metal-organic compounds
catena-Poly[[(p-toluenesulfonato-κO)silver(I)]-μ-1,3-bis(pyridin-4-yl)propane-κ2N:N′]
aShandong Polytechnic University, School of Chemistry and Pharmaceutical Engineering, Jinan 250353, People's Republic of China
*Correspondence e-mail: mafengch@163.com
In the title compound, [Ag(C7H7O3S)(C13H14N2)]n, the AgI ion is coordinated in a T-shape by two N atoms from two symmetry-related 1,3-bis(pyridin-4-yl)propane ligands and one O atom from a p-toluenesulfonate ligand, forming a one-dimensional zigzag chain along [001]. In the crystal, weak C—H⋯O hydrogen bonds and weak Ag⋯Ag interactions [3.2628 (5) Å] are observed.
Related literature
For potential applications of compounds with metal-organic framework structures, see: Horike et al. (2008); Liu et al. (2010); Lu et al. (2006); Li et al. (1999). For coordination polymers of 1,3-bis(pyridin-4-yl)propane (bpp), see: Carlucci et al. (2002). For mixed ligands of aromatic or aliphatic carboxylates and bpp, see: Yang et al. (2009); Jin et al. (2009); Zhang et al. (2009); Luo et al. (2011). For silver(I) sulfonate complexes, see: Wu et al. (2011); Smith et al. (1998) For similar systems with Ag⋯Ag interactions, see: Li et al. (2005). For a similar synthetic procedure, see: Li et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812015218/lh5431sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: 10.1107/S1600536812015218/lh5431Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S1600536812015218/lh5431Isup3.hkl
A solution of bpp and tos in 8 ml methanol and 2 ml water was slowly added to a solution of AgNO3(0.1668 g) in 8 ml water. A white suspension formed immediately. An aqueous NH3 solution (25%) was dropped into the mixture to give a clear solution. The resultant colorless filtrate (pH=9.0) was allowed to evaporate slowly at room temperature. After one week, colorless block crystals were obtained in 52.87% yield (based on Ag). Elemental analysis for (I) (%): calculated: C 50.3, H 4.4, N 5.9, O 10.1, S 6.7. Found C49.94, H 4.452, N 5.969, O 10.123, S 7.013.
All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2(1.5 for methyl groups) times Ueq(C).
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ag(C7H7O3S)(C13H14N2)] | F(000) = 968 |
Mr = 477.33 | Dx = 1.617 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2yn | Cell parameters from 4048 reflections |
a = 10.8061 (3) Å | θ = 2.8–28.9° |
b = 9.9466 (3) Å | µ = 1.16 mm−1 |
c = 18.4288 (5) Å | T = 293 K |
β = 98.230 (3)° | Block, colorless |
V = 1960.40 (10) Å3 | 0.52 × 0.47 × 0.36 mm |
Z = 4 |
Agilent Xcalibur Eos Gemini diffractometer | 3450 independent reflections |
Radiation source: Enhance (Mo) X-ray Source' | 2834 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | h = −12→12 |
Tmin = 0.553, Tmax = 0.659 | k = −11→11 |
11169 measured reflections | l = −21→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.032P)2 + 1.9473P] where P = (Fo2 + 2Fc2)/3 |
S = 0.94 | (Δ/σ)max = 0.001 |
3450 reflections | Δρmax = 0.63 e Å−3 |
245 parameters | Δρmin = −0.55 e Å−3 |
0 restraints | Extinction correction: SHELXL |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0029 (3) |
[Ag(C7H7O3S)(C13H14N2)] | V = 1960.40 (10) Å3 |
Mr = 477.33 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.8061 (3) Å | µ = 1.16 mm−1 |
b = 9.9466 (3) Å | T = 293 K |
c = 18.4288 (5) Å | 0.52 × 0.47 × 0.36 mm |
β = 98.230 (3)° |
Agilent Xcalibur Eos Gemini diffractometer | 3450 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 2834 reflections with I > 2σ(I) |
Tmin = 0.553, Tmax = 0.659 | Rint = 0.030 |
11169 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.63 e Å−3 |
3450 reflections | Δρmin = −0.55 e Å−3 |
245 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6485 (3) | 0.3186 (3) | 0.37306 (16) | 0.0409 (7) | |
C2 | 0.5674 (3) | 0.2730 (3) | 0.41963 (17) | 0.0461 (8) | |
H2 | 0.5350 | 0.3328 | 0.4508 | 0.055* | |
C3 | 0.5348 (3) | 0.1389 (4) | 0.4196 (2) | 0.0555 (9) | |
H3 | 0.4799 | 0.1099 | 0.4509 | 0.067* | |
C4 | 0.5814 (3) | 0.0464 (4) | 0.3743 (2) | 0.0560 (9) | |
C5 | 0.6608 (3) | 0.0938 (4) | 0.3271 (2) | 0.0594 (10) | |
H5 | 0.6920 | 0.0341 | 0.2953 | 0.071* | |
C6 | 0.6943 (3) | 0.2273 (4) | 0.32633 (18) | 0.0503 (8) | |
H6 | 0.7479 | 0.2566 | 0.2944 | 0.060* | |
C7 | 0.5484 (4) | −0.1011 (4) | 0.3759 (3) | 0.0888 (14) | |
H7A | 0.5897 | −0.1488 | 0.3410 | 0.133* | |
H7B | 0.4596 | −0.1117 | 0.3637 | 0.133* | |
H7C | 0.5750 | −0.1364 | 0.4241 | 0.133* | |
C8 | 1.4014 (3) | 1.0844 (3) | 0.16123 (17) | 0.0428 (8) | |
H8 | 1.4868 | 1.0709 | 0.1622 | 0.051* | |
C9 | 1.3610 (3) | 1.1564 (3) | 0.21756 (16) | 0.0397 (7) | |
H9 | 1.4190 | 1.1919 | 0.2548 | 0.048* | |
C10 | 1.2347 (3) | 1.1757 (3) | 0.21868 (15) | 0.0341 (7) | |
C11 | 1.1536 (3) | 1.1223 (3) | 0.16073 (16) | 0.0367 (7) | |
H11 | 1.0678 | 1.1325 | 0.1593 | 0.044* | |
C12 | 1.1999 (3) | 1.0545 (3) | 0.10545 (17) | 0.0399 (7) | |
H12 | 1.1438 | 1.0216 | 0.0665 | 0.048* | |
C13 | 1.1866 (3) | 1.2496 (3) | 0.28054 (17) | 0.0463 (8) | |
H13A | 1.1419 | 1.3292 | 0.2610 | 0.056* | |
H13B | 1.2573 | 1.2789 | 0.3155 | 0.056* | |
C14 | 1.0998 (3) | 1.1642 (3) | 0.32062 (17) | 0.0482 (8) | |
H14A | 1.0670 | 1.2188 | 0.3571 | 0.058* | |
H14B | 1.0297 | 1.1331 | 0.2858 | 0.058* | |
C15 | 1.1673 (3) | 1.0460 (4) | 0.3572 (2) | 0.0637 (10) | |
H15A | 1.2369 | 1.0792 | 0.3916 | 0.076* | |
H15B | 1.2021 | 0.9947 | 0.3201 | 0.076* | |
C16 | 1.0919 (3) | 0.9508 (3) | 0.39783 (17) | 0.0437 (7) | |
C17 | 0.9734 (3) | 0.9066 (3) | 0.36888 (18) | 0.0476 (8) | |
H17 | 0.9342 | 0.9404 | 0.3244 | 0.057* | |
H18 | 0.8344 | 0.7824 | 0.3862 | 0.057* | |
H19 | 1.1140 | 0.7734 | 0.5447 | 0.057* | |
C18 | 0.9136 (3) | 0.8116 (3) | 0.40651 (17) | 0.0444 (8) | |
C19 | 1.0775 (3) | 0.8061 (3) | 0.49934 (17) | 0.0488 (8) | |
C20 | 1.1415 (3) | 0.8990 (3) | 0.46477 (18) | 0.0496 (8) | |
H20 | 1.2198 | 0.9276 | 0.4869 | 0.060* | |
N1 | 1.3229 (2) | 1.0335 (2) | 0.10532 (13) | 0.0381 (6) | |
N2 | 0.9650 (2) | 0.7598 (2) | 0.47099 (13) | 0.0405 (6) | |
O1 | 0.6460 (2) | 0.5548 (2) | 0.43292 (12) | 0.0563 (6) | |
O2 | 0.6561 (2) | 0.5423 (3) | 0.30278 (13) | 0.0676 (7) | |
O3 | 0.8348 (2) | 0.4792 (2) | 0.39088 (14) | 0.0605 (6) | |
S1 | 0.69972 (7) | 0.48821 (8) | 0.37467 (4) | 0.0449 (2) | |
Ag1 | 0.88538 (2) | 0.59100 (3) | 0.521998 (14) | 0.05157 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0369 (16) | 0.0487 (19) | 0.0340 (16) | −0.0031 (14) | −0.0054 (13) | 0.0006 (15) |
C2 | 0.0455 (18) | 0.0487 (19) | 0.0433 (19) | −0.0037 (15) | 0.0037 (15) | −0.0019 (16) |
C3 | 0.050 (2) | 0.059 (2) | 0.057 (2) | −0.0110 (17) | 0.0033 (17) | 0.0091 (19) |
C4 | 0.050 (2) | 0.053 (2) | 0.060 (2) | −0.0068 (17) | −0.0107 (18) | −0.0034 (19) |
C5 | 0.054 (2) | 0.062 (2) | 0.058 (2) | 0.0060 (18) | −0.0060 (18) | −0.0189 (19) |
C6 | 0.0407 (18) | 0.063 (2) | 0.0458 (19) | −0.0025 (16) | 0.0026 (15) | −0.0042 (17) |
C7 | 0.097 (3) | 0.056 (3) | 0.110 (4) | −0.018 (2) | 0.003 (3) | −0.011 (2) |
C8 | 0.0400 (17) | 0.0460 (18) | 0.0442 (19) | 0.0039 (14) | 0.0117 (15) | 0.0086 (15) |
C9 | 0.0445 (18) | 0.0393 (17) | 0.0344 (16) | −0.0052 (14) | 0.0030 (14) | 0.0018 (14) |
C10 | 0.0501 (18) | 0.0226 (14) | 0.0316 (15) | −0.0035 (13) | 0.0127 (13) | 0.0041 (12) |
C11 | 0.0380 (16) | 0.0343 (16) | 0.0388 (17) | 0.0026 (13) | 0.0089 (14) | 0.0025 (13) |
C12 | 0.0430 (18) | 0.0404 (17) | 0.0356 (17) | −0.0005 (14) | 0.0039 (13) | −0.0004 (14) |
C13 | 0.065 (2) | 0.0344 (17) | 0.0440 (18) | −0.0016 (15) | 0.0219 (16) | −0.0040 (15) |
C14 | 0.065 (2) | 0.0439 (19) | 0.0401 (18) | −0.0010 (16) | 0.0228 (16) | −0.0050 (15) |
C15 | 0.053 (2) | 0.074 (3) | 0.066 (2) | −0.0001 (19) | 0.0129 (18) | 0.026 (2) |
C16 | 0.0435 (18) | 0.0434 (18) | 0.0454 (19) | −0.0012 (15) | 0.0108 (15) | 0.0054 (15) |
C17 | 0.052 (2) | 0.050 (2) | 0.0389 (18) | 0.0011 (16) | 0.0008 (15) | 0.0124 (15) |
C18 | 0.0397 (17) | 0.0474 (19) | 0.0441 (19) | −0.0037 (15) | −0.0006 (14) | 0.0012 (16) |
C19 | 0.057 (2) | 0.053 (2) | 0.0336 (17) | −0.0044 (17) | −0.0048 (15) | 0.0093 (16) |
C20 | 0.0428 (18) | 0.056 (2) | 0.047 (2) | −0.0088 (16) | −0.0048 (15) | 0.0068 (16) |
N1 | 0.0487 (15) | 0.0344 (13) | 0.0325 (14) | 0.0042 (12) | 0.0108 (12) | 0.0028 (11) |
N2 | 0.0493 (15) | 0.0390 (14) | 0.0334 (14) | −0.0046 (12) | 0.0064 (12) | 0.0024 (12) |
O1 | 0.0720 (16) | 0.0508 (14) | 0.0460 (14) | −0.0014 (12) | 0.0079 (12) | −0.0029 (11) |
O2 | 0.0875 (18) | 0.0722 (17) | 0.0398 (14) | −0.0038 (14) | −0.0025 (12) | 0.0167 (13) |
O3 | 0.0428 (13) | 0.0628 (15) | 0.0735 (17) | −0.0153 (11) | 0.0002 (12) | 0.0014 (14) |
S1 | 0.0475 (5) | 0.0484 (5) | 0.0371 (4) | −0.0078 (4) | 0.0002 (3) | 0.0058 (4) |
Ag1 | 0.0679 (2) | 0.04608 (18) | 0.04440 (18) | −0.00999 (12) | 0.02079 (13) | 0.00570 (12) |
C1—C2 | 1.388 (4) | C13—H13A | 0.9700 |
C1—C6 | 1.390 (4) | C13—H13B | 0.9700 |
C1—S1 | 1.775 (3) | C14—C15 | 1.493 (5) |
C2—C3 | 1.379 (5) | C14—H14A | 0.9700 |
C2—H2 | 0.9300 | C14—H14B | 0.9700 |
C3—C4 | 1.385 (5) | C15—C16 | 1.515 (4) |
C3—H3 | 0.9300 | C15—H15A | 0.9700 |
C4—C5 | 1.389 (5) | C15—H15B | 0.9700 |
C4—C7 | 1.511 (5) | C16—C20 | 1.373 (4) |
C5—C6 | 1.377 (5) | C16—C17 | 1.387 (4) |
C5—H5 | 0.9300 | C17—C18 | 1.385 (4) |
C6—H6 | 0.9300 | C17—H17 | 0.9300 |
C7—H7A | 0.9600 | C18—N2 | 1.341 (4) |
C7—H7B | 0.9600 | C18—H18 | 0.9295 |
C7—H7C | 0.9600 | C19—N2 | 1.334 (4) |
C8—N1 | 1.338 (4) | C19—C20 | 1.365 (4) |
C8—C9 | 1.382 (4) | C19—H19 | 0.9301 |
C8—H8 | 0.9300 | C20—H20 | 0.9300 |
C9—C10 | 1.381 (4) | N1—Ag1i | 2.155 (2) |
C9—H9 | 0.9300 | N2—Ag1 | 2.162 (2) |
C10—C11 | 1.386 (4) | O1—S1 | 1.451 (2) |
C10—C13 | 1.510 (4) | O2—S1 | 1.445 (2) |
C11—C12 | 1.374 (4) | O3—S1 | 1.451 (2) |
C11—H11 | 0.9300 | O3—Ag1 | 2.645 (2) |
C12—N1 | 1.346 (4) | Ag1—N1ii | 2.155 (2) |
C12—H12 | 0.9300 | Ag1—Ag1iii | 3.2628 (5) |
C13—C14 | 1.532 (4) | ||
C2—C1—C6 | 118.8 (3) | C15—C14—C13 | 111.2 (3) |
C2—C1—S1 | 121.6 (2) | C15—C14—H14A | 109.4 |
C6—C1—S1 | 119.5 (2) | C13—C14—H14A | 109.4 |
C3—C2—C1 | 120.0 (3) | C15—C14—H14B | 109.4 |
C3—C2—H2 | 120.0 | C13—C14—H14B | 109.4 |
C1—C2—H2 | 120.0 | H14A—C14—H14B | 108.0 |
C2—C3—C4 | 121.9 (3) | C14—C15—C16 | 116.9 (3) |
C2—C3—H3 | 119.1 | C14—C15—H15A | 108.1 |
C4—C3—H3 | 119.1 | C16—C15—H15A | 108.1 |
C3—C4—C5 | 117.5 (3) | C14—C15—H15B | 108.1 |
C3—C4—C7 | 121.8 (4) | C16—C15—H15B | 108.1 |
C5—C4—C7 | 120.7 (4) | H15A—C15—H15B | 107.3 |
C6—C5—C4 | 121.4 (3) | C20—C16—C17 | 116.5 (3) |
C6—C5—H5 | 119.3 | C20—C16—C15 | 120.7 (3) |
C4—C5—H5 | 119.3 | C17—C16—C15 | 122.7 (3) |
C5—C6—C1 | 120.4 (3) | C18—C17—C16 | 119.7 (3) |
C5—C6—H6 | 119.8 | C18—C17—H17 | 120.2 |
C1—C6—H6 | 119.8 | C16—C17—H17 | 120.2 |
C4—C7—H7A | 109.5 | N2—C18—C17 | 122.8 (3) |
C4—C7—H7B | 109.5 | N2—C18—H18 | 118.5 |
H7A—C7—H7B | 109.5 | C17—C18—H18 | 118.7 |
C4—C7—H7C | 109.5 | N2—C19—C20 | 123.0 (3) |
H7A—C7—H7C | 109.5 | N2—C19—H19 | 118.5 |
H7B—C7—H7C | 109.5 | C20—C19—H19 | 118.5 |
N1—C8—C9 | 122.7 (3) | C19—C20—C16 | 121.0 (3) |
N1—C8—H8 | 118.6 | C19—C20—H20 | 119.5 |
C9—C8—H8 | 118.6 | C16—C20—H20 | 119.5 |
C10—C9—C8 | 120.1 (3) | C8—N1—C12 | 117.3 (3) |
C10—C9—H9 | 119.9 | C8—N1—Ag1i | 122.5 (2) |
C8—C9—H9 | 119.9 | C12—N1—Ag1i | 120.1 (2) |
C9—C10—C11 | 116.9 (3) | C19—N2—C18 | 117.0 (3) |
C9—C10—C13 | 121.8 (3) | C19—N2—Ag1 | 119.6 (2) |
C11—C10—C13 | 121.3 (3) | C18—N2—Ag1 | 122.9 (2) |
C12—C11—C10 | 120.1 (3) | O2—S1—O3 | 113.49 (15) |
C12—C11—H11 | 119.9 | O2—S1—O1 | 113.29 (15) |
C10—C11—H11 | 119.9 | O3—S1—O1 | 111.93 (15) |
N1—C12—C11 | 122.8 (3) | O2—S1—C1 | 106.18 (14) |
N1—C12—H12 | 118.6 | O3—S1—C1 | 104.30 (14) |
C11—C12—H12 | 118.6 | O1—S1—C1 | 106.81 (14) |
C10—C13—C14 | 113.2 (2) | N1ii—Ag1—N2 | 160.18 (9) |
C10—C13—H13A | 108.9 | N1ii—Ag1—Ag1iii | 100.65 (7) |
C14—C13—H13A | 108.9 | N2—Ag1—Ag1iii | 87.67 (6) |
C10—C13—H13B | 108.9 | N1ii—Ag1—O3 | 111.38 (8) |
C14—C13—H13B | 108.9 | N2—Ag1—O3 | 88.42 (8) |
H13A—C13—H13B | 107.7 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) x−1/2, −y+3/2, z+1/2; (iii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14B···O2iv | 0.97 | 2.56 | 3.533 (4) | 178 |
C12—H12···O1i | 0.93 | 2.58 | 3.332 (4) | 138 |
C8—H8···O3v | 0.93 | 2.46 | 3.305 (4) | 151 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (iv) −x+3/2, y+1/2, −z+1/2; (v) −x+5/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ag(C7H7O3S)(C13H14N2)] |
Mr | 477.33 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 10.8061 (3), 9.9466 (3), 18.4288 (5) |
β (°) | 98.230 (3) |
V (Å3) | 1960.40 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.52 × 0.47 × 0.36 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.553, 0.659 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11169, 3450, 2834 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.075, 0.94 |
No. of reflections | 3450 |
No. of parameters | 245 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.55 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2004).
N1—Ag1i | 2.155 (2) | O3—Ag1 | 2.645 (2) |
N2—Ag1 | 2.162 (2) |
Symmetry code: (i) x+1/2, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14B···O2ii | 0.97 | 2.56 | 3.533 (4) | 177.6 |
C12—H12···O1i | 0.93 | 2.58 | 3.332 (4) | 138.3 |
C8—H8···O3iii | 0.93 | 2.46 | 3.305 (4) | 151.4 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+5/2, y+1/2, −z+1/2. |
Acknowledgements
The authors are grateful for financial support from the Science and Technology Development Plan of Shandong Province (grant No. 2010 G0020324), the University Independent Innovation Program of Jinan (grant No. 201004049) and the Special Funds for Postdoctoral Innovative Projects of Shandong Province (grant No. 200903051).
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. & Putz, H. (2004). DIAMOND. University of Bonn, Germany. Google Scholar
Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 4, 121–129. Web of Science CSD CrossRef CAS Google Scholar
Horike, S., Dinca, M., Tamaki, K. & Long, J. R. (2008). J. Am. Chem. Soc. 130, 5854–5855. Web of Science CrossRef PubMed CAS Google Scholar
Jin, J.-C., Wang, Y.-Y., Zhang, W.-H., Lermontov, A. S., Lermontova, E. K. & Shi, Q.-Z. (2009). Dalton Trans. pp. 10181–10191. Web of Science CSD CrossRef Google Scholar
Li, H. L., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279. CAS Google Scholar
Li, F.-F., Ma, J.-F., Song, S.-Y., Jia, H.-Q. & Hu, N.-H. (2006). Cryst. Growth Des. 6, 209–215. Web of Science CSD CrossRef CAS Google Scholar
Li, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2005). Inorg. Chem. 44, 9374–9383. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liu, S. J., Li, J. Y. & Luo, F. (2010). Inorg. Chem. Commun. 13, 870–872. Web of Science CSD CrossRef CAS Google Scholar
Lu, Z. D., Wen, L. L., Ni, Z. P., Li, Y. Z., Zhu, H. Z. & Meng, Q. J. (2006). Cryst. Growth Des. 7, 268–274. Web of Science CSD CrossRef Google Scholar
Luo, G.-G., Xiong, H.-B., Sun, D., Wu, D.-L., Huang, R.-B. & Dai, J.-C. (2011). Cryst. Growth Des. 11, 1948–1956. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Cloutt, B. A., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1998). Inorg. Chem. 37, 3236–3242. Web of Science CSD CrossRef CAS Google Scholar
Wu, H., Dong, X.-W., Liu, H.-Y., Ma, J.-F., Liu, Y.-Y., Liu, Y.-Y. & Yang, J. (2011). Inorg. Chim. Acta, 373, 19–26. Web of Science CrossRef CAS Google Scholar
Yang, G.-P., Wang, Y.-Y., Liu, P., Fu, A.-Y., Zhang, Y.-N., Jin, J.-C. & Shi, Q.-Z. (2009). Cryst. Growth Des. 10, 1443–1450. Web of Science CSD CrossRef Google Scholar
Zhang, Y.-N., Wang, H., Liu, J.-Q., Wang, Y.-Y., Fu, A.-Y. & Shi, Q.-Z. (2009). Inorg. Chem. Commun. 12, 611–614. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and synthesis of metal-organic frameworks (MOFs) have attracted considerable attention in recent years,not only for their intriguing structural diversity, but also because of their potential applications in the area of catalysis (Horike et al., 2008), ion exchange (Liu et al., 2010), magnetism, photochemistry (Lu et al., 2006), and porous materials (Li et al., 1999).
The reactions of silver salts with 1,3-bis(pyridin-4-yl)propane (bpp) have already afforded intresting coordination polymers with distinct structural motifs (Carlucci et al., 2002). Moreover, the combination of Ag cations with mixed ligands of aromatic (Yang et al., 2009; Jin et al., 2009; Zhang et al., 2009) or aliphatic (Luo et al., 2011) carboxylates and bpp can allow the formation of MOFs possessing fascinating architectures and novel topologies. In terms of silver(I) sulfonate complexes, many nitrogen-based secondary ligands such as pyrazine (Pyr) (Li et al., 2005), hexamethylenetetramine (hmt) (Wu et al., 2011), pyridine (py) (Smith et al., 1998) and their analogues or derivatives were exploited as secondary ligands to synthesize new metal organic frameworks. Here we report a novel one-dimensional polymer [Ag(C7H7O3S)(C13H14N2)]n assembled by mixed ligands of p-toluenesulfonate and bpp with silver nitrate.
The asymmetric unit of the title compound (I) and symmetry related atoms are shown in Fig. 1. The AgI cation is coordinated by two N atoms from two symmetry related bpp ligands one O atom from one p-toluenesulfonate ligand. The Ag—O and Ag—N bonds are comparable to those in the literature (Li et al., 2005). As shown in Fig. 2, there are weak Ag···Ag interactions (3.2628 (5)Å) which are shorter than the sum van der Waals radii for Ag···Ag [3.40Å]. Compound (I) is a one-dimensional coordination polymer formed by bpp ligands and Ag cations, with tos ligands as the side chains in which bpp ligands exhibit the TG (Carlucci et al., 2002) conformation and the N···N separation is 8.6746 (2)Å. The weak Ag ···Ag interactions bridge the undulating 1-D chains to form 2-D layers (Fig .2), which are further linked into a three-dimensional network via weak C—H···O hydrogen bonds.