metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m611-m612

catena-Poly[[(p-toluene­sulfonato-κO)silver(I)]-μ-1,3-bis­­(pyridin-4-yl)propane-κ2N:N′]

aShandong Polytechnic University, School of Chemistry and Pharmaceutical Engineering, Jinan 250353, People's Republic of China
*Correspondence e-mail: mafengch@163.com

(Received 4 March 2012; accepted 6 April 2012; online 18 April 2012)

In the title compound, [Ag(C7H7O3S)(C13H14N2)]n, the AgI ion is coordinated in a T-shape by two N atoms from two symmetry-related 1,3-bis­(pyridin-4-yl)propane ligands and one O atom from a p-toluene­sulfonate ligand, forming a one-dimensional zigzag chain along [001]. In the crystal, weak C—H⋯O hydrogen bonds and weak Ag⋯Ag inter­actions [3.2628 (5) Å] are observed.

Related literature

For potential applications of compounds with metal-organic framework structures, see: Horike et al. (2008[Horike, S., Dinca, M., Tamaki, K. & Long, J. R. (2008). J. Am. Chem. Soc. 130, 5854-5855.]); Liu et al. (2010[Liu, S. J., Li, J. Y. & Luo, F. (2010). Inorg. Chem. Commun. 13, 870-872.]); Lu et al. (2006[Lu, Z. D., Wen, L. L., Ni, Z. P., Li, Y. Z., Zhu, H. Z. & Meng, Q. J. (2006). Cryst. Growth Des. 7, 268-274.]); Li et al. (1999[Li, H. L., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.]). For coordination polymers of 1,3-bis­(pyridin-4-yl)propane (bpp), see: Carlucci et al. (2002[Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 4, 121-129.]). For mixed ligands of aromatic or aliphatic carboxyl­ates and bpp, see: Yang et al. (2009[Yang, G.-P., Wang, Y.-Y., Liu, P., Fu, A.-Y., Zhang, Y.-N., Jin, J.-C. & Shi, Q.-Z. (2009). Cryst. Growth Des. 10, 1443-1450.]); Jin et al. (2009[Jin, J.-C., Wang, Y.-Y., Zhang, W.-H., Lermontov, A. S., Lermontova, E. K. & Shi, Q.-Z. (2009). Dalton Trans. pp. 10181-10191.]); Zhang et al. (2009[Zhang, Y.-N., Wang, H., Liu, J.-Q., Wang, Y.-Y., Fu, A.-Y. & Shi, Q.-Z. (2009). Inorg. Chem. Commun. 12, 611-614.]); Luo et al. (2011[Luo, G.-G., Xiong, H.-B., Sun, D., Wu, D.-L., Huang, R.-B. & Dai, J.-C. (2011). Cryst. Growth Des. 11, 1948-1956.]). For silver(I) sulfonate complexes, see: Wu et al. (2011[Wu, H., Dong, X.-W., Liu, H.-Y., Ma, J.-F., Liu, Y.-Y., Liu, Y.-Y. & Yang, J. (2011). Inorg. Chim. Acta, 373, 19-26.]); Smith et al. (1998[Smith, G., Cloutt, B. A., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1998). Inorg. Chem. 37, 3236-3242.]) For similar systems with Ag⋯Ag inter­actions, see: Li et al. (2005[Li, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2005). Inorg. Chem. 44, 9374-9383.]). For a similar synthetic procedure, see: Li et al. (2006[Li, F.-F., Ma, J.-F., Song, S.-Y., Jia, H.-Q. & Hu, N.-H. (2006). Cryst. Growth Des. 6, 209-215.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C7H7O3S)(C13H14N2)]

  • Mr = 477.33

  • Monoclinic, P 21 /n

  • a = 10.8061 (3) Å

  • b = 9.9466 (3) Å

  • c = 18.4288 (5) Å

  • β = 98.230 (3)°

  • V = 1960.40 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 293 K

  • 0.52 × 0.47 × 0.36 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.553, Tmax = 0.659

  • 11169 measured reflections

  • 3450 independent reflections

  • 2834 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 0.94

  • 3450 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

N1—Ag1i 2.155 (2)
N2—Ag1 2.162 (2)
O3—Ag1 2.645 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O2ii 0.97 2.56 3.533 (4) 178
C12—H12⋯O1i 0.93 2.58 3.332 (4) 138
C8—H8⋯O3iii 0.93 2.46 3.305 (4) 151
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of metal-organic frameworks (MOFs) have attracted considerable attention in recent years,not only for their intriguing structural diversity, but also because of their potential applications in the area of catalysis (Horike et al., 2008), ion exchange (Liu et al., 2010), magnetism, photochemistry (Lu et al., 2006), and porous materials (Li et al., 1999).

The reactions of silver salts with 1,3-bis(pyridin-4-yl)propane (bpp) have already afforded intresting coordination polymers with distinct structural motifs (Carlucci et al., 2002). Moreover, the combination of Ag cations with mixed ligands of aromatic (Yang et al., 2009; Jin et al., 2009; Zhang et al., 2009) or aliphatic (Luo et al., 2011) carboxylates and bpp can allow the formation of MOFs possessing fascinating architectures and novel topologies. In terms of silver(I) sulfonate complexes, many nitrogen-based secondary ligands such as pyrazine (Pyr) (Li et al., 2005), hexamethylenetetramine (hmt) (Wu et al., 2011), pyridine (py) (Smith et al., 1998) and their analogues or derivatives were exploited as secondary ligands to synthesize new metal organic frameworks. Here we report a novel one-dimensional polymer [Ag(C7H7O3S)(C13H14N2)]n assembled by mixed ligands of p-toluenesulfonate and bpp with silver nitrate.

The asymmetric unit of the title compound (I) and symmetry related atoms are shown in Fig. 1. The AgI cation is coordinated by two N atoms from two symmetry related bpp ligands one O atom from one p-toluenesulfonate ligand. The Ag—O and Ag—N bonds are comparable to those in the literature (Li et al., 2005). As shown in Fig. 2, there are weak Ag···Ag interactions (3.2628 (5)Å) which are shorter than the sum van der Waals radii for Ag···Ag [3.40Å]. Compound (I) is a one-dimensional coordination polymer formed by bpp ligands and Ag cations, with tos ligands as the side chains in which bpp ligands exhibit the TG (Carlucci et al., 2002) conformation and the N···N separation is 8.6746 (2)Å. The weak Ag ···Ag interactions bridge the undulating 1-D chains to form 2-D layers (Fig .2), which are further linked into a three-dimensional network via weak C—H···O hydrogen bonds.

Related literature top

For potential applications of metal-organic frameworks, see: Horike et al. (2008); Liu et al. (2010); Lu et al. (2006); Li et al. (1999). For coordination polymers of 1,3-bis(pyridin-4-yl)propane (bpp), see: Carlucci et al. (2002). For mixed ligands of aromatic or aliphatic carboxylates and bpp, see: Yang et al. (2009); Jin et al. (2009); Zhang et al. (2009); Luo et al. (2011). For silver(I) sulfonate complexes, see: Wu et al. (2011); Smith et al. (1998) For similar systems with Ag···Ag interactions, see: Li et al. (2005). For a similar synthetic procedure, see: Li et al. (2006).

Experimental top

A solution of bpp and tos in 8 ml methanol and 2 ml water was slowly added to a solution of AgNO3(0.1668 g) in 8 ml water. A white suspension formed immediately. An aqueous NH3 solution (25%) was dropped into the mixture to give a clear solution. The resultant colorless filtrate (pH=9.0) was allowed to evaporate slowly at room temperature. After one week, colorless block crystals were obtained in 52.87% yield (based on Ag). Elemental analysis for (I) (%): calculated: C 50.3, H 4.4, N 5.9, O 10.1, S 6.7. Found C49.94, H 4.452, N 5.969, O 10.123, S 7.013.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2(1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids for non-H atoms. Atoms labeled with capital "A" were generated through the symmetry operation (x - 1/2, -y + 3/2, z + 1/2).
[Figure 2] Fig. 2. Part of the crystal structure. Tos and bpp ligands have been simplified by replacing molecules with their centroids (dummy atoms). Dashed lines indicate weak Ag···Ag interactions.
catena-Poly[[(p-toluenesulfonato-κO)silver(I)]- µ-1,3-bis(pyridin-4-yl)propane-κ2N:N'] top
Crystal data top
[Ag(C7H7O3S)(C13H14N2)]F(000) = 968
Mr = 477.33Dx = 1.617 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 4048 reflections
a = 10.8061 (3) Åθ = 2.8–28.9°
b = 9.9466 (3) ŵ = 1.16 mm1
c = 18.4288 (5) ÅT = 293 K
β = 98.230 (3)°Block, colorless
V = 1960.40 (10) Å30.52 × 0.47 × 0.36 mm
Z = 4
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3450 independent reflections
Radiation source: Enhance (Mo) X-ray Source'2834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
h = 1212
Tmin = 0.553, Tmax = 0.659k = 1111
11169 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.032P)2 + 1.9473P]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.001
3450 reflectionsΔρmax = 0.63 e Å3
245 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (3)
Crystal data top
[Ag(C7H7O3S)(C13H14N2)]V = 1960.40 (10) Å3
Mr = 477.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8061 (3) ŵ = 1.16 mm1
b = 9.9466 (3) ÅT = 293 K
c = 18.4288 (5) Å0.52 × 0.47 × 0.36 mm
β = 98.230 (3)°
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3450 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2834 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.659Rint = 0.030
11169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 0.94Δρmax = 0.63 e Å3
3450 reflectionsΔρmin = 0.55 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6485 (3)0.3186 (3)0.37306 (16)0.0409 (7)
C20.5674 (3)0.2730 (3)0.41963 (17)0.0461 (8)
H20.53500.33280.45080.055*
C30.5348 (3)0.1389 (4)0.4196 (2)0.0555 (9)
H30.47990.10990.45090.067*
C40.5814 (3)0.0464 (4)0.3743 (2)0.0560 (9)
C50.6608 (3)0.0938 (4)0.3271 (2)0.0594 (10)
H50.69200.03410.29530.071*
C60.6943 (3)0.2273 (4)0.32633 (18)0.0503 (8)
H60.74790.25660.29440.060*
C70.5484 (4)0.1011 (4)0.3759 (3)0.0888 (14)
H7A0.58970.14880.34100.133*
H7B0.45960.11170.36370.133*
H7C0.57500.13640.42410.133*
C81.4014 (3)1.0844 (3)0.16123 (17)0.0428 (8)
H81.48681.07090.16220.051*
C91.3610 (3)1.1564 (3)0.21756 (16)0.0397 (7)
H91.41901.19190.25480.048*
C101.2347 (3)1.1757 (3)0.21868 (15)0.0341 (7)
C111.1536 (3)1.1223 (3)0.16073 (16)0.0367 (7)
H111.06781.13250.15930.044*
C121.1999 (3)1.0545 (3)0.10545 (17)0.0399 (7)
H121.14381.02160.06650.048*
C131.1866 (3)1.2496 (3)0.28054 (17)0.0463 (8)
H13A1.14191.32920.26100.056*
H13B1.25731.27890.31550.056*
C141.0998 (3)1.1642 (3)0.32062 (17)0.0482 (8)
H14A1.06701.21880.35710.058*
H14B1.02971.13310.28580.058*
C151.1673 (3)1.0460 (4)0.3572 (2)0.0637 (10)
H15A1.23691.07920.39160.076*
H15B1.20210.99470.32010.076*
C161.0919 (3)0.9508 (3)0.39783 (17)0.0437 (7)
C170.9734 (3)0.9066 (3)0.36888 (18)0.0476 (8)
H170.93420.94040.32440.057*
H180.83440.78240.38620.057*
H191.11400.77340.54470.057*
C180.9136 (3)0.8116 (3)0.40651 (17)0.0444 (8)
C191.0775 (3)0.8061 (3)0.49934 (17)0.0488 (8)
C201.1415 (3)0.8990 (3)0.46477 (18)0.0496 (8)
H201.21980.92760.48690.060*
N11.3229 (2)1.0335 (2)0.10532 (13)0.0381 (6)
N20.9650 (2)0.7598 (2)0.47099 (13)0.0405 (6)
O10.6460 (2)0.5548 (2)0.43292 (12)0.0563 (6)
O20.6561 (2)0.5423 (3)0.30278 (13)0.0676 (7)
O30.8348 (2)0.4792 (2)0.39088 (14)0.0605 (6)
S10.69972 (7)0.48821 (8)0.37467 (4)0.0449 (2)
Ag10.88538 (2)0.59100 (3)0.521998 (14)0.05157 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0369 (16)0.0487 (19)0.0340 (16)0.0031 (14)0.0054 (13)0.0006 (15)
C20.0455 (18)0.0487 (19)0.0433 (19)0.0037 (15)0.0037 (15)0.0019 (16)
C30.050 (2)0.059 (2)0.057 (2)0.0110 (17)0.0033 (17)0.0091 (19)
C40.050 (2)0.053 (2)0.060 (2)0.0068 (17)0.0107 (18)0.0034 (19)
C50.054 (2)0.062 (2)0.058 (2)0.0060 (18)0.0060 (18)0.0189 (19)
C60.0407 (18)0.063 (2)0.0458 (19)0.0025 (16)0.0026 (15)0.0042 (17)
C70.097 (3)0.056 (3)0.110 (4)0.018 (2)0.003 (3)0.011 (2)
C80.0400 (17)0.0460 (18)0.0442 (19)0.0039 (14)0.0117 (15)0.0086 (15)
C90.0445 (18)0.0393 (17)0.0344 (16)0.0052 (14)0.0030 (14)0.0018 (14)
C100.0501 (18)0.0226 (14)0.0316 (15)0.0035 (13)0.0127 (13)0.0041 (12)
C110.0380 (16)0.0343 (16)0.0388 (17)0.0026 (13)0.0089 (14)0.0025 (13)
C120.0430 (18)0.0404 (17)0.0356 (17)0.0005 (14)0.0039 (13)0.0004 (14)
C130.065 (2)0.0344 (17)0.0440 (18)0.0016 (15)0.0219 (16)0.0040 (15)
C140.065 (2)0.0439 (19)0.0401 (18)0.0010 (16)0.0228 (16)0.0050 (15)
C150.053 (2)0.074 (3)0.066 (2)0.0001 (19)0.0129 (18)0.026 (2)
C160.0435 (18)0.0434 (18)0.0454 (19)0.0012 (15)0.0108 (15)0.0054 (15)
C170.052 (2)0.050 (2)0.0389 (18)0.0011 (16)0.0008 (15)0.0124 (15)
C180.0397 (17)0.0474 (19)0.0441 (19)0.0037 (15)0.0006 (14)0.0012 (16)
C190.057 (2)0.053 (2)0.0336 (17)0.0044 (17)0.0048 (15)0.0093 (16)
C200.0428 (18)0.056 (2)0.047 (2)0.0088 (16)0.0048 (15)0.0068 (16)
N10.0487 (15)0.0344 (13)0.0325 (14)0.0042 (12)0.0108 (12)0.0028 (11)
N20.0493 (15)0.0390 (14)0.0334 (14)0.0046 (12)0.0064 (12)0.0024 (12)
O10.0720 (16)0.0508 (14)0.0460 (14)0.0014 (12)0.0079 (12)0.0029 (11)
O20.0875 (18)0.0722 (17)0.0398 (14)0.0038 (14)0.0025 (12)0.0167 (13)
O30.0428 (13)0.0628 (15)0.0735 (17)0.0153 (11)0.0002 (12)0.0014 (14)
S10.0475 (5)0.0484 (5)0.0371 (4)0.0078 (4)0.0002 (3)0.0058 (4)
Ag10.0679 (2)0.04608 (18)0.04440 (18)0.00999 (12)0.02079 (13)0.00570 (12)
Geometric parameters (Å, º) top
C1—C21.388 (4)C13—H13A0.9700
C1—C61.390 (4)C13—H13B0.9700
C1—S11.775 (3)C14—C151.493 (5)
C2—C31.379 (5)C14—H14A0.9700
C2—H20.9300C14—H14B0.9700
C3—C41.385 (5)C15—C161.515 (4)
C3—H30.9300C15—H15A0.9700
C4—C51.389 (5)C15—H15B0.9700
C4—C71.511 (5)C16—C201.373 (4)
C5—C61.377 (5)C16—C171.387 (4)
C5—H50.9300C17—C181.385 (4)
C6—H60.9300C17—H170.9300
C7—H7A0.9600C18—N21.341 (4)
C7—H7B0.9600C18—H180.9295
C7—H7C0.9600C19—N21.334 (4)
C8—N11.338 (4)C19—C201.365 (4)
C8—C91.382 (4)C19—H190.9301
C8—H80.9300C20—H200.9300
C9—C101.381 (4)N1—Ag1i2.155 (2)
C9—H90.9300N2—Ag12.162 (2)
C10—C111.386 (4)O1—S11.451 (2)
C10—C131.510 (4)O2—S11.445 (2)
C11—C121.374 (4)O3—S11.451 (2)
C11—H110.9300O3—Ag12.645 (2)
C12—N11.346 (4)Ag1—N1ii2.155 (2)
C12—H120.9300Ag1—Ag1iii3.2628 (5)
C13—C141.532 (4)
C2—C1—C6118.8 (3)C15—C14—C13111.2 (3)
C2—C1—S1121.6 (2)C15—C14—H14A109.4
C6—C1—S1119.5 (2)C13—C14—H14A109.4
C3—C2—C1120.0 (3)C15—C14—H14B109.4
C3—C2—H2120.0C13—C14—H14B109.4
C1—C2—H2120.0H14A—C14—H14B108.0
C2—C3—C4121.9 (3)C14—C15—C16116.9 (3)
C2—C3—H3119.1C14—C15—H15A108.1
C4—C3—H3119.1C16—C15—H15A108.1
C3—C4—C5117.5 (3)C14—C15—H15B108.1
C3—C4—C7121.8 (4)C16—C15—H15B108.1
C5—C4—C7120.7 (4)H15A—C15—H15B107.3
C6—C5—C4121.4 (3)C20—C16—C17116.5 (3)
C6—C5—H5119.3C20—C16—C15120.7 (3)
C4—C5—H5119.3C17—C16—C15122.7 (3)
C5—C6—C1120.4 (3)C18—C17—C16119.7 (3)
C5—C6—H6119.8C18—C17—H17120.2
C1—C6—H6119.8C16—C17—H17120.2
C4—C7—H7A109.5N2—C18—C17122.8 (3)
C4—C7—H7B109.5N2—C18—H18118.5
H7A—C7—H7B109.5C17—C18—H18118.7
C4—C7—H7C109.5N2—C19—C20123.0 (3)
H7A—C7—H7C109.5N2—C19—H19118.5
H7B—C7—H7C109.5C20—C19—H19118.5
N1—C8—C9122.7 (3)C19—C20—C16121.0 (3)
N1—C8—H8118.6C19—C20—H20119.5
C9—C8—H8118.6C16—C20—H20119.5
C10—C9—C8120.1 (3)C8—N1—C12117.3 (3)
C10—C9—H9119.9C8—N1—Ag1i122.5 (2)
C8—C9—H9119.9C12—N1—Ag1i120.1 (2)
C9—C10—C11116.9 (3)C19—N2—C18117.0 (3)
C9—C10—C13121.8 (3)C19—N2—Ag1119.6 (2)
C11—C10—C13121.3 (3)C18—N2—Ag1122.9 (2)
C12—C11—C10120.1 (3)O2—S1—O3113.49 (15)
C12—C11—H11119.9O2—S1—O1113.29 (15)
C10—C11—H11119.9O3—S1—O1111.93 (15)
N1—C12—C11122.8 (3)O2—S1—C1106.18 (14)
N1—C12—H12118.6O3—S1—C1104.30 (14)
C11—C12—H12118.6O1—S1—C1106.81 (14)
C10—C13—C14113.2 (2)N1ii—Ag1—N2160.18 (9)
C10—C13—H13A108.9N1ii—Ag1—Ag1iii100.65 (7)
C14—C13—H13A108.9N2—Ag1—Ag1iii87.67 (6)
C10—C13—H13B108.9N1ii—Ag1—O3111.38 (8)
C14—C13—H13B108.9N2—Ag1—O388.42 (8)
H13A—C13—H13B107.7
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x1/2, y+3/2, z+1/2; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2iv0.972.563.533 (4)178
C12—H12···O1i0.932.583.332 (4)138
C8—H8···O3v0.932.463.305 (4)151
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x+5/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(C7H7O3S)(C13H14N2)]
Mr477.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.8061 (3), 9.9466 (3), 18.4288 (5)
β (°) 98.230 (3)
V3)1960.40 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.52 × 0.47 × 0.36
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.553, 0.659
No. of measured, independent and
observed [I > 2σ(I)] reflections
11169, 3450, 2834
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 0.94
No. of reflections3450
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.55

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2004).

Selected bond lengths (Å) top
N1—Ag1i2.155 (2)O3—Ag12.645 (2)
N2—Ag12.162 (2)
Symmetry code: (i) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2ii0.972.563.533 (4)177.6
C12—H12···O1i0.932.583.332 (4)138.3
C8—H8···O3iii0.932.463.305 (4)151.4
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+5/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from the Science and Technology Development Plan of Shandong Province (grant No. 2010 G0020324), the University Independent Innovation Program of Jinan (grant No. 201004049) and the Special Funds for Postdoctoral Innovative Projects of Shandong Province (grant No. 200903051).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationCarlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 4, 121–129.  Web of Science CSD CrossRef CAS Google Scholar
First citationHorike, S., Dinca, M., Tamaki, K. & Long, J. R. (2008). J. Am. Chem. Soc. 130, 5854–5855.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJin, J.-C., Wang, Y.-Y., Zhang, W.-H., Lermontov, A. S., Lermontova, E. K. & Shi, Q.-Z. (2009). Dalton Trans. pp. 10181–10191.  Web of Science CSD CrossRef Google Scholar
First citationLi, H. L., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.  CAS Google Scholar
First citationLi, F.-F., Ma, J.-F., Song, S.-Y., Jia, H.-Q. & Hu, N.-H. (2006). Cryst. Growth Des. 6, 209–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2005). Inorg. Chem. 44, 9374–9383.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, S. J., Li, J. Y. & Luo, F. (2010). Inorg. Chem. Commun. 13, 870–872.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Z. D., Wen, L. L., Ni, Z. P., Li, Y. Z., Zhu, H. Z. & Meng, Q. J. (2006). Cryst. Growth Des. 7, 268–274.  Web of Science CSD CrossRef Google Scholar
First citationLuo, G.-G., Xiong, H.-B., Sun, D., Wu, D.-L., Huang, R.-B. & Dai, J.-C. (2011). Cryst. Growth Des. 11, 1948–1956.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Cloutt, B. A., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1998). Inorg. Chem. 37, 3236–3242.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, H., Dong, X.-W., Liu, H.-Y., Ma, J.-F., Liu, Y.-Y., Liu, Y.-Y. & Yang, J. (2011). Inorg. Chim. Acta, 373, 19–26.  Web of Science CrossRef CAS Google Scholar
First citationYang, G.-P., Wang, Y.-Y., Liu, P., Fu, A.-Y., Zhang, Y.-N., Jin, J.-C. & Shi, Q.-Z. (2009). Cryst. Growth Des. 10, 1443–1450.  Web of Science CSD CrossRef Google Scholar
First citationZhang, Y.-N., Wang, H., Liu, J.-Q., Wang, Y.-Y., Fu, A.-Y. & Shi, Q.-Z. (2009). Inorg. Chem. Commun. 12, 611–614.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m611-m612
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds