organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1515

3-(2,4-Di­chloro­phen­yl)-5-(4-fluoro­phen­yl)-2-methyl-7-(tri­fluoro­meth­yl)pyrazolo­[1,5-a]pyrimidine

aCollege of Pharmacy, Liaoning University, Shenyang 110036, People's Republic of China, bPanjin Vocational and Technical College, Panjin 120010, People's Republic of China, and cTianjin Key Laboratory of Molecular Design and Drug Discovery, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: caizq@tjipr.com,czq0601@gmail.com

(Received 16 April 2012; accepted 19 April 2012; online 25 April 2012)

In the title compound, C20H11Cl2F4N3, the central pyrazolo­[1,5-a]pyrimidine unit is almost planar [the mean deviation from the best least-square plane through the nine atoms is 0.006 (2) Å]. The fluoro­benzene ring is rotated out of this plane by 10.3 (3)°, whereas the dichloro­benzene ring is rotated by 46.2 (3)°. The crystal packing is dominated by Cl⋯Cl inter­actions of 3.475 (3) Å and van der Waals inter­actions.

Related literature

For the synthesis of other pyrazolo­[1,5-a]pyrimidine derivatives and for their pharmacological applications, see: Fraley et al. (2012[Fraley, M. E., Rubino, R. S., Hoffman, W. F., Hamb-augh, S. R. & Thomas, K. A. (2012). Bioorg. Med. Chem. Lett. 12, 3537-3541.]); Novinson et al. (1976[Novinson, T., Bhooshan, B., Okabe, T., Revankar, G. R. & Wilson, H. R. (1976). J. Med. Chem. 19, 512-516.]); Senga et al. (1981[Senga, K., Novinson, T. & Wilson, H. R. (1981). J. Med. Chem. 24, 610-613.]); Suzuki et al. (2001[Suzuki, M., Iwasaki, H., Fujikawa, Y., Sakashita, M., Kitahara, M. & Sakoda, R. (2001). Bioorg. Med. Chem. Lett. 11, 1285-1288.]). For related structures, see: Liu et al. (2012[Liu, J., Cai, Z.-Q., Wang, Y., Li, C.-Y. & Xu, L.-F. (2012). Acta Cryst. E68, o1142.]); Bui et al. (2009[Bui, T. T., Dahaoui, S., Lecomte, C., Desiraju, G. R. & Espinosa, E. (2009). Angew. Chem. Int. Ed. Engl. 48, 3838-3841.]).

[Scheme 1]

Experimental

Crystal data
  • C20H11Cl2F4N3

  • Mr = 440.22

  • Orthorhombic, P b c a

  • a = 9.5361 (19) Å

  • b = 15.941 (3) Å

  • c = 24.853 (5) Å

  • V = 3778.0 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.] Tmin = 0.926, Tmax = 0.940

  • 34334 measured reflections

  • 4477 independent reflections

  • 3517 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.153

  • S = 1.08

  • 4477 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998)[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]; cell refinement: RAPID-AUTO[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]; data reduction: CrystalClear (Rigaku/MSC, 2005)[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazolo[1,5-a]pyrimidines are purine analogues with useful properties as antimetabolites in purine biochemical reactions. They are used in a wide array of synthetic and medical chemistry, such as antitrypanosomal and antischistosomal activities, KDR kinase inhibitors, selective peripheral benzodiazepine receptor ligands (Fraley et al., 2012). We have adapted the known method and synthesised the compound. The new molecule is expected to exhibit enhanced biological activity. To characterize our product, its single-crystal structure was determined.

The title molecule (Fig. 1) bond lengths and angles are generally within normal ranges. The dihedral angles formed by the two benzene rings is 50.76 (3) °. The relatively small deviations from the ring planes of the attached substituents are defined by corresponding torsion angles: C(11)—C(18)—C(19)—C(20) of -176.8 (2) for the threefluromethyl group (C20); N(2)—N(3)—C(8)—C(9) of 177.5 (2) for methyl group (C9); C(13)—C(14)—C(15)—F(4) of -179.7 (2) for F4, and Cl(1)—C(3)—C(4)—C(5) of 179.2 (2) for Cl1; Cl(2)—C(5)—C(6)—C(1) of -174.8 (2)°. The crystal structure is held together by van der Waals forces and pronounced Cl···Cl interaction of 3.475()Å (Bui et al., 2009).

Related literature top

For the synthesis of other pyrazolo[1,5-a]pyrimidine derivatives and for their pharmacological applications, see: Fraley et al. (2012); Novinson et al. (1976); Senga et al. (1981); Suzuki et al. (2001). For related structures, see: Liu et al. (2012); Bui et al. (2009).

Experimental top

A mixture of the corresponding 4-(2,4-dichlorophenyl)-3-methyl-1H-pyrazol -5-amine (1.40 g, 5.78 mmol) and the 4,4,4-trifluoro-1-(4-fluorophenyl) butane-1,3-dione (1.49 g, 6.36 mmol) in a flask (25 mL) was heated at 433-438 K for 2.5 h, allowing elimination of the water evolved. After cooling to room temperature, the solid in the flask was recrystallised from methanol to yield the title compound as a yellow solid (1.70 g, 66.78%). Crystals suitable for X-ray analysis were obtained from a mixture of solvents ethanol/acetone(1:1) by slow evaporation.

Refinement top

All H atoms were geometrically positioned (C—H 0.93–0.98 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).Due to lack of heavy atoms, Friedel pairs were merged in refinement.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of C20H11Cl2F4N3 with all non-H atom-labelling scheme and ellipsoids drawn at the 50% probability level.
3-(2,4-Dichlorophenyl)-5-(4-fluorophenyl)-2-methyl-7- (trifluoromethyl)pyrazolo[1,5-a]pyrimidine top
Crystal data top
C20H11Cl2F4N3F(000) = 1776
Mr = 440.22Dx = 1.548 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8300 reflections
a = 9.5361 (19) Åθ = 2.3–27.9°
b = 15.941 (3) ŵ = 0.39 mm1
c = 24.853 (5) ÅT = 298 K
V = 3778.0 (13) Å3Block, yellow
Z = 80.20 × 0.18 × 0.16 mm
Data collection top
Rigaku Saturn
diffractometer
4477 independent reflections
Radiation source: rotating anode3517 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.049
ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 1112
Tmin = 0.926, Tmax = 0.940k = 2020
34334 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.9456P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
4477 reflectionsΔρmax = 0.27 e Å3
264 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (10)
Crystal data top
C20H11Cl2F4N3V = 3778.0 (13) Å3
Mr = 440.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.5361 (19) ŵ = 0.39 mm1
b = 15.941 (3) ÅT = 298 K
c = 24.853 (5) Å0.20 × 0.18 × 0.16 mm
Data collection top
Rigaku Saturn
diffractometer
4477 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3517 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.940Rint = 0.049
34334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
4477 reflectionsΔρmin = 0.34 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.65368 (10)0.11103 (5)0.54765 (3)0.0819 (3)
Cl20.61073 (8)0.22387 (4)0.56049 (3)0.0626 (2)
F10.25116 (18)0.44152 (9)0.75453 (7)0.0707 (4)
F20.06282 (16)0.37077 (10)0.75226 (7)0.0726 (5)
F30.1688 (2)0.39016 (11)0.82698 (6)0.0841 (6)
F40.6356 (2)0.01913 (11)0.96188 (6)0.0839 (5)
N10.44109 (19)0.15634 (11)0.74870 (6)0.0430 (4)
N20.30004 (19)0.27037 (11)0.71649 (6)0.0416 (4)
N30.2542 (2)0.30511 (11)0.66969 (7)0.0467 (4)
C10.4349 (2)0.03787 (14)0.64421 (9)0.0495 (5)
H10.37490.03120.67340.059*
C20.4924 (3)0.03226 (14)0.62119 (10)0.0557 (6)
H20.47120.08540.63430.067*
C30.5822 (3)0.02252 (15)0.57820 (9)0.0540 (6)
C40.6166 (3)0.05579 (15)0.55899 (9)0.0534 (6)
H40.67850.06170.53030.064*
C50.5576 (2)0.12577 (13)0.58318 (8)0.0442 (5)
C60.4625 (2)0.11903 (13)0.62578 (8)0.0409 (5)
C70.3930 (2)0.19044 (13)0.65241 (8)0.0414 (5)
C80.3106 (2)0.25618 (13)0.63129 (8)0.0440 (5)
C90.2755 (3)0.27527 (16)0.57386 (8)0.0575 (6)
H9A0.18410.30030.57200.086*
H9B0.27630.22430.55330.086*
H9C0.34370.31350.55950.086*
C100.3844 (2)0.20017 (13)0.70785 (8)0.0407 (4)
C110.4124 (2)0.18080 (13)0.79856 (8)0.0417 (5)
C120.4725 (2)0.12953 (13)0.84255 (8)0.0422 (5)
C130.4680 (3)0.15520 (15)0.89601 (9)0.0566 (6)
H130.42720.20640.90480.068*
C140.5237 (3)0.10527 (17)0.93628 (9)0.0644 (7)
H140.52170.12270.97200.077*
C150.5813 (3)0.03045 (15)0.92273 (9)0.0557 (6)
C160.5893 (3)0.00274 (14)0.87055 (10)0.0562 (6)
H160.63050.04860.86240.067*
C170.5345 (3)0.05311 (14)0.83055 (9)0.0499 (5)
H170.53920.03550.79490.060*
C180.3272 (2)0.25229 (13)0.80901 (8)0.0448 (5)
H180.30900.26850.84430.054*
C190.2727 (2)0.29661 (13)0.76758 (8)0.0428 (5)
C200.1884 (3)0.37488 (14)0.77517 (9)0.0499 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1165 (7)0.0593 (4)0.0700 (5)0.0266 (4)0.0131 (4)0.0112 (3)
Cl20.0768 (5)0.0527 (4)0.0582 (4)0.0109 (3)0.0173 (3)0.0097 (3)
F10.0777 (10)0.0447 (8)0.0896 (11)0.0045 (7)0.0037 (8)0.0058 (7)
F20.0491 (9)0.0751 (10)0.0938 (12)0.0153 (7)0.0084 (8)0.0075 (9)
F30.1183 (15)0.0839 (11)0.0501 (9)0.0531 (10)0.0102 (8)0.0051 (7)
F40.1151 (14)0.0751 (11)0.0615 (9)0.0177 (10)0.0265 (9)0.0221 (8)
N10.0519 (10)0.0432 (9)0.0341 (8)0.0063 (8)0.0011 (7)0.0031 (7)
N20.0484 (10)0.0413 (9)0.0350 (8)0.0070 (7)0.0006 (7)0.0019 (7)
N30.0564 (11)0.0457 (10)0.0382 (9)0.0073 (8)0.0067 (8)0.0046 (7)
C10.0567 (14)0.0476 (12)0.0442 (11)0.0017 (10)0.0107 (10)0.0050 (9)
C20.0717 (16)0.0405 (11)0.0549 (13)0.0022 (11)0.0065 (11)0.0046 (10)
C30.0676 (15)0.0467 (12)0.0476 (12)0.0093 (11)0.0010 (11)0.0059 (10)
C40.0631 (15)0.0569 (14)0.0403 (11)0.0036 (11)0.0107 (10)0.0007 (9)
C50.0525 (13)0.0451 (11)0.0352 (10)0.0032 (9)0.0033 (9)0.0032 (8)
C60.0475 (12)0.0417 (10)0.0335 (9)0.0014 (9)0.0009 (8)0.0003 (8)
C70.0485 (12)0.0413 (11)0.0345 (9)0.0007 (9)0.0022 (8)0.0017 (8)
C80.0518 (13)0.0428 (11)0.0374 (10)0.0006 (9)0.0029 (8)0.0024 (8)
C90.0748 (17)0.0587 (14)0.0389 (11)0.0084 (12)0.0087 (11)0.0016 (10)
C100.0463 (11)0.0394 (10)0.0364 (10)0.0042 (8)0.0017 (8)0.0035 (8)
C110.0481 (12)0.0412 (11)0.0357 (10)0.0035 (9)0.0029 (8)0.0023 (8)
C120.0501 (12)0.0402 (10)0.0363 (10)0.0005 (9)0.0005 (8)0.0034 (8)
C130.0766 (17)0.0541 (13)0.0392 (11)0.0139 (12)0.0002 (11)0.0021 (10)
C140.089 (2)0.0681 (16)0.0360 (11)0.0103 (14)0.0060 (12)0.0032 (10)
C150.0661 (15)0.0544 (13)0.0465 (12)0.0013 (11)0.0125 (11)0.0155 (10)
C160.0677 (16)0.0443 (12)0.0567 (14)0.0089 (11)0.0113 (11)0.0048 (10)
C170.0630 (15)0.0459 (12)0.0409 (11)0.0067 (10)0.0064 (10)0.0000 (9)
C180.0529 (13)0.0452 (11)0.0362 (10)0.0071 (9)0.0056 (9)0.0022 (8)
C190.0463 (12)0.0432 (11)0.0388 (10)0.0033 (9)0.0033 (8)0.0009 (8)
C200.0559 (14)0.0485 (12)0.0453 (12)0.0114 (10)0.0021 (10)0.0000 (9)
Geometric parameters (Å, º) top
Cl1—C31.741 (2)C7—C101.389 (3)
Cl2—C51.738 (2)C7—C81.411 (3)
F1—C201.323 (3)C8—C91.497 (3)
F2—C201.328 (3)C9—H9A0.9600
F3—C201.324 (3)C9—H9B0.9600
F4—C151.356 (3)C9—H9C0.9600
N1—C111.327 (2)C11—C181.424 (3)
N1—C101.346 (2)C11—C121.480 (3)
N2—N31.360 (2)C12—C171.386 (3)
N2—C191.362 (2)C12—C131.391 (3)
N2—C101.395 (3)C13—C141.385 (3)
N3—C81.345 (3)C13—H130.9300
C1—C21.370 (3)C14—C151.355 (4)
C1—C61.397 (3)C14—H140.9300
C1—H10.9300C15—C161.372 (3)
C2—C31.378 (3)C16—C171.381 (3)
C2—H20.9300C16—H160.9300
C3—C41.376 (3)C17—H170.9300
C4—C51.387 (3)C18—C191.353 (3)
C4—H40.9300C18—H180.9300
C5—C61.398 (3)C19—C201.496 (3)
C6—C71.474 (3)
C11—N1—C10117.98 (18)N1—C10—N2122.14 (18)
N3—N2—C19127.64 (17)C7—C10—N2106.04 (17)
N3—N2—C10112.34 (16)N1—C11—C18121.53 (18)
C19—N2—C10120.02 (17)N1—C11—C12116.59 (18)
C8—N3—N2104.03 (16)C18—C11—C12121.88 (18)
C2—C1—C6122.9 (2)C17—C12—C13118.5 (2)
C2—C1—H1118.6C17—C12—C11119.43 (19)
C6—C1—H1118.6C13—C12—C11122.08 (19)
C1—C2—C3118.7 (2)C14—C13—C12120.6 (2)
C1—C2—H2120.6C14—C13—H13119.7
C3—C2—H2120.6C12—C13—H13119.7
C4—C3—C2121.3 (2)C15—C14—C13118.8 (2)
C4—C3—Cl1119.35 (19)C15—C14—H14120.6
C2—C3—Cl1119.35 (19)C13—C14—H14120.6
C3—C4—C5118.8 (2)C14—C15—F4119.3 (2)
C3—C4—H4120.6C14—C15—C16122.7 (2)
C5—C4—H4120.6F4—C15—C16118.0 (2)
C4—C5—C6122.00 (19)C15—C16—C17118.2 (2)
C4—C5—Cl2117.68 (16)C15—C16—H16120.9
C6—C5—Cl2120.28 (16)C17—C16—H16120.9
C1—C6—C5116.20 (19)C16—C17—C12121.2 (2)
C1—C6—C7118.89 (18)C16—C17—H17119.4
C5—C6—C7124.89 (18)C12—C17—H17119.4
C10—C7—C8104.67 (18)C19—C18—C11119.89 (19)
C10—C7—C6123.92 (18)C19—C18—H18120.1
C8—C7—C6131.06 (18)C11—C18—H18120.1
N3—C8—C7112.92 (18)C18—C19—N2118.42 (19)
N3—C8—C9118.01 (19)C18—C19—C20123.09 (19)
C7—C8—C9129.0 (2)N2—C19—C20118.45 (18)
C8—C9—H9A109.5F1—C20—F3107.1 (2)
C8—C9—H9B109.5F1—C20—F2106.34 (19)
H9A—C9—H9B109.5F3—C20—F2107.4 (2)
C8—C9—H9C109.5F1—C20—C19112.21 (19)
H9A—C9—H9C109.5F3—C20—C19110.62 (18)
H9B—C9—H9C109.5F2—C20—C19112.9 (2)
N1—C10—C7131.82 (19)
C19—N2—N3—C8179.8 (2)N3—N2—C10—C70.4 (2)
C10—N2—N3—C80.0 (2)C19—N2—C10—C7179.44 (19)
C6—C1—C2—C30.5 (4)C10—N1—C11—C181.4 (3)
C1—C2—C3—C41.3 (4)C10—N1—C11—C12178.00 (18)
C1—C2—C3—Cl1178.8 (2)N1—C11—C12—C1710.3 (3)
C2—C3—C4—C51.0 (4)C18—C11—C12—C17169.2 (2)
Cl1—C3—C4—C5179.13 (19)N1—C11—C12—C13170.2 (2)
C3—C4—C5—C61.1 (4)C18—C11—C12—C1310.3 (3)
C3—C4—C5—Cl2176.46 (19)C17—C12—C13—C140.3 (4)
C2—C1—C6—C52.4 (4)C11—C12—C13—C14179.2 (2)
C2—C1—C6—C7178.6 (2)C12—C13—C14—C150.8 (4)
C4—C5—C6—C12.7 (3)C13—C14—C15—F4179.7 (3)
Cl2—C5—C6—C1174.81 (17)C13—C14—C15—C161.4 (5)
C4—C5—C6—C7178.3 (2)C14—C15—C16—C170.9 (4)
Cl2—C5—C6—C74.2 (3)F4—C15—C16—C17179.8 (2)
C1—C6—C7—C1046.2 (3)C15—C16—C17—C120.2 (4)
C5—C6—C7—C10132.7 (2)C13—C12—C17—C160.8 (4)
C1—C6—C7—C8125.9 (3)C11—C12—C17—C16178.7 (2)
C5—C6—C7—C855.2 (3)N1—C11—C18—C190.4 (3)
N2—N3—C8—C70.4 (2)C12—C11—C18—C19179.0 (2)
N2—N3—C8—C9177.5 (2)C11—C18—C19—N20.9 (3)
C10—C7—C8—N30.6 (3)C11—C18—C19—C20176.8 (2)
C6—C7—C8—N3173.9 (2)N3—N2—C19—C18179.1 (2)
C10—C7—C8—C9177.0 (2)C10—N2—C19—C181.1 (3)
C6—C7—C8—C93.8 (4)N3—N2—C19—C203.2 (3)
C11—N1—C10—C7179.4 (2)C10—N2—C19—C20176.65 (19)
C11—N1—C10—N21.2 (3)C18—C19—C20—F1115.6 (2)
C8—C7—C10—N1180.0 (2)N2—C19—C20—F162.1 (3)
C6—C7—C10—N16.1 (4)C18—C19—C20—F33.9 (3)
C8—C7—C10—N20.6 (2)N2—C19—C20—F3178.4 (2)
C6—C7—C10—N2174.44 (19)C18—C19—C20—F2124.3 (2)
N3—N2—C10—N1179.88 (19)N2—C19—C20—F258.1 (3)
C19—N2—C10—N10.0 (3)

Experimental details

Crystal data
Chemical formulaC20H11Cl2F4N3
Mr440.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)9.5361 (19), 15.941 (3), 24.853 (5)
V3)3778.0 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.926, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
34334, 4477, 3517
Rint0.049
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.153, 1.08
No. of reflections4477
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.34

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the State Key Laboratory of Elemento-organic Chemistry Nankai University, for the X-ray data collection.

References

First citationBui, T. T., Dahaoui, S., Lecomte, C., Desiraju, G. R. & Espinosa, E. (2009). Angew. Chem. Int. Ed. Engl. 48, 3838–3841.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFraley, M. E., Rubino, R. S., Hoffman, W. F., Hamb-augh, S. R. & Thomas, K. A. (2012). Bioorg. Med. Chem. Lett. 12, 3537–3541.  Web of Science CrossRef Google Scholar
First citationLiu, J., Cai, Z.-Q., Wang, Y., Li, C.-Y. & Xu, L.-F. (2012). Acta Cryst. E68, o1142.  CSD CrossRef IUCr Journals Google Scholar
First citationNovinson, T., Bhooshan, B., Okabe, T., Revankar, G. R. & Wilson, H. R. (1976). J. Med. Chem. 19, 512–516.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSenga, K., Novinson, T. & Wilson, H. R. (1981). J. Med. Chem. 24, 610–613.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, M., Iwasaki, H., Fujikawa, Y., Sakashita, M., Kitahara, M. & Sakoda, R. (2001). Bioorg. Med. Chem. Lett. 11, 1285–1288.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1515
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds