organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1353-o1354

5,17-Di­bromo-26,28-bis­­[(meth­­oxy­carbon­yl)meth­­oxy]-25,27-diprop­­oxy-2,8,14,20-tetra­thia­calix[4]arene

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: chdsguo@sdnu.edu.cn

(Received 14 March 2012; accepted 3 April 2012; online 13 April 2012)

The title thia­calix[4]arene derivative, C36H34Br2O8S4, adopts an unusual pinched cone conformation with the prop­oxy-substituted benzene rings inclined inward [forming a dihedral angle of 33.4 (1)°] and with the brominated benzene rings bent outward, making a dihedral angle of 66.1 (1)°. In the crystal, the mol­ecules form chains along [001] via C—H⋯S hydrogen bonds and S⋯S contacts [S⋯S = 3.492 (3) Å]. The chains are associated into bilayers through C—H⋯O hydrogen bonds, generating an R22(10) motif.

Related literature

For general background to the chemistry of thia­calix[4]arenes, see: Shokova & Kovalev (2003[Shokova, E. A. & Kovalev, V. V. (2003). Russ. J. Org. Chem. 39, 1-28.]); Lhoták (2004[Lhoták, P. (2004). Eur. J. Org. Chem. pp. 1675-1692.]); Morohashi et al. (2006[Morohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291-5316.]); Kajiwara et al. (2007[Kajiwara, T., Iki, N. & Yamashita, M. (2007). Coord. Chem. Rev. 251, 1734-1746.]); Guo et al. (2007[Guo, D.-S., Liu, Z.-P., Ma, J.-P. & Huang, R.-Q. (2007). Tetrahedron Lett. 48, 1221-1224.]). For related structures, see: Lhoták et al. (2000[Lhoták, P., ŠŤastný, V., Zlatušková, P., Stibor, I., Michlová, V., Tkadlecová, M., Havlíček, J. & Sýkora, J. (2000). Collect. Czech. Chem. Commun. 65, 757-771.], 2003[Lhoták, P., Himl, M., Stibor, I., Sýkora, J., Dvořáková, H., Langc, J. & Petříčková, H. (2003). Tetrahedron, 59, 7581-7585.]); Himl et al. (2005[Himl, M., Pojarová, M., Stibor, I., Sýkora, J. & Lhoták, P. (2005). Tetrahedron Lett. 46, 461-464.]); Xu et al. (2008[Xu, W.-N., Yuan, J.-M., Liu, Y., Ma, J.-P. & Guo, D.-S. (2008). Acta Cryst. C64, o349-o352.]); Chen et al. (2010[Chen, Y.-F., Liu, Y., Ma, J.-P. & Guo, D.-S. (2010). Acta Cryst. E66, o871-o872.]); Liu et al. (2011[Liu, L.-L., Chen, L.-S., Ma, J.-P. & Guo, D.-S. (2011). Acta Cryst. E67, o1110-o1111.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]); Hu et al. (2009[Hu, L., Liu, Y., Ma, J.-P. & Guo, D.-S. (2009). Acta Cryst. E65, o385-o386.]). For atomic van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C36H34Br2O8S4

  • Mr = 882.69

  • Monoclinic, P 21 /c

  • a = 16.024 (3) Å

  • b = 14.808 (3) Å

  • c = 15.872 (3) Å

  • β = 100.065 (3)°

  • V = 3708.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.46 mm−1

  • T = 173 K

  • 0.38 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.455, Tmax = 0.740

  • 19322 measured reflections

  • 6989 independent reflections

  • 4908 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.091

  • S = 0.93

  • 6989 reflections

  • 455 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S3i 0.95 2.91 3.755 (3) 149
C33—H33A⋯O7ii 0.98 2.58 3.551 (5) 169
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiacalix[4]arenes have attracted much interest because of their specific affinity, selectivity in molecular recognition, and supramolecular assembly (Shokova & Kovalev, 2003; Lhoták, 2004; Morohashi et al., 2006; Kajiwara et al., 2007; Guo et al., 2007). Numerous crystal structures of thiacalix[4]arenes uniformly substituted at the lower rim or at the upper rim are known (Lhoták et al., 2000, 2003; Himl et al., 2005). Recently, we have presented structures of several dibromo and tetrabromothiacalix[4]arene derivatives that possess four identical or four different substituents at the lower rim (Xu et al., 2008; Chen et al., 2010; Liu et al., 2011). Here we report the crystal structure of another dibromothiacalix[4]arene compound with different substituents at the lower rim – 5,17-dibromo-26,28-bis[(methoxycarbonyl)methoxy]-25,27-dipropoxy-2,8,14,20-tetrathiacalix[4]arene.

In the crystal structure of the title compound, C36H34Br2O8S4, (Fig. 1), the thiacalix[4]arene unit adopts an unusual pinched cone conformation. Two opposite bromosubstituted phenolic rings are strongly bent outwards the thiacalix cavity with a Br···Br distance of 13.819 (3) Å [larger than that reported previously - 13.165 (2) Å (Liu et al., 2011)]. The other two opposing phenolic rings are bent inwards. The phenolic rings form dihedral angles of 26.09 (7), 65.57 (7), 40.29 (6) and 81.18 (7)° with the virtual plane defined by the four bridging S atoms.

In the packing, there are several intermolecular short contacts (Table 1). The molecules are linked into an infinite zigzag one-dimensional chain along [001] (Hu et al., 2009) by intermolecular C4—H4···S3(x, -y + 1/2, z - 1/2) hydrogen bonds, locally forming a C(8) motif (Bernstein et al., 1995) (Fig. 2). Interestingly, in such a chain all 'tails' of the molecules extend to the same orientation and a significant S···S interaction between the adjacent thiacalix[4]arenes stabilizes the motif, with a S1···S3 distance of 3.492 (3) Å (S = 1.80 Å; Bondi, 1964). Finally, these chains are packed into a complex tail-to-tail-oriented bilayer system by a combination of interchain C—H···O hydrogen bonds, giving an R22(10) motif.

Related literature top

For general background to the chemistry of thiacalix[4]arenes, see: Shokova & Kovalev (2003); Lhoták (2004); Morohashi et al. (2006); Kajiwara et al. (2007); Guo et al. (2007). For related structures, see: Lhoták et al. (2000, 2003); Himl et al. (2005); Xu et al. (2008); Chen et al. (2010); Liu et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995); Hu et al. (2009). For atomic van der Waals radii, see: Bondi (1964).

Experimental top

BrCH2CO2Me (0.08 ml, 0.84 mmol) was added to a suspension of 5,17-dibromo-26,28-dihydroxy-25,27-dipropoxy-2,8,14,20-tetrathiacalix[4]arene (0.080 g, 0.14 mmol) and anhydrous K2CO3 (0.022 g, 0.17 mmol) in dry acetone (15 ml). The resulting mixture was stirred for 3 h at 343 K and cooled to room temperature. The solvent was removed under reduced pressure. The residue was neutralized with 5% aqueous HCl and extracted with CH2Cl2. The organic layer was separated and washed with saturated sodium hydrogen carbonate and brine, and dried over anhydrous MgSO4. The solvent was evaporated in vacuo and the residue was chromatographed on a silica gel column (CH2Cl2/petroleum ether = 1:1) to give the title compound as a white solid (yield 63%, Rf = 0.3) and another product (yield 28%, Rf = 0.45). 1H NMR (300 MHz, CDCl3) for the title product: δ 7.67 (s, 4H), 6.55 (d, 4H, J = 7.26 Hz), 6.46 (t, 2H, J = 7.57 Hz), 5.10 (s, 4H), 3.88 (t, 4H, J = 7.47 Hz), 3.74 (s, 6H), 1.89~1.77 (m, 4H), 1.05 (t, 6H, J = 7.39 Hz). IR (KBr pellets, cm-1): 1763 (C=O). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in CH3OH and CHCl3 at 298 K.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to carbon atoms were placed in geometrically idealized positions and refined as riding atoms with C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C) (methyl); C—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C) (methylene); C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) (aromatic). The positions of methyl hydrogens were rotationally optimized.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms. The hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. The hydrogen-bonded one-dimensional chain of the title compound, viewed along the crystallographic a axis, showing the C(8) motif. For the sake of clarity, H atoms not involved in the motifs have been omitted. [Symmetry codes: (i) x, -y + 1/2, z - 1/2; (iii) x, -y + 1/2, z + 1/2.]
5,17-Dibromo-26,28-bis[(methoxycarbonyl)methoxy]-25,27-dipropoxy-2,8,14,20- tetrathiacalix[4]arene top
Crystal data top
C36H34Br2O8S4F(000) = 1792
Mr = 882.69Dx = 1.581 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.024 (3) ÅCell parameters from 4762 reflections
b = 14.808 (3) Åθ = 2.4–24.5°
c = 15.872 (3) ŵ = 2.46 mm1
β = 100.065 (3)°T = 173 K
V = 3708.3 (12) Å3Block, colourless
Z = 40.38 × 0.18 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6989 independent reflections
Radiation source: fine-focus sealed tube4908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
phi and ω scansθmax = 25.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1910
Tmin = 0.455, Tmax = 0.740k = 1817
19322 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0393P)2]
where P = (Fo2 + 2Fc2)/3
6989 reflections(Δ/σ)max = 0.001
455 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C36H34Br2O8S4V = 3708.3 (12) Å3
Mr = 882.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.024 (3) ŵ = 2.46 mm1
b = 14.808 (3) ÅT = 173 K
c = 15.872 (3) Å0.38 × 0.18 × 0.13 mm
β = 100.065 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6989 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4908 reflections with I > 2σ(I)
Tmin = 0.455, Tmax = 0.740Rint = 0.060
19322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 0.93Δρmax = 0.62 e Å3
6989 reflectionsΔρmin = 0.55 e Å3
455 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11682 (2)0.60398 (2)0.21293 (2)0.04232 (12)
Br20.03760 (2)0.38070 (3)1.04064 (3)0.04869 (13)
C10.20213 (19)0.6405 (2)0.4739 (2)0.0258 (7)
C20.16788 (18)0.6550 (2)0.38842 (19)0.0271 (7)
H20.14600.71280.37020.033*
C30.16546 (19)0.5857 (2)0.32980 (19)0.0274 (7)
C40.19244 (19)0.5003 (2)0.35546 (19)0.0285 (7)
H40.18840.45270.31480.034*
C50.22583 (19)0.48368 (19)0.44142 (19)0.0255 (7)
C60.23380 (18)0.5547 (2)0.49994 (19)0.0256 (7)
C70.17985 (19)0.3580 (2)0.54785 (18)0.0235 (7)
C80.1014 (2)0.4000 (2)0.5355 (2)0.0301 (8)
H80.08370.43480.48520.036*
C90.0489 (2)0.3920 (2)0.5948 (2)0.0324 (8)
H90.00480.42090.58520.039*
C100.0742 (2)0.3419 (2)0.6690 (2)0.0310 (8)
H100.03810.33670.71040.037*
C110.1524 (2)0.2996 (2)0.68202 (19)0.0271 (7)
C120.20550 (19)0.30606 (19)0.62144 (19)0.0242 (7)
C130.1789 (2)0.3319 (2)0.85101 (19)0.0272 (7)
C140.12273 (19)0.3240 (2)0.90827 (19)0.0298 (8)
H140.09270.26920.91180.036*
C150.1109 (2)0.3961 (2)0.9597 (2)0.0295 (8)
C160.1492 (2)0.4789 (2)0.95107 (19)0.0306 (8)
H160.13770.52920.98440.037*
C170.20401 (19)0.4872 (2)0.89340 (19)0.0267 (7)
C180.22386 (19)0.4120 (2)0.84720 (19)0.0246 (7)
C190.1805 (2)0.62323 (19)0.77646 (19)0.0270 (7)
C200.0935 (2)0.6079 (2)0.7646 (2)0.0320 (8)
H200.06880.58290.80960.038*
C210.0431 (2)0.6290 (2)0.6875 (2)0.0347 (8)
H210.01620.61810.67950.042*
C220.0782 (2)0.6657 (2)0.6223 (2)0.0315 (8)
H220.04300.67970.56930.038*
C230.1646 (2)0.68234 (19)0.63296 (19)0.0264 (7)
C240.21621 (19)0.6616 (2)0.7109 (2)0.0249 (7)
C250.3470 (2)0.5133 (2)0.6152 (2)0.0320 (8)
H25A0.35240.45020.59650.038*
H25B0.35780.51400.67860.038*
C260.4131 (2)0.5699 (2)0.5838 (2)0.0358 (8)
C270.5595 (2)0.5920 (3)0.5987 (3)0.0608 (12)
H27A0.55480.58310.53690.091*
H27B0.61260.56550.62830.091*
H27C0.55880.65680.61130.091*
C280.2829 (2)0.1705 (2)0.6167 (2)0.0519 (11)
H28A0.23420.14250.63750.062*
H28B0.27530.16110.55410.062*
C290.3602 (3)0.1274 (3)0.6572 (3)0.0784 (16)
H29A0.37240.14530.71820.094*
H29B0.40750.14910.63000.094*
C300.3564 (3)0.0260 (3)0.6516 (3)0.0887 (17)
H30A0.31660.00320.68690.133*
H30B0.41290.00090.67220.133*
H30C0.33730.00790.59190.133*
C310.3558 (2)0.3663 (2)0.8103 (2)0.0387 (9)
H31A0.38850.37440.76340.046*
H31B0.33750.30240.80970.046*
C320.4124 (2)0.3854 (2)0.8935 (2)0.0351 (8)
C330.5475 (2)0.3478 (3)0.9742 (2)0.0577 (11)
H33A0.56030.41150.98710.087*
H33B0.59930.31630.96630.087*
H33C0.52500.32021.02170.087*
C340.3351 (2)0.7543 (2)0.7622 (2)0.0371 (9)
H34A0.31190.76360.81550.045*
H34B0.31900.80670.72410.045*
C350.4294 (2)0.7450 (2)0.7823 (2)0.0397 (9)
H35A0.45160.73700.72840.048*
H35B0.44430.69060.81790.048*
C360.4710 (2)0.8276 (3)0.8296 (2)0.0508 (10)
H36A0.46120.88060.79220.076*
H36B0.53210.81710.84590.076*
H36C0.44650.83810.88120.076*
O10.26345 (13)0.54324 (13)0.58541 (13)0.0284 (5)
O20.28416 (13)0.26639 (13)0.63464 (13)0.0300 (5)
O30.28207 (13)0.42264 (14)0.79386 (13)0.0307 (5)
O40.30214 (13)0.67228 (13)0.72072 (13)0.0302 (5)
O50.40072 (16)0.62414 (17)0.52780 (17)0.0546 (7)
O60.48904 (15)0.54881 (17)0.62764 (17)0.0510 (7)
O70.39604 (17)0.4311 (2)0.94997 (18)0.0649 (8)
O80.48456 (15)0.34097 (18)0.89600 (15)0.0484 (7)
S10.25109 (5)0.37085 (5)0.47437 (5)0.0301 (2)
S20.20796 (5)0.73180 (5)0.54737 (5)0.0321 (2)
S30.18647 (6)0.24030 (5)0.77987 (5)0.0335 (2)
S40.24789 (5)0.59458 (6)0.87516 (5)0.0325 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0565 (3)0.0436 (2)0.02588 (19)0.00021 (18)0.00459 (16)0.00639 (16)
Br20.0532 (3)0.0523 (3)0.0492 (2)0.01553 (19)0.03265 (19)0.0158 (2)
C10.0273 (19)0.0213 (16)0.0312 (18)0.0038 (14)0.0115 (14)0.0021 (15)
C20.0270 (19)0.0239 (17)0.0325 (18)0.0030 (14)0.0110 (14)0.0077 (15)
C30.0261 (19)0.0338 (19)0.0229 (17)0.0051 (15)0.0063 (13)0.0046 (15)
C40.039 (2)0.0250 (17)0.0244 (17)0.0048 (15)0.0142 (14)0.0011 (15)
C50.0321 (19)0.0210 (16)0.0260 (17)0.0008 (14)0.0121 (14)0.0032 (14)
C60.0243 (18)0.0281 (18)0.0257 (17)0.0035 (14)0.0082 (13)0.0027 (15)
C70.0315 (19)0.0198 (16)0.0197 (16)0.0062 (14)0.0055 (13)0.0032 (13)
C80.035 (2)0.0293 (18)0.0250 (17)0.0039 (16)0.0022 (14)0.0053 (15)
C90.029 (2)0.0337 (19)0.0345 (19)0.0021 (15)0.0055 (15)0.0005 (16)
C100.034 (2)0.0300 (18)0.0306 (19)0.0040 (16)0.0103 (15)0.0032 (16)
C110.039 (2)0.0210 (16)0.0211 (17)0.0035 (15)0.0035 (14)0.0017 (14)
C120.0273 (19)0.0165 (15)0.0277 (18)0.0018 (14)0.0016 (14)0.0037 (14)
C130.036 (2)0.0268 (18)0.0195 (16)0.0079 (15)0.0070 (14)0.0024 (14)
C140.034 (2)0.0289 (18)0.0265 (18)0.0023 (15)0.0046 (14)0.0085 (15)
C150.0284 (19)0.038 (2)0.0251 (17)0.0109 (16)0.0115 (14)0.0097 (16)
C160.035 (2)0.0345 (19)0.0229 (17)0.0092 (16)0.0076 (14)0.0015 (15)
C170.0302 (19)0.0282 (17)0.0212 (16)0.0005 (15)0.0031 (13)0.0029 (14)
C180.0244 (18)0.0294 (18)0.0202 (16)0.0012 (15)0.0046 (13)0.0049 (14)
C190.034 (2)0.0234 (17)0.0234 (17)0.0015 (14)0.0048 (14)0.0048 (14)
C200.032 (2)0.035 (2)0.0316 (19)0.0015 (15)0.0131 (15)0.0010 (16)
C210.024 (2)0.043 (2)0.038 (2)0.0020 (16)0.0079 (15)0.0034 (17)
C220.034 (2)0.0298 (19)0.0292 (18)0.0025 (15)0.0028 (15)0.0009 (15)
C230.034 (2)0.0200 (17)0.0274 (17)0.0011 (14)0.0107 (14)0.0061 (14)
C240.0236 (19)0.0209 (17)0.0316 (18)0.0014 (14)0.0090 (14)0.0056 (14)
C250.037 (2)0.0294 (18)0.0289 (18)0.0020 (16)0.0050 (15)0.0006 (15)
C260.039 (2)0.037 (2)0.031 (2)0.0001 (17)0.0063 (16)0.0057 (18)
C270.036 (3)0.080 (3)0.068 (3)0.004 (2)0.014 (2)0.002 (3)
C280.057 (3)0.047 (2)0.047 (2)0.013 (2)0.004 (2)0.013 (2)
C290.085 (4)0.065 (3)0.079 (4)0.032 (3)0.005 (3)0.006 (3)
C300.120 (4)0.050 (3)0.099 (4)0.039 (3)0.028 (3)0.011 (3)
C310.030 (2)0.052 (2)0.036 (2)0.0029 (17)0.0106 (15)0.0085 (18)
C320.031 (2)0.037 (2)0.038 (2)0.0011 (16)0.0076 (16)0.0040 (17)
C330.045 (3)0.067 (3)0.057 (3)0.006 (2)0.005 (2)0.001 (2)
C340.034 (2)0.0312 (19)0.048 (2)0.0075 (16)0.0108 (16)0.0112 (17)
C350.037 (2)0.046 (2)0.037 (2)0.0095 (17)0.0083 (16)0.0046 (18)
C360.046 (3)0.057 (3)0.050 (2)0.017 (2)0.0107 (19)0.012 (2)
O10.0318 (13)0.0296 (12)0.0246 (12)0.0010 (10)0.0075 (9)0.0009 (10)
O20.0325 (14)0.0259 (12)0.0321 (13)0.0025 (10)0.0067 (10)0.0012 (10)
O30.0303 (14)0.0371 (13)0.0271 (12)0.0034 (10)0.0117 (10)0.0021 (11)
O40.0267 (13)0.0298 (12)0.0350 (13)0.0019 (10)0.0077 (10)0.0067 (10)
O50.0452 (17)0.0675 (19)0.0517 (17)0.0077 (14)0.0100 (13)0.0237 (15)
O60.0332 (16)0.0567 (17)0.0619 (18)0.0023 (13)0.0050 (13)0.0099 (14)
O70.0580 (19)0.086 (2)0.0473 (17)0.0177 (16)0.0002 (14)0.0265 (17)
O80.0379 (16)0.0612 (17)0.0436 (15)0.0107 (13)0.0006 (12)0.0088 (14)
S10.0435 (5)0.0230 (4)0.0264 (4)0.0019 (4)0.0135 (4)0.0013 (4)
S20.0447 (6)0.0226 (4)0.0313 (5)0.0038 (4)0.0131 (4)0.0007 (4)
S30.0530 (6)0.0247 (4)0.0237 (4)0.0024 (4)0.0095 (4)0.0026 (4)
S40.0393 (5)0.0310 (5)0.0258 (4)0.0033 (4)0.0023 (4)0.0023 (4)
Geometric parameters (Å, º) top
Br1—C31.902 (3)C22—H220.9500
Br2—C151.900 (3)C23—C241.396 (4)
C1—C21.389 (4)C23—S21.787 (3)
C1—C61.404 (4)C24—O41.368 (3)
C1—S21.776 (3)C25—O11.411 (3)
C2—C31.381 (4)C25—C261.501 (5)
C2—H20.9500C25—H25A0.9900
C3—C41.375 (4)C25—H25B0.9900
C4—C51.398 (4)C26—O51.189 (4)
C4—H40.9500C26—O61.329 (4)
C5—C61.394 (4)C27—O61.440 (4)
C5—S11.776 (3)C27—H27A0.9800
C6—O11.367 (3)C27—H27B0.9800
C7—C81.385 (4)C27—H27C0.9800
C7—C121.399 (4)C28—C291.442 (5)
C7—S11.779 (3)C28—O21.447 (4)
C8—C91.374 (4)C28—H28A0.9900
C8—H80.9500C28—H28B0.9900
C9—C101.391 (4)C29—C301.505 (5)
C9—H90.9500C29—H29A0.9900
C10—C111.383 (4)C29—H29B0.9900
C10—H100.9500C30—H30A0.9800
C11—C121.394 (4)C30—H30B0.9800
C11—S31.785 (3)C30—H30C0.9800
C12—O21.373 (3)C31—O31.432 (4)
C13—C141.392 (4)C31—C321.494 (4)
C13—C181.395 (4)C31—H31A0.9900
C13—S31.782 (3)C31—H31B0.9900
C14—C151.377 (4)C32—O71.188 (4)
C14—H140.9500C32—O81.325 (4)
C15—C161.389 (4)C33—O81.460 (4)
C16—C171.381 (4)C33—H33A0.9800
C16—H160.9500C33—H33B0.9800
C17—C181.400 (4)C33—H33C0.9800
C17—S41.783 (3)C34—O41.437 (3)
C18—O31.374 (4)C34—C351.496 (4)
C19—C241.393 (4)C34—H34A0.9900
C19—C201.393 (4)C34—H34B0.9900
C19—S41.791 (3)C35—C361.526 (4)
C20—C211.379 (4)C35—H35A0.9900
C20—H200.9500C35—H35B0.9900
C21—C221.373 (4)C36—H36A0.9800
C21—H210.9500C36—H36B0.9800
C22—C231.388 (4)C36—H36C0.9800
C2—C1—C6119.2 (3)C26—C25—H25A108.9
C2—C1—S2119.4 (2)O1—C25—H25B108.9
C6—C1—S2121.4 (2)C26—C25—H25B108.9
C3—C2—C1120.2 (3)H25A—C25—H25B107.7
C3—C2—H2119.9O5—C26—O6124.6 (3)
C1—C2—H2119.9O5—C26—C25126.1 (3)
C4—C3—C2120.9 (3)O6—C26—C25109.3 (3)
C4—C3—Br1118.3 (2)O6—C27—H27A109.5
C2—C3—Br1120.7 (2)O6—C27—H27B109.5
C3—C4—C5119.9 (3)H27A—C27—H27B109.5
C3—C4—H4120.1O6—C27—H27C109.5
C5—C4—H4120.1H27A—C27—H27C109.5
C6—C5—C4119.5 (3)H27B—C27—H27C109.5
C6—C5—S1121.6 (2)C29—C28—O2111.4 (3)
C4—C5—S1118.8 (2)C29—C28—H28A109.3
O1—C6—C5122.9 (3)O2—C28—H28A109.3
O1—C6—C1116.7 (3)C29—C28—H28B109.3
C5—C6—C1120.1 (3)O2—C28—H28B109.3
C8—C7—C12119.5 (3)H28A—C28—H28B108.0
C8—C7—S1121.9 (2)C28—C29—C30113.1 (4)
C12—C7—S1118.5 (2)C28—C29—H29A108.9
C9—C8—C7120.9 (3)C30—C29—H29A108.9
C9—C8—H8119.6C28—C29—H29B108.9
C7—C8—H8119.6C30—C29—H29B108.9
C8—C9—C10120.3 (3)H29A—C29—H29B107.8
C8—C9—H9119.9C29—C30—H30A109.5
C10—C9—H9119.9C29—C30—H30B109.5
C11—C10—C9119.3 (3)H30A—C30—H30B109.5
C11—C10—H10120.3C29—C30—H30C109.5
C9—C10—H10120.3H30A—C30—H30C109.5
C10—C11—C12120.8 (3)H30B—C30—H30C109.5
C10—C11—S3118.9 (2)O3—C31—C32113.9 (3)
C12—C11—S3120.2 (2)O3—C31—H31A108.8
O2—C12—C11121.4 (3)C32—C31—H31A108.8
O2—C12—C7119.4 (3)O3—C31—H31B108.8
C11—C12—C7119.2 (3)C32—C31—H31B108.8
C14—C13—C18119.8 (3)H31A—C31—H31B107.7
C14—C13—S3118.3 (2)O7—C32—O8124.6 (3)
C18—C13—S3121.8 (2)O7—C32—C31126.5 (3)
C15—C14—C13119.6 (3)O8—C32—C31108.9 (3)
C15—C14—H14120.2O8—C33—H33A109.5
C13—C14—H14120.2O8—C33—H33B109.5
C14—C15—C16121.1 (3)H33A—C33—H33B109.5
C14—C15—Br2118.3 (2)O8—C33—H33C109.5
C16—C15—Br2120.6 (2)H33A—C33—H33C109.5
C17—C16—C15119.2 (3)H33B—C33—H33C109.5
C17—C16—H16120.4O4—C34—C35107.3 (3)
C15—C16—H16120.4O4—C34—H34A110.3
C16—C17—C18120.4 (3)C35—C34—H34A110.3
C16—C17—S4120.1 (2)O4—C34—H34B110.3
C18—C17—S4119.5 (2)C35—C34—H34B110.3
O3—C18—C13122.4 (3)H34A—C34—H34B108.5
O3—C18—C17118.2 (3)C34—C35—C36111.7 (3)
C13—C18—C17119.2 (3)C34—C35—H35A109.3
C24—C19—C20119.9 (3)C36—C35—H35A109.3
C24—C19—S4119.1 (2)C34—C35—H35B109.3
C20—C19—S4121.0 (3)C36—C35—H35B109.3
C21—C20—C19120.0 (3)H35A—C35—H35B107.9
C21—C20—H20120.0C35—C36—H36A109.5
C19—C20—H20120.0C35—C36—H36B109.5
C22—C21—C20120.4 (3)H36A—C36—H36B109.5
C22—C21—H21119.8C35—C36—H36C109.5
C20—C21—H21119.8H36A—C36—H36C109.5
C21—C22—C23120.6 (3)H36B—C36—H36C109.5
C21—C22—H22119.7C6—O1—C25121.1 (2)
C23—C22—H22119.7C12—O2—C28114.1 (2)
C22—C23—C24119.5 (3)C18—O3—C31116.6 (2)
C22—C23—S2119.5 (2)C24—O4—C34115.6 (2)
C24—C23—S2121.0 (2)C26—O6—C27115.2 (3)
O4—C24—C19119.9 (3)C32—O8—C33117.4 (3)
O4—C24—C23120.2 (3)C5—S1—C798.88 (14)
C19—C24—C23119.6 (3)C1—S2—C23101.78 (14)
O1—C25—C26113.4 (3)C13—S3—C1197.62 (14)
O1—C25—H25A108.9C17—S4—C1999.14 (14)
C6—C1—C2—C30.3 (4)C20—C21—C22—C230.2 (5)
S2—C1—C2—C3177.8 (2)C21—C22—C23—C240.0 (5)
C1—C2—C3—C43.6 (5)C21—C22—C23—S2179.0 (2)
C1—C2—C3—Br1178.8 (2)C20—C19—C24—O4176.6 (3)
C2—C3—C4—C52.4 (5)S4—C19—C24—O43.6 (4)
Br1—C3—C4—C5177.8 (2)C20—C19—C24—C231.6 (4)
C3—C4—C5—C61.9 (5)S4—C19—C24—C23178.6 (2)
C3—C4—C5—S1174.3 (2)C22—C23—C24—O4175.9 (3)
C4—C5—C6—O1178.0 (3)S2—C23—C24—O45.2 (4)
S1—C5—C6—O11.8 (4)C22—C23—C24—C190.9 (4)
C4—C5—C6—C15.2 (4)S2—C23—C24—C19179.9 (2)
S1—C5—C6—C1170.9 (2)O1—C25—C26—O513.4 (5)
C2—C1—C6—O1177.3 (3)O1—C25—C26—O6167.7 (2)
S2—C1—C6—O14.7 (4)O2—C28—C29—C30171.2 (4)
C2—C1—C6—C54.1 (4)O3—C31—C32—O712.0 (5)
S2—C1—C6—C5177.9 (2)O3—C31—C32—O8169.7 (3)
C12—C7—C8—C90.7 (4)O4—C34—C35—C36178.0 (3)
S1—C7—C8—C9177.3 (2)C5—C6—O1—C2563.4 (4)
C7—C8—C9—C100.4 (5)C1—C6—O1—C25123.6 (3)
C8—C9—C10—C110.5 (5)C26—C25—O1—C654.1 (4)
C9—C10—C11—C120.6 (5)C11—C12—O2—C2880.2 (4)
C9—C10—C11—S3176.8 (2)C7—C12—O2—C28103.3 (3)
C10—C11—C12—O2178.3 (3)C29—C28—O2—C12160.9 (3)
S3—C11—C12—O20.9 (4)C13—C18—O3—C3164.3 (4)
C10—C11—C12—C71.7 (4)C17—C18—O3—C31121.5 (3)
S3—C11—C12—C7175.7 (2)C32—C31—O3—C1866.1 (4)
C8—C7—C12—O2178.3 (3)C19—C24—O4—C3486.5 (3)
S1—C7—C12—O20.3 (4)C23—C24—O4—C3498.5 (3)
C8—C7—C12—C111.7 (4)C35—C34—O4—C24169.0 (3)
S1—C7—C12—C11176.3 (2)O5—C26—O6—C274.5 (5)
C18—C13—C14—C151.1 (4)C25—C26—O6—C27174.4 (3)
S3—C13—C14—C15175.3 (2)O7—C32—O8—C330.9 (5)
C13—C14—C15—C165.0 (5)C31—C32—O8—C33177.5 (3)
C13—C14—C15—Br2177.2 (2)C6—C5—S1—C758.3 (3)
C14—C15—C16—C174.0 (5)C4—C5—S1—C7117.9 (3)
Br2—C15—C16—C17178.2 (2)C8—C7—S1—C533.4 (3)
C15—C16—C17—C183.0 (4)C12—C7—S1—C5144.6 (2)
C15—C16—C17—S4175.4 (2)C2—C1—S2—C23131.6 (3)
C14—C13—C18—O3178.0 (3)C6—C1—S2—C2350.4 (3)
S3—C13—C18—O35.8 (4)C22—C23—S2—C172.7 (3)
C14—C13—C18—C177.9 (4)C24—C23—S2—C1108.3 (3)
S3—C13—C18—C17168.4 (2)C14—C13—S3—C11118.2 (3)
C16—C17—C18—O3176.7 (3)C18—C13—S3—C1158.1 (3)
S4—C17—C18—O34.9 (4)C10—C11—S3—C1356.9 (3)
C16—C17—C18—C138.9 (4)C12—C11—S3—C13120.5 (3)
S4—C17—C18—C13169.5 (2)C16—C17—S4—C19101.1 (3)
C24—C19—C20—C211.3 (5)C18—C17—S4—C1977.2 (3)
S4—C19—C20—C21178.8 (2)C24—C19—S4—C17137.2 (3)
C19—C20—C21—C220.4 (5)C20—C19—S4—C1743.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S3i0.952.913.755 (3)149
C33—H33A···O7ii0.982.583.551 (5)169
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC36H34Br2O8S4
Mr882.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)16.024 (3), 14.808 (3), 15.872 (3)
β (°) 100.065 (3)
V3)3708.3 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.46
Crystal size (mm)0.38 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.455, 0.740
No. of measured, independent and
observed [I > 2σ(I)] reflections
19322, 6989, 4908
Rint0.060
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.091, 0.93
No. of reflections6989
No. of parameters455
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.55

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S3i0.952.913.755 (3)148.8
C33—H33A···O7ii0.982.583.551 (5)169.3
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+2.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant No. 20572064) and the Natural Science Foundation of Shandong Province (grant No. ZR2010BM022) is gratefully acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-F., Liu, Y., Ma, J.-P. & Guo, D.-S. (2010). Acta Cryst. E66, o871–o872.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, D.-S., Liu, Z.-P., Ma, J.-P. & Huang, R.-Q. (2007). Tetrahedron Lett. 48, 1221–1224.  Web of Science CrossRef CAS Google Scholar
First citationHiml, M., Pojarová, M., Stibor, I., Sýkora, J. & Lhoták, P. (2005). Tetrahedron Lett. 46, 461–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, L., Liu, Y., Ma, J.-P. & Guo, D.-S. (2009). Acta Cryst. E65, o385–o386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKajiwara, T., Iki, N. & Yamashita, M. (2007). Coord. Chem. Rev. 251, 1734–1746.  Web of Science CrossRef CAS Google Scholar
First citationLhoták, P. (2004). Eur. J. Org. Chem. pp. 1675–1692.  Google Scholar
First citationLhoták, P., Himl, M., Stibor, I., Sýkora, J., Dvořáková, H., Langc, J. & Petříčková, H. (2003). Tetrahedron, 59, 7581–7585.  Google Scholar
First citationLhoták, P., ŠŤastný, V., Zlatušková, P., Stibor, I., Michlová, V., Tkadlecová, M., Havlíček, J. & Sýkora, J. (2000). Collect. Czech. Chem. Commun. 65, 757–771.  Google Scholar
First citationLiu, L.-L., Chen, L.-S., Ma, J.-P. & Guo, D.-S. (2011). Acta Cryst. E67, o1110–o1111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291–5316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShokova, E. A. & Kovalev, V. V. (2003). Russ. J. Org. Chem. 39, 1–28.  Web of Science CrossRef CAS Google Scholar
First citationXu, W.-N., Yuan, J.-M., Liu, Y., Ma, J.-P. & Guo, D.-S. (2008). Acta Cryst. C64, o349–o352.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1353-o1354
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds