.0080 (9)0.0079 (10)0.0061 (10)
C10.0202 (14)0.0209 (14)0.0228 (16)0.0075 (12)0.0042 (12)0.0039 (12)
C20.0183 (14)0.0210 (14)0.0234 (16)0.0061 (11)0.0045 (12)0.0028 (12)
C30.0248 (16)0.0256 (16)0.0215 (16)0.0034 (12)0.0035 (12)0.0058 (13)
C40.0295 (16)0.0213 (15)0.0241 (16)0.0037 (12)0.0004 (13)0.0084 (13)
C50.0216 (15)0.0183 (14)0.0203 (15)0.0060 (11)0.0038 (12)0.0020 (12)
C60.0288 (17)0.0259 (16)0.0246 (17)0.0085 (13)0.0067 (13)0.0024 (13)
C70.0315 (17)0.0214 (15)0.0312 (18)0.0124 (13)0.0035 (13)0.0052 (13)
C80.0288 (16)0.0217 (15)0.0206 (16)0.0072 (12)0.0010 (12)0.0066 (12)
C90.0359 (17)0.0188 (15)0.0265 (17)0.0064 (13)0.0050 (13)0.0093 (13)
C100.0383 (18)0.0202 (15)0.0213 (16)0.0067 (13)0.0001 (13)0.0087 (13)
Geometric parameters (Å, º) top
Cd1—N62.264 (2)O1W—H1W0.8500
Cd1—N6i2.264 (2)C1—C21.475 (4)
Cd1—N12.385 (2)C2—C31.387 (4)
Cd1—N1i2.385 (2)C2—C71.395 (4)
Cd1—O1Wi2.461 (2)C3—C41.380 (4)
Cd1—O1W2.461 (2)C3—H30.9300
N1—C11.345 (4)C4—C51.387 (4)
N1—N21.356 (3)C4—H40.9300
N2—N31.306 (4)C5—C61.383 (4)
N3—N41.363 (3)C5—N5ii1.442 (3)
N4—C11.335 (4)C6—C71.386 (4)
N5—C81.356 (4)C6—H60.9300
N5—C101.375 (4)C7—H70.9300
N5—C5ii1.442 (3)C8—H80.9300
N6—C81.326 (4)C9—C101.347 (4)
N6—C91.373 (4)C9—H90.9300
O1W—H2W0.8500C10—H100.9300
N6—Cd1—N6i180.000 (1)N4—C1—N1111.2 (2)
N6—Cd1—N189.45 (8)N4—C1—C2125.0 (2)
N6i—Cd1—N190.55 (8)N1—C1—C2123.8 (2)
N6—Cd1—N1i90.55 (8)C3—C2—C7118.3 (3)
N6i—Cd1—N1i89.45 (8)C3—C2—C1120.5 (3)
N1—Cd1—N1i180.000 (1)C7—C2—C1121.2 (3)
N6—Cd1—O1Wi94.50 (8)C4—C3—C2121.4 (3)
N6i—Cd1—O1Wi85.50 (8)C4—C3—H3119.3
N1—Cd1—O1Wi98.76 (8)C2—C3—H3119.3
N1i—Cd1—O1Wi81.24 (8)C3—C4—C5119.4 (3)
N6—Cd1—O1W85.50 (8)C3—C4—H4120.3
N6i—Cd1—O1W94.50 (8)C5—C4—H4120.3
N1—Cd1—O1W81.24 (8)C6—C5—C4120.4 (3)
N1i—Cd1—O1W98.76 (8)C6—C5—N5ii120.9 (3)
O1Wi—Cd1—O1W180.00 (7)C4—C5—N5ii118.7 (2)
C1—N1—N2105.4 (2)C5—C6—C7119.5 (3)
C1—N1—Cd1143.60 (19)C5—C6—H6120.3
N2—N1—Cd1110.51 (17)C7—C6—H6120.3
N3—N2—N1108.8 (2)C6—C7—C2120.9 (3)
N2—N3—N4110.0 (2)C6—C7—H7119.5
C1—N4—N3104.6 (2)C2—C7—H7119.5
C8—N5—C10106.9 (2)N6—C8—N5110.7 (3)
C8—N5—C5ii127.3 (2)N6—C8—H8124.7
C10—N5—C5ii125.5 (2)N5—C8—H8124.7
C8—N6—C9106.0 (2)C10—C9—N6109.8 (3)
C8—N6—Cd1131.1 (2)C10—C9—H9125.1
C9—N6—Cd1120.68 (19)N6—C9—H9125.1
Cd1—O1W—H2W118.8C9—C10—N5106.6 (3)
Cd1—O1W—H1W117.9C9—C10—H10126.7
H2W—O1W—H1W108.2N5—C10—H10126.7
N6—Cd1—N1—C132.7 (4)Cd1—N1—C1—N4170.3 (2)
N6i—Cd1—N1—C1147.3 (4)N2—N1—C1—C2177.5 (3)
N1i—Cd1—N1—C1139 (100)Cd1—N1—C1—C27.6 (5)
O1Wi—Cd1—N1—C161.8 (4)N4—C1—C2—C3156.3 (3)
O1W—Cd1—N1—C1118.2 (4)N1—C1—C2—C326.0 (4)
N6—Cd1—N1—N2136.9 (2)N4—C1—C2—C726.6 (5)
N6i—Cd1—N1—N243.1 (2)N1—C1—C2—C7151.0 (3)
N1i—Cd1—N1—N230 (100)C7—C2—C3—C42.2 (5)
O1Wi—Cd1—N1—N2128.65 (19)C1—C2—C3—C4175.0 (3)
O1W—Cd1—N1—N251.35 (19)C2—C3—C4—C50.9 (5)
C1—N1—N2—N30.4 (3)C3—C4—C5—C60.9 (5)
Cd1—N1—N2—N3174.02 (19)C3—C4—C5—N5ii177.9 (3)
N1—N2—N3—N40.2 (3)C4—C5—C6—C71.5 (5)
N2—N3—N4—C10.1 (3)N5ii—C5—C6—C7177.3 (3)
N6i—Cd1—N6—C860 (100)C5—C6—C7—C20.3 (5)
N1—Cd1—N6—C8119.3 (3)C3—C2—C7—C61.5 (5)
N1i—Cd1—N6—C860.7 (3)C1—C2—C7—C6175.6 (3)
O1Wi—Cd1—N6—C820.6 (3)C9—N6—C8—N50.0 (3)
O1W—Cd1—N6—C8159.4 (3)Cd1—N6—C8—N5162.55 (19)
N6i—Cd1—N6—C9101 (100)C10—N5—C8—N60.0 (3)
N1—Cd1—N6—C941.1 (2)C5ii—N5—C8—N6174.1 (2)
N1i—Cd1—N6—C9138.9 (2)C8—N6—C9—C100.0 (3)
O1Wi—Cd1—N6—C9139.9 (2)Cd1—N6—C9—C10164.8 (2)
O1W—Cd1—N6—C940.1 (2)N6—C9—C10—N50.0 (4)
N3—N4—C1—N10.3 (3)C8—N5—C10—C90.0 (3)
N3—N4—C1—C2177.6 (3)C5ii—N5—C10—C9174.3 (3)
N2—N1—C1—N40.5 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N4iii0.852.062.903 (3)171
O1W—H2W···N3iv0.852.112.953 (3)171
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C10H7N6)2(H2O)2]
Mr570.86
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.6070 (6), 8.0621 (8), 9.1509 (9)
α, β, γ (°)102.762 (1), 97.495 (1), 106.073 (2)
V3)514.84 (8)
Z1
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.22 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.792, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
2591, 1768, 1708
Rint0.015
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.14
No. of reflections1768
No. of parameters160
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.62

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N62.264 (2)Cd1—O1W2.461 (2)
Cd1—N12.385 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N4i0.852.062.903 (3)171.2
O1W—H2W···N3ii0.852.112.953 (3)171.2
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

We acknowledge the Public Science and Technology Research Funds Projects of Ocean (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121) and the Guangdong Province Key Project in the Field of Social Development [grant No. A2009011–007(c)].

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, X.-C. (2011). Acta Cryst. E67, m1757.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, R. Y., Zhu, K., Chen, H., Liu, G. X. & Ren, X. M. (2009). Wuji Huaxue Xuebao, 25, 162–165.  CAS Google Scholar
First citationLi, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096–m1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, S.-W., Li, S.-J., Song, W.-D., Miao, D.-L. & An, J.-B. (2011). Acta Cryst. E67, m1870–m1871.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m585-m586
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds