organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1292

3,4-Dimeth­­oxy-4′-nitro-1,1′-biphen­yl

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hljuhouyanjun@163.com

(Received 27 March 2012; accepted 29 March 2012; online 4 April 2012)

The title compound, C14H13NO4, was prepared through a palladium-catalysed Suzuki–Miyaura coupling reaction. The asymmetric unit comprises two mol­ecules related by pseudo-inversion symmetry. The dihedral angles between the benzene rings in the two mol­ecules are 44.30 (6) and 48.50 (6)° while those between the benzene ring and the nitro group are 6.54 (13) and 5.73 (10)°. The crystal packing is defined only by Van der Waals inter­actions.

Related literature

For general background to the synthesis and properties of 3,4-dimeth­oxy-4′-nitro-1,1′-biphenyl, see: Suzuki (1999[Suzuki, A. (1999). J. Organomet. Chem. 576, 147-168.]); Razler et al. (2009[Razler, T. M., Hsiao, Y., Qian, F., Fu, R., Khan, R. K. & Carl, E. S. (2009). J. Org. Chem. 74, 1381-1384.]); Hou et al. (2011[Hou, Y.-J., Li, X.-M., Chu, W.-Y. & Sun, Z.-Z. (2011). Acta Cryst. E67, o2915.]); Li et al. (2012[Li, X.-M., Hou, Y.-J., Mei, P., Chu, W.-Y. & Sun, Z.-Z. (2012). Acta Cryst. E68, o1137.]). For the biological activity of biphenyl derivatives, see: Kimpe et al. (1996[Kimpe, N. D., Keppens, M. & Froncg, G. (1996). Chem. Commun. 5, 635-636.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO4

  • Mr = 259.25

  • Monoclinic, P 21 /c

  • a = 16.2714 (14) Å

  • b = 7.6529 (7) Å

  • c = 20.2448 (18) Å

  • β = 91.691 (1)°

  • V = 2519.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.972, Tmax = 0.978

  • 15429 measured reflections

  • 4401 independent reflections

  • 3201 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.05

  • 4401 reflections

  • 348 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The palladium-catalyzed Suzuki-Miyaura coupling reaction attracts a considerable interest. The biological activity of biphenyl derivatives (Suzuki, 1999; Razler et al., 2009; Kimpe et al., 1996; Hou et al., 2011; Li et al., 2012) has been described in the literature. We have prepared 3,4-dimethoxy-4'-nitro-1,1'-biphenyl as a potentially active antiviral compound. In the title compound there are two molecules in an asymmetric unit ( Fig. 1). The dihedral angle between the benzene rings (C1-C2-C3-C4-C5-C6) and (C7-C8-C9-C10-C11-C12) is 44.30 (6)°; (C15-C16-C17-C18-C19-C20) and (C21-C22-C23-C24-C25-C26) is 48.50 (6)°. The dihedral angle between the benzene ring (C1-C2-C3-C4-C5-C6) and nitro group (N1-O1-O2) is 6.54 (13)°. The dihedral angle between the benzene ring (C15-C16-C17-C18 C19-C20) and nitro group (N2-O5-O6) is 5.73 (10)°. Van der Waals interactions dominate the crystal packing (Fig. 2).

Related literature top

For general background to the synthesis and properties of 3,4-dimethoxy-4'-nitro-1,1'-biphenyl, see: Suzuki (1999); Razler et al. (2009); Hou et al. (2011); Li et al. (2012). For the biological activity of biphenyl derivatives, see: Kimpe et al. (1996).

Experimental top

To a solution of 1-bromo-4-nitrobenzene (5 mmol) and 3,4-dimethoxyphenylboronic acid (6 mmol) in 20 mL water and 20 mL methanol, Pd(OAc)2 (5 mmol) and K2CO3 (10 mmol) were added. After stirring the reaction mixture for 6 h at 323 K, the aqueous phases were extracted with 100 mL ethyl acetate. The organic extracts were washed with 200 mL saturated aqueous sodium chlorid, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The resulting crude material was purified via silica gel chromatography (petroleum ether) to afford a translucent solid in a yield of 63%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallisation from methanol at room temperature in a total yield of 44%. Analysis found: C 64.9, H 5.2, N 5.5%; C14H13NO4 requires: 64.9, H 5.1, N 5.4%. 1H NMR (400 MHz, CDCl3) 8.34 - 8.23 (m, 2H), 7.77 - 7.66 (m, 2H), 7.21 (dd, J = 8.3, 2.2 Hz, 1H), 7.13 (d, J = 2.2 Hz, 1H), 6.99 (d, J = 8.3 Hz, 1H), 3.97 (s, 3H), 3.95 (s, 3H).

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms. C—H distances are in the range 0.93–0.96 Å. Uiso(H) values were constrained to be 1.2Ueq(C) (aromatic H atoms) [1.5Ueq(C) for methyl H atoms].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The two molecules of asymmetric unit (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Van der Waals interactions dominat the crystal packing.
3,4-Dimethoxy-4'-nitro-1,1'-biphenyl top
Crystal data top
C14H13NO4F(000) = 1088
Mr = 259.25Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3878 reflections
a = 16.2714 (14) Åθ = 2.3–24.0°
b = 7.6529 (7) ŵ = 0.10 mm1
c = 20.2448 (18) ÅT = 295 K
β = 91.691 (1)°Block, colourless
V = 2519.9 (4) Å30.28 × 0.24 × 0.22 mm
Z = 8
Data collection top
Bruker APEXII CCD detector
diffractometer
4401 independent reflections
Radiation source: fine-focus sealed tube3201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.972, Tmax = 0.978k = 98
15429 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.050P)2 + 0.2279P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4401 reflectionsΔρmax = 0.13 e Å3
348 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0058 (7)
Crystal data top
C14H13NO4V = 2519.9 (4) Å3
Mr = 259.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 16.2714 (14) ŵ = 0.10 mm1
b = 7.6529 (7) ÅT = 295 K
c = 20.2448 (18) Å0.28 × 0.24 × 0.22 mm
β = 91.691 (1)°
Data collection top
Bruker APEXII CCD detector
diffractometer
4401 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3201 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.978Rint = 0.025
15429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.13 e Å3
4401 reflectionsΔρmin = 0.13 e Å3
348 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.22448 (7)0.63104 (14)0.23783 (5)0.0571 (3)
O40.27112 (7)0.37343 (14)0.31153 (5)0.0574 (3)
C70.46025 (9)0.64220 (19)0.32340 (7)0.0426 (4)
N20.54229 (9)0.36706 (18)0.07790 (8)0.0591 (4)
C150.62073 (9)0.37383 (19)0.04093 (8)0.0472 (4)
O81.05775 (7)0.44259 (16)0.18817 (6)0.0669 (4)
C120.40531 (9)0.50427 (19)0.33426 (7)0.0435 (4)
H120.42160.41180.36140.052*
C110.32767 (9)0.50402 (19)0.30529 (7)0.0427 (4)
C190.69556 (9)0.3404 (2)0.06001 (7)0.0500 (4)
H190.69680.31500.10500.060*
C210.84677 (9)0.3872 (2)0.06898 (7)0.0463 (4)
C180.76892 (9)0.37979 (19)0.02932 (7)0.0448 (4)
C50.56002 (10)0.5714 (2)0.41620 (7)0.0494 (4)
H50.51660.52680.43990.059*
C220.90164 (9)0.5261 (2)0.06122 (7)0.0483 (4)
H220.89090.60940.02870.058*
C80.43361 (10)0.7800 (2)0.28437 (7)0.0511 (4)
H80.46880.87330.27710.061*
O71.02683 (7)0.67505 (15)0.09849 (6)0.0657 (3)
C40.54441 (9)0.63894 (18)0.35348 (7)0.0435 (4)
N10.78555 (10)0.6281 (2)0.43826 (9)0.0682 (4)
C100.30184 (9)0.6445 (2)0.26520 (7)0.0455 (4)
C260.86516 (10)0.2620 (2)0.11649 (8)0.0551 (4)
H260.82960.16830.12190.066*
O60.48073 (7)0.31992 (18)0.04893 (7)0.0762 (4)
C230.97134 (9)0.5411 (2)0.10119 (7)0.0488 (4)
C10.70214 (10)0.6327 (2)0.40854 (8)0.0518 (4)
C60.63842 (10)0.5688 (2)0.44434 (8)0.0551 (4)
H6A0.64780.52460.48670.066*
C20.68964 (10)0.7008 (2)0.34608 (8)0.0551 (4)
H20.73350.74360.32250.066*
C160.69146 (10)0.4127 (2)0.07351 (8)0.0532 (4)
H160.68960.43590.11860.064*
C240.98862 (9)0.4140 (2)0.14981 (8)0.0519 (4)
C200.62188 (10)0.3381 (2)0.02565 (8)0.0513 (4)
H200.57340.31280.04690.062*
C90.35498 (10)0.7815 (2)0.25574 (7)0.0522 (4)
H90.33810.87600.22990.063*
C30.61105 (10)0.7044 (2)0.31925 (8)0.0515 (4)
H30.60200.75160.27730.062*
C170.76529 (10)0.4165 (2)0.03812 (7)0.0525 (4)
H170.81330.44400.05960.063*
O50.54103 (9)0.4053 (2)0.13626 (7)0.0922 (5)
O20.79437 (9)0.5829 (2)0.49556 (8)0.0999 (5)
C250.93586 (10)0.2746 (2)0.15612 (8)0.0579 (4)
H250.94780.18810.18720.069*
C130.19155 (11)0.7810 (2)0.20433 (9)0.0650 (5)
H13A0.18970.87750.23460.097*
H13B0.13700.75560.18770.097*
H13C0.22590.81080.16820.097*
C140.29085 (11)0.2330 (2)0.35539 (9)0.0687 (5)
H14A0.33970.17540.34120.103*
H14B0.24610.15110.35520.103*
H14C0.30000.27780.39930.103*
O10.84249 (9)0.6716 (2)0.40461 (9)0.1068 (6)
C271.00852 (12)0.8142 (2)0.05341 (10)0.0764 (6)
H27A1.00460.76880.00920.115*
H27B1.05150.90000.05630.115*
H27C0.95720.86710.06440.115*
C281.07699 (12)0.3182 (3)0.23870 (9)0.0782 (6)
H28A1.03250.31220.26880.117*
H28B1.12640.35320.26230.117*
H28C1.08500.20550.21910.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0494 (7)0.0586 (7)0.0624 (7)0.0024 (5)0.0154 (5)0.0107 (5)
O40.0507 (7)0.0524 (7)0.0685 (7)0.0100 (5)0.0097 (5)0.0158 (5)
C70.0435 (9)0.0446 (9)0.0396 (8)0.0001 (7)0.0006 (6)0.0010 (6)
N20.0560 (9)0.0477 (9)0.0725 (10)0.0013 (7)0.0162 (7)0.0033 (7)
C150.0448 (9)0.0403 (9)0.0560 (9)0.0006 (7)0.0089 (7)0.0033 (7)
O80.0516 (7)0.0705 (8)0.0772 (8)0.0084 (6)0.0228 (6)0.0150 (6)
C120.0463 (9)0.0415 (9)0.0426 (8)0.0017 (7)0.0024 (7)0.0031 (6)
C110.0432 (9)0.0425 (9)0.0423 (8)0.0033 (7)0.0002 (6)0.0006 (6)
C190.0486 (10)0.0551 (10)0.0461 (8)0.0081 (8)0.0011 (7)0.0007 (7)
C210.0414 (9)0.0483 (10)0.0493 (9)0.0022 (7)0.0006 (7)0.0012 (7)
C180.0436 (9)0.0405 (9)0.0502 (9)0.0035 (7)0.0016 (7)0.0034 (7)
C50.0462 (9)0.0523 (10)0.0496 (9)0.0051 (7)0.0016 (7)0.0054 (7)
C220.0430 (9)0.0499 (10)0.0517 (9)0.0015 (7)0.0019 (7)0.0047 (7)
C80.0527 (10)0.0487 (10)0.0516 (9)0.0075 (8)0.0047 (7)0.0076 (7)
O70.0504 (7)0.0627 (8)0.0830 (8)0.0178 (6)0.0166 (6)0.0186 (6)
C40.0456 (9)0.0389 (9)0.0460 (8)0.0002 (7)0.0003 (7)0.0022 (6)
N10.0514 (10)0.0587 (10)0.0934 (12)0.0013 (8)0.0146 (9)0.0039 (8)
C100.0435 (9)0.0501 (10)0.0424 (8)0.0009 (7)0.0054 (7)0.0001 (7)
C260.0484 (10)0.0533 (11)0.0632 (10)0.0087 (8)0.0033 (8)0.0056 (8)
O60.0476 (7)0.0842 (10)0.0961 (10)0.0051 (6)0.0101 (6)0.0093 (7)
C230.0391 (9)0.0491 (10)0.0582 (9)0.0053 (7)0.0010 (7)0.0010 (7)
C10.0425 (9)0.0426 (9)0.0698 (11)0.0013 (7)0.0076 (8)0.0072 (8)
C60.0570 (11)0.0499 (10)0.0575 (10)0.0012 (8)0.0116 (8)0.0039 (8)
C20.0462 (10)0.0527 (10)0.0667 (11)0.0029 (8)0.0064 (8)0.0004 (8)
C160.0598 (11)0.0509 (10)0.0486 (9)0.0040 (8)0.0051 (8)0.0041 (7)
C240.0410 (9)0.0563 (10)0.0579 (10)0.0006 (8)0.0062 (7)0.0037 (8)
C200.0432 (9)0.0510 (10)0.0598 (10)0.0082 (7)0.0012 (7)0.0054 (8)
C90.0558 (10)0.0487 (10)0.0514 (9)0.0024 (8)0.0086 (8)0.0114 (7)
C30.0512 (10)0.0537 (10)0.0495 (9)0.0013 (8)0.0023 (7)0.0029 (7)
C170.0487 (10)0.0553 (10)0.0535 (9)0.0068 (8)0.0019 (7)0.0019 (7)
O50.0848 (10)0.1121 (12)0.0778 (9)0.0064 (9)0.0319 (8)0.0203 (9)
O20.0747 (10)0.1221 (13)0.1007 (12)0.0039 (9)0.0361 (9)0.0143 (10)
C250.0542 (11)0.0555 (11)0.0633 (10)0.0028 (8)0.0086 (8)0.0128 (8)
C130.0570 (11)0.0665 (12)0.0703 (11)0.0061 (9)0.0153 (9)0.0138 (9)
C140.0677 (12)0.0608 (12)0.0773 (12)0.0131 (9)0.0041 (10)0.0217 (9)
O10.0442 (8)0.1423 (15)0.1336 (14)0.0050 (9)0.0012 (9)0.0187 (11)
C270.0659 (13)0.0623 (13)0.1000 (15)0.0166 (10)0.0141 (11)0.0240 (11)
C280.0622 (12)0.0906 (15)0.0804 (13)0.0033 (11)0.0239 (10)0.0238 (11)
Geometric parameters (Å, º) top
O3—C101.3640 (17)C4—C31.397 (2)
O3—C131.4295 (19)N1—O11.213 (2)
O4—C111.3668 (17)N1—O21.215 (2)
O4—C141.4248 (19)N1—C11.469 (2)
C7—C81.380 (2)C10—C91.376 (2)
C7—C121.405 (2)C26—C251.386 (2)
C7—C41.482 (2)C26—H260.9300
N2—O51.2167 (18)C23—C241.406 (2)
N2—O61.2297 (18)C1—C61.373 (2)
N2—C151.461 (2)C1—C21.377 (2)
C15—C201.375 (2)C6—H6A0.9300
C15—C161.376 (2)C2—C31.375 (2)
O8—C241.3655 (18)C2—H20.9300
O8—C281.425 (2)C16—C171.381 (2)
C12—C111.3770 (19)C16—H160.9300
C12—H120.9300C24—C251.378 (2)
C11—C101.404 (2)C20—H200.9300
C19—C201.368 (2)C9—H90.9300
C19—C181.395 (2)C3—H30.9300
C19—H190.9300C17—H170.9300
C21—C261.384 (2)C25—H250.9300
C21—C221.400 (2)C13—H13A0.9600
C21—C181.481 (2)C13—H13B0.9600
C18—C171.394 (2)C13—H13C0.9600
C5—C61.382 (2)C14—H14A0.9600
C5—C41.387 (2)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C22—C231.378 (2)C27—H27A0.9600
C22—H220.9300C27—H27B0.9600
C8—C91.389 (2)C27—H27C0.9600
C8—H80.9300C28—H28A0.9600
O7—C231.3681 (18)C28—H28B0.9600
O7—C271.428 (2)C28—H28C0.9600
C10—O3—C13117.44 (12)C6—C1—N1118.57 (16)
C11—O4—C14118.00 (12)C2—C1—N1119.67 (16)
C8—C7—C12118.24 (14)C1—C6—C5118.66 (15)
C8—C7—C4121.26 (14)C1—C6—H6A120.7
C12—C7—C4120.50 (13)C5—C6—H6A120.7
O5—N2—O6122.89 (15)C3—C2—C1118.73 (15)
O5—N2—C15118.57 (15)C3—C2—H2120.6
O6—N2—C15118.52 (15)C1—C2—H2120.6
C20—C15—C16121.71 (14)C15—C16—C17118.90 (14)
C20—C15—N2118.78 (14)C15—C16—H16120.6
C16—C15—N2119.50 (14)C17—C16—H16120.6
C24—O8—C28117.46 (13)O8—C24—C25125.20 (14)
C11—C12—C7120.96 (13)O8—C24—C23115.57 (14)
C11—C12—H12119.5C25—C24—C23119.23 (14)
C7—C12—H12119.5C19—C20—C15118.83 (15)
O4—C11—C12124.98 (13)C19—C20—H20120.6
O4—C11—C10114.99 (13)C15—C20—H20120.6
C12—C11—C10120.03 (13)C10—C9—C8120.71 (14)
C20—C19—C18121.65 (14)C10—C9—H9119.6
C20—C19—H19119.2C8—C9—H9119.6
C18—C19—H19119.2C2—C3—C4121.56 (15)
C26—C21—C22118.55 (14)C2—C3—H3119.2
C26—C21—C18120.96 (14)C4—C3—H3119.2
C22—C21—C18120.43 (14)C16—C17—C18121.00 (15)
C17—C18—C19117.91 (14)C16—C17—H17119.5
C17—C18—C21122.30 (14)C18—C17—H17119.5
C19—C18—C21119.76 (13)C24—C25—C26120.57 (15)
C6—C5—C4121.64 (15)C24—C25—H25119.7
C6—C5—H5119.2C26—C25—H25119.7
C4—C5—H5119.2O3—C13—H13A109.5
C23—C22—C21120.93 (14)O3—C13—H13B109.5
C23—C22—H22119.5H13A—C13—H13B109.5
C21—C22—H22119.5O3—C13—H13C109.5
C7—C8—C9121.01 (15)H13A—C13—H13C109.5
C7—C8—H8119.5H13B—C13—H13C109.5
C9—C8—H8119.5O4—C14—H14A109.5
C23—O7—C27117.30 (12)O4—C14—H14B109.5
C5—C4—C3117.64 (14)H14A—C14—H14B109.5
C5—C4—C7121.61 (13)O4—C14—H14C109.5
C3—C4—C7120.75 (13)H14A—C14—H14C109.5
O1—N1—O2122.95 (17)H14B—C14—H14C109.5
O1—N1—C1118.37 (17)O7—C27—H27A109.5
O2—N1—C1118.67 (17)O7—C27—H27B109.5
O3—C10—C9125.24 (14)H27A—C27—H27B109.5
O3—C10—C11115.73 (13)O7—C27—H27C109.5
C9—C10—C11119.03 (14)H27A—C27—H27C109.5
C21—C26—C25120.87 (15)H27B—C27—H27C109.5
C21—C26—H26119.6O8—C28—H28A109.5
C25—C26—H26119.6O8—C28—H28B109.5
O7—C23—C22124.86 (14)H28A—C28—H28B109.5
O7—C23—C24115.32 (13)O8—C28—H28C109.5
C22—C23—C24119.81 (14)H28A—C28—H28C109.5
C6—C1—C2121.76 (15)H28B—C28—H28C109.5
O5—N2—C15—C20177.20 (15)C27—O7—C23—C24175.24 (15)
O6—N2—C15—C204.1 (2)C21—C22—C23—O7177.85 (15)
O5—N2—C15—C163.9 (2)C21—C22—C23—C241.0 (2)
O6—N2—C15—C16174.84 (15)O1—N1—C1—C6174.19 (17)
C8—C7—C12—C111.8 (2)O2—N1—C1—C66.7 (2)
C4—C7—C12—C11178.45 (13)O1—N1—C1—C25.9 (2)
C14—O4—C11—C125.3 (2)O2—N1—C1—C2173.20 (17)
C14—O4—C11—C10175.43 (14)C2—C1—C6—C50.8 (2)
C7—C12—C11—O4178.05 (13)N1—C1—C6—C5179.33 (14)
C7—C12—C11—C101.2 (2)C4—C5—C6—C10.9 (2)
C20—C19—C18—C170.3 (2)C6—C1—C2—C30.0 (2)
C20—C19—C18—C21177.71 (14)N1—C1—C2—C3179.82 (14)
C26—C21—C18—C17139.08 (16)C20—C15—C16—C170.3 (2)
C22—C21—C18—C1743.9 (2)N2—C15—C16—C17179.21 (14)
C26—C21—C18—C1943.0 (2)C28—O8—C24—C250.1 (3)
C22—C21—C18—C19133.97 (16)C28—O8—C24—C23179.15 (15)
C26—C21—C22—C231.8 (2)O7—C23—C24—O80.8 (2)
C18—C21—C22—C23175.24 (14)C22—C23—C24—O8178.24 (14)
C12—C7—C8—C90.9 (2)O7—C23—C24—C25179.87 (15)
C4—C7—C8—C9179.31 (14)C22—C23—C24—C250.9 (2)
C6—C5—C4—C30.2 (2)C18—C19—C20—C150.7 (2)
C6—C5—C4—C7179.81 (14)C16—C15—C20—C190.4 (2)
C8—C7—C4—C5143.17 (16)N2—C15—C20—C19178.48 (14)
C12—C7—C4—C536.6 (2)O3—C10—C9—C8178.02 (14)
C8—C7—C4—C336.8 (2)C11—C10—C9—C81.1 (2)
C12—C7—C4—C3143.41 (15)C7—C8—C9—C100.5 (2)
C13—O3—C10—C99.3 (2)C1—C2—C3—C40.8 (2)
C13—O3—C10—C11171.54 (13)C5—C4—C3—C20.7 (2)
O4—C11—C10—O30.35 (19)C7—C4—C3—C2179.31 (14)
C12—C11—C10—O3178.96 (13)C15—C16—C17—C180.8 (2)
O4—C11—C10—C9179.59 (13)C19—C18—C17—C160.5 (2)
C12—C11—C10—C90.3 (2)C21—C18—C17—C16178.42 (15)
C22—C21—C26—C250.7 (2)O8—C24—C25—C26177.02 (16)
C18—C21—C26—C25176.34 (15)C23—C24—C25—C262.0 (3)
C27—O7—C23—C223.7 (2)C21—C26—C25—C241.2 (3)

Experimental details

Crystal data
Chemical formulaC14H13NO4
Mr259.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)16.2714 (14), 7.6529 (7), 20.2448 (18)
β (°) 91.691 (1)
V3)2519.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
15429, 4401, 3201
Rint0.025
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.05
No. of reflections4401
No. of parameters348
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the Foundation of Heilongjiang Education Committee (Nos. 12521413 and 12511383), the Key Laboratory of Chemical Engineering Processes and Technology for High-Efficiency Conversion, College of Heilongjiang Province and Heilongjiang University, China, for supporting this study.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, Y.-J., Li, X.-M., Chu, W.-Y. & Sun, Z.-Z. (2011). Acta Cryst. E67, o2915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKimpe, N. D., Keppens, M. & Froncg, G. (1996). Chem. Commun. 5, 635–636.  Google Scholar
First citationLi, X.-M., Hou, Y.-J., Mei, P., Chu, W.-Y. & Sun, Z.-Z. (2012). Acta Cryst. E68, o1137.  CSD CrossRef IUCr Journals Google Scholar
First citationRazler, T. M., Hsiao, Y., Qian, F., Fu, R., Khan, R. K. & Carl, E. S. (2009). J. Org. Chem. 74, 1381–1384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, A. (1999). J. Organomet. Chem. 576, 147–168.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1292
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds