organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1460

3,11-Di­bromo-14-(4-chloro­phen­yl)-14H-dibenzo[a,j]xanthene di­methyl­formamide monosolvate

aKey Laboratory of Green Chemical Technology of College of Heilongjiang Province, School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
*Correspondence e-mail: songyongbin1981@sina.com

(Received 25 March 2012; accepted 13 April 2012; online 21 April 2012)

In the title compound, C27H15Br2ClO·C3H7NO, the xanthene moiety has a flattened boat conformation with a folding angle between the naphthalene units of 9.46 (3)°. The mean planes of the xanthene system and its 4-chloro­phenyl substituent are nearly perpendicular [dihedral angle = 89.43 (5)°]. The dimethyl­formamide solvent mol­ecule is disordered over two sets of sites with an occupancy ratio of 0.520 (11):0.480 (11).

Related literature

For related structures and the preparation of the title compound, see: Wu et al. (2009[Wu, D. Q., Pisula, W. & Haberecht, M. C. (2009). Org. Lett. 11, 5686-5689.]); Seethalakshmi et al. (2006[Seethalakshmi, T., Linden, A., Sunil Kumar, B., Hunnur, R. K. & Kaliannan, P. (2006). Acta Cryst. E62, o5417-o5418.]). For the biological activity of benzoxanthene derivatives, see: Lambert et al. (1997[Lambert, R. W., Martin, J. A. & Merrett, J. H. (1997). PCT Int. Appl. WO 9706178; Chem. Abstr. (1997), 126, 212377y.]); Hideo (1981[Hideo, T. (1981). Jpn. Tokkyo Koho JP 56005480; Chem. Abstr. (1981), 95, 80922b.]); Poupelin et al. (1978[Poupelin, J. P., Saint-Rut, G., Fussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G. & Lakroix, R. (1978). Eur. J. Med. Chem. 13, 67-71.]). For related structures, see: Cai et al. (2009[Cai, Z.-Q., Xiong, G., Li, S.-R., Liu, J.-B. & Sun, T.-M. (2009). Acta Cryst. E65, o1901.]); Lu et al. (2008[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1693.]); Rahmani et al. (2009[Rahmani, H., Pirelahi, H. & Ng, S. W. (2009). Acta Cryst. E65, o603.]); Dalla Via et al. (2008[Dalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). Eur. J. Med. Chem. 43, 429-434.]); Gaurrand et al. (2006[Gaurrand, S., Desjardins, S., Meyer, C., Bonnet, P., Argoullon, J.-M., Qulyadi, H. & Guillemont, J. (2006). Chem. Biol. Drug Des. 68, 77-84.]); Petit et al. (2007[Petit, S., Coquerel, G., Meyer, C. & Guillemont, J. (2007). J. Mol. Struct. 837, 252-256.]).

[Scheme 1]

Experimental

Crystal data
  • C27H15Br2ClO·C3H7NO

  • Mr = 623.74

  • Triclinic, [P \overline 1]

  • a = 10.8558 (12) Å

  • b = 10.9385 (12) Å

  • c = 11.8946 (13) Å

  • α = 74.443 (1)°

  • β = 80.967 (1)°

  • γ = 71.448 (1)°

  • V = 1286.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.29 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.415, Tmax = 0.518

  • 8696 measured reflections

  • 4522 independent reflections

  • 2902 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.091

  • S = 1.03

  • 4522 reflections

  • 375 parameters

  • 55 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of benzoxanthenes have received much attention due to their wide range of biological and pharmacological activities, such as antiviral (Lambert et al., 1997), antibacterial (Hideo, 1981), and anti-inflammatory (Poupelin et al., 1978). In the present paper we describe the crystal structure of the title compound.

The molecular structure of the compound is shown in the Figure 1. The chlorophenyl substituent (C12–C17) at C11 forms dihedral angle of 89.43 (5)° with the mean plane of the xanthene ring system. The pyran ring (O1/C9/C10/C11/C18/C19) adopts a boat conformation with the O1 and C11 displaced by 0.112 and 0.253 (4) Å, respectively, from the mean plane of the rest of the atoms.

The packing is characterized by Cl···Br contacts and π···π stacking interactions. The distance between the Cl and Br atoms is 3.5668 (9) Å; The angles C1—Br1···Cl1 and C15—Cl1···Br1 are 161.43 (1)° and 85.97 (1)°, respectively. Some π···π stacking interactions between phenyl rings (containing Br1 and Br2, respectively) were detected with the centroid-to-centroid distance of 3.688 (2) Å. Short C-H···O contacts take place between the title molecule and the solvent.

Related literature top

For related structures and the preparation of the title compound, see: Wu et al. (2009); Seethalakshmi et al. (2006). For the biological activity of benzoxanthene derivatives, see: Lambert et al. (1997); Hideo (1981); Poupelin et al. (1978). For related structures, see: Cai et al. (2009); Lu et al. (2008); Rahmani et al. (2009). For other related literature [on what subject(s)?], see: Dalla Via et al. (2008); Gaurrand et al. (2006); Petit et al. (2007).

Experimental top

A solution of the 6-bromo-2-naphthol (2.2 g, 10 mmol), and 4-chloro-benzaldehyde (0.7 g, 5 mmol), acetic acid (5 ml) was refluxed with 1 ml of hydrochloric acid for two hours (Wu et al., 2009). The system was cooled to room temperature, and the formed precipitate was filtered and washed with water. The product was recrystallized from the mixed solution of ethanol and dimethylformamide (DMF), and yielded raw crystals (2.2 g, yield 81%). The colourless single crystals of the title compound were grown by recystallization from DMF solution.

Refinement top

The solvate DMF molecule is disordered over two positions. H atoms were positioned geometrically [C—H = 0.93 Å for aromatic ring, C—H = 0.98 Å for methenyl group, C—H = 0.93 Å for aldehyde group (DMF) and C—H = 0.96 Å for methyl group (DMF)] and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H atoms. Positions of H atoms of Me groups were optimized rotationally.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. The solvent molecule have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. The solvent molecules have been omitted for clarity. Short Cl···Br contacts are shown by dashed lines (see Comments).
3,11-Dibromo-14-(4-chlorophenyl)-14H-dibenzo[a,j]xanthene dimethylformamide monosolvate top
Crystal data top
C27H15Br2ClO·C3H7NOZ = 2
Mr = 623.74F(000) = 624.0
Triclinic, P1Dx = 1.611 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8558 (12) ÅCell parameters from 2346 reflections
b = 10.9385 (12) Åθ = 2.4–23.0°
c = 11.8946 (13) ŵ = 3.29 mm1
α = 74.443 (1)°T = 293 K
β = 80.967 (1)°Block, colourless
γ = 71.448 (1)°0.28 × 0.26 × 0.20 mm
V = 1286.0 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4522 independent reflections
Radiation source: fine-focus sealed tube2902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.415, Tmax = 0.518k = 1313
8696 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.0361P]
where P = (Fo2 + 2Fc2)/3
4522 reflections(Δ/σ)max = 0.001
375 parametersΔρmax = 0.41 e Å3
55 restraintsΔρmin = 0.52 e Å3
Crystal data top
C27H15Br2ClO·C3H7NOγ = 71.448 (1)°
Mr = 623.74V = 1286.0 (2) Å3
Triclinic, P1Z = 2
a = 10.8558 (12) ÅMo Kα radiation
b = 10.9385 (12) ŵ = 3.29 mm1
c = 11.8946 (13) ÅT = 293 K
α = 74.443 (1)°0.28 × 0.26 × 0.20 mm
β = 80.967 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4522 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2902 reflections with I > 2σ(I)
Tmin = 0.415, Tmax = 0.518Rint = 0.025
8696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03955 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
4522 reflectionsΔρmin = 0.52 e Å3
375 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.52851 (4)0.29861 (5)0.12824 (4)0.08221 (18)
Br21.12806 (5)0.43299 (4)1.11655 (4)0.08279 (18)
Cl10.34543 (9)0.24873 (11)0.92900 (9)0.0742 (3)
C10.6372 (3)0.2652 (4)0.2508 (3)0.0561 (9)
C20.7071 (4)0.3483 (4)0.2477 (3)0.0568 (10)
H20.70360.42130.18500.068*
C30.6406 (3)0.1539 (4)0.3421 (3)0.0565 (9)
H30.59260.09730.34120.068*
C40.7150 (3)0.1283 (3)0.4333 (3)0.0508 (9)
H40.71660.05410.49430.061*
C50.7893 (3)0.2122 (3)0.4366 (3)0.0440 (8)
C60.7857 (3)0.3240 (3)0.3399 (3)0.0508 (9)
C70.8624 (4)0.4075 (4)0.3393 (3)0.0587 (10)
H70.86260.47920.27610.070*
C80.9352 (4)0.3849 (4)0.4288 (3)0.0571 (10)
H80.98600.44000.42670.068*
C90.9339 (3)0.2778 (4)0.5253 (3)0.0507 (9)
C100.8637 (3)0.1914 (3)0.5327 (3)0.0443 (8)
C110.8579 (3)0.0831 (3)0.6435 (3)0.0438 (8)
H110.86620.00070.62110.053*
C120.7273 (3)0.1214 (3)0.7159 (3)0.0394 (7)
C130.6464 (3)0.0415 (3)0.7511 (3)0.0517 (9)
H130.66970.03900.72950.062*
C140.5302 (3)0.0793 (4)0.8187 (3)0.0591 (10)
H140.47680.02380.84320.071*
C150.4951 (3)0.1983 (4)0.8487 (3)0.0477 (8)
C160.5733 (3)0.2804 (3)0.8162 (3)0.0505 (9)
H160.54890.36110.83750.061*
C170.6901 (3)0.2400 (3)0.7506 (3)0.0480 (8)
H170.74480.29420.72940.058*
C181.0316 (3)0.1546 (3)0.7020 (3)0.0476 (8)
C190.9692 (3)0.0601 (3)0.7161 (3)0.0432 (8)
C201.1238 (3)0.1442 (4)0.7777 (3)0.0547 (9)
H201.16340.21110.76520.066*
C211.1551 (3)0.0378 (4)0.8683 (3)0.0509 (9)
H211.21410.03310.91930.061*
C221.0987 (3)0.0661 (3)0.8857 (3)0.0449 (8)
C231.0052 (3)0.0563 (3)0.8097 (3)0.0441 (8)
C241.1331 (3)0.1794 (4)0.9783 (3)0.0517 (9)
H241.19340.18591.02880.062*
C251.0783 (3)0.2792 (3)0.9939 (3)0.0520 (9)
C260.9516 (3)0.1635 (3)0.8306 (3)0.0486 (8)
H260.89050.15920.78190.058*
C270.9868 (3)0.2727 (3)0.9200 (3)0.0529 (9)
H270.95040.34190.93180.063*
O1S0.2639 (19)0.1711 (15)0.4104 (17)0.146 (7)0.480 (11)
N1S0.336 (3)0.321 (2)0.464 (3)0.067 (4)0.480 (11)
C1S0.2884 (11)0.2997 (12)0.3778 (11)0.080 (3)0.480 (11)
H1S0.27240.35920.30570.096*0.480 (11)
C2S0.3677 (10)0.2212 (13)0.5620 (9)0.091 (4)0.480 (11)
H2SA0.28940.20860.60710.136*0.480 (11)
H2SB0.41800.24440.60830.136*0.480 (11)
H2SC0.41790.14060.53940.136*0.480 (11)
C3S0.3956 (14)0.4246 (12)0.4441 (14)0.107 (4)0.480 (11)
H3SA0.39410.47030.36300.160*0.480 (11)
H3SB0.48420.38730.46460.160*0.480 (11)
H3SC0.34850.48580.49150.160*0.480 (11)
O11.0076 (2)0.2689 (2)0.6136 (2)0.0576 (6)
O1Q0.2462 (12)0.226 (2)0.3776 (18)0.174 (9)0.520 (11)
N1Q0.349 (3)0.315 (3)0.463 (3)0.070 (4)0.520 (11)
C1Q0.3174 (14)0.2003 (14)0.4823 (11)0.128 (5)0.520 (11)
H1Q0.33550.12600.54430.153*0.520 (11)
C2Q0.3047 (14)0.4214 (14)0.3741 (10)0.147 (8)0.520 (11)
H2QA0.29460.39140.30820.221*0.520 (11)
H2QB0.36590.47220.35180.221*0.520 (11)
H2QC0.22200.47580.39940.221*0.520 (11)
C3Q0.4112 (14)0.336 (2)0.5499 (17)0.196 (11)0.520 (11)
H3QA0.49560.27220.55860.294*0.520 (11)
H3QB0.35920.32610.62310.294*0.520 (11)
H3QC0.42080.42390.52690.294*0.520 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0733 (3)0.1133 (4)0.0549 (3)0.0121 (3)0.0207 (2)0.0202 (2)
Br20.1060 (4)0.0687 (3)0.0758 (3)0.0264 (3)0.0362 (3)0.0026 (2)
Cl10.0487 (6)0.1130 (9)0.0696 (7)0.0302 (6)0.0088 (5)0.0353 (6)
C10.057 (2)0.070 (3)0.039 (2)0.005 (2)0.0072 (17)0.023 (2)
C20.063 (2)0.060 (2)0.038 (2)0.007 (2)0.0002 (17)0.0135 (18)
C30.062 (2)0.065 (3)0.049 (2)0.0176 (19)0.0057 (18)0.024 (2)
C40.056 (2)0.056 (2)0.044 (2)0.0175 (18)0.0070 (16)0.0140 (17)
C50.0429 (19)0.053 (2)0.0359 (19)0.0108 (16)0.0036 (14)0.0176 (16)
C60.049 (2)0.056 (2)0.044 (2)0.0094 (18)0.0044 (16)0.0184 (18)
C70.070 (3)0.057 (2)0.046 (2)0.024 (2)0.0081 (19)0.0097 (18)
C80.063 (2)0.064 (2)0.051 (2)0.030 (2)0.0061 (19)0.017 (2)
C90.053 (2)0.063 (2)0.043 (2)0.0222 (19)0.0017 (16)0.0205 (18)
C100.0443 (19)0.050 (2)0.041 (2)0.0149 (16)0.0063 (15)0.0176 (16)
C110.0455 (19)0.049 (2)0.045 (2)0.0199 (16)0.0032 (15)0.0172 (16)
C120.0409 (18)0.048 (2)0.0365 (18)0.0180 (16)0.0092 (14)0.0109 (15)
C130.053 (2)0.053 (2)0.059 (2)0.0250 (18)0.0058 (17)0.0171 (18)
C140.048 (2)0.078 (3)0.061 (2)0.036 (2)0.0011 (18)0.015 (2)
C150.0389 (19)0.068 (2)0.040 (2)0.0186 (18)0.0036 (14)0.0161 (18)
C160.052 (2)0.058 (2)0.047 (2)0.0193 (18)0.0018 (16)0.0182 (17)
C170.045 (2)0.058 (2)0.047 (2)0.0249 (17)0.0014 (16)0.0119 (17)
C180.044 (2)0.056 (2)0.051 (2)0.0202 (18)0.0009 (16)0.0225 (18)
C190.0373 (18)0.054 (2)0.044 (2)0.0141 (16)0.0022 (14)0.0193 (17)
C200.048 (2)0.068 (3)0.062 (3)0.0268 (19)0.0010 (18)0.028 (2)
C210.040 (2)0.067 (2)0.056 (2)0.0183 (18)0.0060 (16)0.028 (2)
C220.0354 (18)0.059 (2)0.046 (2)0.0136 (17)0.0002 (15)0.0223 (18)
C230.0359 (18)0.054 (2)0.048 (2)0.0112 (16)0.0036 (15)0.0261 (17)
C240.041 (2)0.068 (2)0.049 (2)0.0086 (18)0.0058 (15)0.0255 (19)
C250.055 (2)0.052 (2)0.049 (2)0.0109 (18)0.0051 (17)0.0147 (17)
C260.045 (2)0.053 (2)0.053 (2)0.0129 (17)0.0094 (16)0.0198 (18)
C270.050 (2)0.056 (2)0.056 (2)0.0157 (18)0.0043 (17)0.0184 (19)
O1S0.219 (18)0.105 (8)0.152 (11)0.095 (10)0.051 (10)0.071 (7)
N1S0.066 (10)0.033 (6)0.091 (9)0.000 (6)0.001 (7)0.017 (5)
C1S0.066 (6)0.090 (7)0.071 (5)0.016 (5)0.004 (4)0.008 (5)
C2S0.088 (6)0.121 (8)0.061 (6)0.047 (6)0.009 (5)0.005 (5)
C3S0.111 (8)0.089 (7)0.124 (9)0.039 (6)0.024 (7)0.038 (6)
O10.0637 (16)0.0636 (16)0.0566 (16)0.0333 (13)0.0057 (12)0.0140 (13)
O1Q0.058 (6)0.28 (2)0.247 (18)0.025 (9)0.000 (8)0.201 (17)
N1Q0.063 (7)0.087 (8)0.063 (6)0.032 (6)0.003 (5)0.009 (6)
C1Q0.157 (12)0.112 (9)0.119 (11)0.055 (8)0.039 (8)0.045 (8)
C2Q0.137 (11)0.118 (10)0.084 (8)0.045 (9)0.023 (7)0.029 (7)
C3Q0.126 (11)0.26 (2)0.236 (19)0.050 (12)0.093 (12)0.191 (18)
Geometric parameters (Å, º) top
Br1—C11.906 (4)C19—C231.440 (4)
Br2—C251.898 (3)C20—C211.350 (4)
Cl1—C151.756 (3)C20—H200.9300
C1—C21.346 (5)C21—C221.410 (4)
C1—C31.392 (5)C21—H210.9300
C2—C61.413 (5)C22—C241.411 (4)
C2—H20.9300C22—C231.424 (4)
C3—C41.370 (5)C23—C261.416 (4)
C3—H30.9300C24—C251.360 (5)
C4—C51.413 (4)C24—H240.9300
C4—H40.9300C25—C271.400 (5)
C5—C101.429 (4)C26—C271.363 (4)
C5—C61.432 (4)C26—H260.9300
C6—C71.416 (5)C27—H270.9300
C7—C81.347 (5)O1S—C1S1.453 (17)
C7—H70.9300N1S—C1S1.32 (2)
C8—C91.406 (5)N1S—C2S1.37 (3)
C8—H80.9300N1S—C3S1.42 (2)
C9—C101.369 (4)C1S—H1S0.9300
C9—O11.383 (4)C2S—H2SA0.9600
C10—C111.527 (4)C2S—H2SB0.9600
C11—C191.512 (4)C2S—H2SC0.9600
C11—C121.536 (4)C3S—H3SA0.9600
C11—H110.9800C3S—H3SB0.9600
C12—C131.374 (4)C3S—H3SC0.9600
C12—C171.384 (4)O1Q—C1Q1.485 (18)
C13—C141.392 (5)N1Q—C2Q1.36 (3)
C13—H130.9300N1Q—C1Q1.36 (2)
C14—C151.363 (5)N1Q—C3Q1.42 (2)
C14—H140.9300C1Q—H1Q0.9300
C15—C161.369 (4)C2Q—H2QA0.9600
C16—C171.388 (4)C2Q—H2QB0.9600
C16—H160.9300C2Q—H2QC0.9600
C17—H170.9300C3Q—H3QA0.9600
C18—C191.368 (4)C3Q—H3QB0.9600
C18—O11.381 (4)C3Q—H3QC0.9600
C18—C201.408 (5)
C2—C1—C3122.1 (3)C19—C18—C20122.6 (3)
C2—C1—Br1120.1 (3)O1—C18—C20114.6 (3)
C3—C1—Br1117.8 (3)C18—C19—C23117.5 (3)
C1—C2—C6119.7 (3)C18—C19—C11121.1 (3)
C1—C2—H2120.1C23—C19—C11121.2 (3)
C6—C2—H2120.1C21—C20—C18120.5 (3)
C4—C3—C1119.5 (3)C21—C20—H20119.8
C4—C3—H3120.2C18—C20—H20119.8
C1—C3—H3120.2C20—C21—C22120.2 (3)
C3—C4—C5121.4 (3)C20—C21—H21119.9
C3—C4—H4119.3C22—C21—H21119.9
C5—C4—H4119.3C21—C22—C24120.7 (3)
C4—C5—C10122.8 (3)C21—C22—C23119.7 (3)
C4—C5—C6117.4 (3)C24—C22—C23119.5 (3)
C10—C5—C6119.8 (3)C26—C23—C22117.6 (3)
C2—C6—C7121.7 (3)C26—C23—C19123.0 (3)
C2—C6—C5119.7 (3)C22—C23—C19119.4 (3)
C7—C6—C5118.6 (3)C25—C24—C22120.2 (3)
C8—C7—C6121.2 (3)C25—C24—H24119.9
C8—C7—H7119.4C22—C24—H24119.9
C6—C7—H7119.4C24—C25—C27121.5 (3)
C7—C8—C9119.6 (4)C24—C25—Br2119.8 (3)
C7—C8—H8120.2C27—C25—Br2118.6 (3)
C9—C8—H8120.2C27—C26—C23122.1 (3)
C10—C9—O1122.8 (3)C27—C26—H26119.0
C10—C9—C8123.1 (3)C23—C26—H26119.0
O1—C9—C8114.1 (3)C26—C27—C25119.1 (3)
C9—C10—C5117.6 (3)C26—C27—H27120.4
C9—C10—C11120.8 (3)C25—C27—H27120.4
C5—C10—C11121.4 (3)C1S—N1S—C2S119.2 (16)
C19—C11—C10109.9 (3)C1S—N1S—C3S121 (3)
C19—C11—C12109.9 (3)C2S—N1S—C3S116.1 (18)
C10—C11—C12110.6 (3)N1S—C1S—O1S111.3 (17)
C19—C11—H11108.8N1S—C1S—H1S124.3
C10—C11—H11108.8O1S—C1S—H1S124.3
C12—C11—H11108.8C18—O1—C9118.2 (3)
C13—C12—C17117.9 (3)C2Q—N1Q—C1Q123.1 (17)
C13—C12—C11123.0 (3)C2Q—N1Q—C3Q116.9 (19)
C17—C12—C11119.1 (3)C1Q—N1Q—C3Q119 (2)
C12—C13—C14120.9 (3)N1Q—C1Q—O1Q100.8 (16)
C12—C13—H13119.5N1Q—C1Q—H1Q129.6
C14—C13—H13119.5O1Q—C1Q—H1Q129.6
C15—C14—C13119.5 (3)N1Q—C2Q—H2QA109.5
C15—C14—H14120.3N1Q—C2Q—H2QB109.5
C13—C14—H14120.3H2QA—C2Q—H2QB109.5
C14—C15—C16121.4 (3)N1Q—C2Q—H2QC109.5
C14—C15—Cl1119.4 (3)H2QA—C2Q—H2QC109.5
C16—C15—Cl1119.1 (3)H2QB—C2Q—H2QC109.5
C15—C16—C17118.3 (3)N1Q—C3Q—H3QA109.5
C15—C16—H16120.8N1Q—C3Q—H3QB109.5
C17—C16—H16120.8H3QA—C3Q—H3QB109.5
C12—C17—C16121.9 (3)N1Q—C3Q—H3QC109.5
C12—C17—H17119.1H3QA—C3Q—H3QC109.5
C16—C17—H17119.1H3QB—C3Q—H3QC109.5
C19—C18—O1122.8 (3)

Experimental details

Crystal data
Chemical formulaC27H15Br2ClO·C3H7NO
Mr623.74
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.8558 (12), 10.9385 (12), 11.8946 (13)
α, β, γ (°)74.443 (1), 80.967 (1), 71.448 (1)
V3)1286.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.29
Crystal size (mm)0.28 × 0.26 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.415, 0.518
No. of measured, independent and
observed [I > 2σ(I)] reflections
8696, 4522, 2902
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.091, 1.03
No. of reflections4522
No. of parameters375
No. of restraints55
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.52

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Zhanhua Su for help with the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Z.-Q., Xiong, G., Li, S.-R., Liu, J.-B. & Sun, T.-M. (2009). Acta Cryst. E65, o1901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). Eur. J. Med. Chem. 43, 429–434.  Web of Science PubMed CAS Google Scholar
First citationGaurrand, S., Desjardins, S., Meyer, C., Bonnet, P., Argoullon, J.-M., Qulyadi, H. & Guillemont, J. (2006). Chem. Biol. Drug Des. 68, 77–84.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHideo, T. (1981). Jpn. Tokkyo Koho JP 56005480; Chem. Abstr. (1981), 95, 80922b.  Google Scholar
First citationLambert, R. W., Martin, J. A. & Merrett, J. H. (1997). PCT Int. Appl. WO 9706178; Chem. Abstr. (1997), 126, 212377y.  Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPetit, S., Coquerel, G., Meyer, C. & Guillemont, J. (2007). J. Mol. Struct. 837, 252–256.  Web of Science CSD CrossRef CAS Google Scholar
First citationPoupelin, J. P., Saint-Rut, G., Fussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G. & Lakroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.  CAS Google Scholar
First citationRahmani, H., Pirelahi, H. & Ng, S. W. (2009). Acta Cryst. E65, o603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeethalakshmi, T., Linden, A., Sunil Kumar, B., Hunnur, R. K. & Kaliannan, P. (2006). Acta Cryst. E62, o5417–o5418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D. Q., Pisula, W. & Haberecht, M. C. (2009). Org. Lett. 11, 5686–5689.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1460
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds