metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m547-m548

cis-Tetra­chloridobis(1H-imidazole-κN3)platinum(IV)

aDepartment of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, bDepartment of Chemistry, Taras Shevchenko National University, 01601 Kiev, Ukraine, and cDepartment of Chemistry, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: nusenko@univ.kiev.ua

(Received 11 March 2012; accepted 27 March 2012; online 4 April 2012)

In the title complex, cis-[PtCl4(C3H4N2)2], the PtIV ion lies on a twofold rotation axis and is coordinated in a slightly distorted octa­hedral geometry. The dihedral angle between the imidazole rings is 69.9 (2)°. In the crystal, mol­ecules are linked by N—H⋯Cl hydrogen bonds, forming a three-dimensional network.

Related literature

For applications of platinum species bearing N-bonded heterocycles, see: Ravera et al. (2011[Ravera, M., Gabano, E., Sardi, M., Ermondi, G., Caron, G., McGlinchey, M. J., Müller-Bunz, H., Monti, E., Gariboldi, M. B. & Osella, D. (2011). J. Inorg. Biochem. 105, 400-409.]); Esmaeilbeig et al. (2011[Esmaeilbeig, A., Samouei, H., Abedanzadeh, S. & Amirghofran, Z. (2011). J. Organomet. Chem. 696, 3135-3142.]); Al-Shuneigat et al. (2010[Al-Shuneigat, J., Yu, J. Q., Beale, P., Fisher, K. & Huq, F. (2010). Med. Chem. 6, 321-328.]); Wheate et al. (2007[Wheate, N. J., Taleb, R. I., Krause-Heuer, A. M., Cook, R. L., Wang, S., Higgins, V. J. & Aldrich-Wright, J. R. (2007). Dalton Trans. pp. 5055-5064.]); van Zutphen et al. (2006[Zutphen, S. van, Pantoja, E., Soriano, R., Soro, C., Tooke, D. M., Spek, A. L. den Dulk, H., Brouwer, J. & Reedijk, J. (2006). Dalton Trans. pp. 1020-1023.]); Fritsky et al. (2000[Fritsky, I. O., Ott, R. & Krämer, R. (2000). Angew. Chem. Int. Ed. 39, 3255-3258.]); Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]). For the synthesis of platinum complexes with N-heterocyclic ligands, see: Bokach, Kuznetsov et al. (2011[Bokach, N. A., Kuznetsov, M. L. & Kukushkin, V. Yu. (2011). Coord. Chem. Rev. 255, 2946-2967.]); Kritchenkov et al. (2011[Kritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Yu. (2011). Dalton Trans. 40, 4175-4182.]); Bokach, Balova et al. (2011[Bokach, N. A., Balova, I. A., Haukka, M. & Kukushkin, V. Yu. (2011). Organometallics, 30, 595-602.]); Tskhovrebov et al. (2009[Tskhovrebov, A. G., Bokach, N. A., Haukka, M. & Kukushkin, V. Yu. (2009). Inorg. Chem. 48, 8678-8688.]); Luzyanin et al. (2009[Luzyanin, K. V., Tshovrebov, A. G., Guedes da Silva, M. F. C., Haukka, M., Pombeiro, A. J. L. & Kukushkin, V. Yu. (2009). Chem. Eur. J. 15, 5969-5978.]); Bokach et al. (2009[Bokach, N. A., Kuznetsov, M. L., Haukka, M., Ovcharenko, V. I., Tretyakov, E. V. & Kukushkin, V. Yu. (2009). Organometallics, 28, 1406-1413.]). For related structures, see: Khripun et al. (2006[Khripun, A. V., Haukka, M. & Kukushkin, V. Yu. (2006). Russ. Chem. Bull. pp. 247-255.], 2007[Khripun, A. V., Kukushkin, V. Yu., Koldobskii, G. I. & Haukka, M. (2007). Inorg. Chem. Commun. 10, 250-254.]); Korte et al. (1981[Korte, H.-J., Krebs, B., van Kralingen, C. G., Marcelis, A. T. M. & Reedijk, J. (1981). Inorg. Chim. Acta, 52, 61-67.]); Kuduk-Jaworska et al. (1988[Kuduk-Jaworska, J., Kubiak, M. & Głowiak, T. (1988). Acta Cryst. C44, 437-439.]); Bayon et al. (1987[Bayon, J. C., Kolowich, J. B. & Rasmussen, P. G. (1987). Polyhedron, 6, 341-343.]); Yip et al. (1993[Yip, H.-K., Che, Ch.-M. & Peng, Sh.-M. (1993). J. Chem. Soc. Dalton Trans. pp. 179-187.]); Chen et al. (2006[Chen, Y., Zhang, H., Wang, X., Huang, Ch., Cao, Y. & Sun, R. (2006). J. Solid State Chem. 179, 1674-1680.]); Gao et al. (2004[Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m1329-m1330.]); Garcia et al. (2000[Garcia, R., Paulo, A., Domingos, A., Santos, I., Ortner, K. & Alberto, R. (2000). J. Am. Chem. Soc. 122, 11240-11241.]); Hao & Yu (2007[Hao, L.-J. & Yu, T.-L. (2007). Acta Cryst. E63, m2555.]); Huo et al. (2004[Huo, L.-H., Gao, S., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m1747-m1749.]). For bond-length data, see: Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl4(C3H4N2)2]

  • Mr = 473.05

  • Monoclinic, C 2/c

  • a = 7.7264 (4) Å

  • b = 11.8757 (6) Å

  • c = 12.9471 (5) Å

  • β = 93.332 (3)°

  • V = 1185.97 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.70 mm−1

  • T = 120 K

  • 0.15 × 0.13 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.193, Tmax = 0.411

  • 7759 measured reflections

  • 1362 independent reflections

  • 1275 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.037

  • S = 1.05

  • 1362 reflections

  • 70 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—N1 2.046 (3)
Pt1—Cl2 2.3141 (8)
Pt1—Cl1 2.3193 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯Cl1ii 0.98 2.66 3.355 (3) 128
N2—H2N⋯Cl2ii 0.98 2.70 3.320 (3) 122
N2—H2N⋯Cl1iii 0.98 2.82 3.368 (3) 116
Symmetry codes: (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Platinum species, bearing N-bonded heterocycles (including, in particular, imidazoles) have drawn attention as efficient antitumor agents (Ravera et al., 2011; Esmaeilbeig et al., 2011; Al-Shuneigat et al., 2010; Wheate et al., 2007; van Zutphen et al., 2006). Within the framework of our projects the focus is on the synthesis of platinum complexes with N-heterocyclic ligands (Bokach, Kuznetsov et al., 2011; Kritchenkov et al., 2011; Bokach, Balova et al., 2011; Tskhovrebov et al., 2009; Luzyanin et al., 2009; Bokach et al., 2009; Krämer et al., 2000; Fritsky et al., 2000), the title compound (I) was synthesized and characterized by single-crystal X-ray diffraction.

In (I) the PtIV ion is in a slightly distorted octahedral coordination geometry formed by two N and four Cl atoms. Two imidazole ligands are in a cis orientation. The Pt—Cl bond distances are similar, within 3σ, to other Pt—Cl bond lengths [2.323 (38) Å] in platinum(IV) complexes (Orpen et al., 1989). The Pt—N distances are usual for platinum complexes bearing two cis-coordinated N-bonded heterocycles, e.g. 2.044 (3)–2.055 (5) Å in platinum(IV) complexes (Khripun et al., 2007; Khripun et al., 2006).

The title compound (1) represents the first example of the structurally characterized platinum complex having the neutral unsubstituted imidazole ligand and the second example of an imidazole Pt(IV) complex (Kuduk-Jaworska et al., 1988). The dihedral angle between the imidazole rings is 69.9 (2)°. The bond distances and angles in the heterocyclic ligands are in good agreement with those previously observed for imidazole ligands at platinum (Korte et al., 1981; Kuduk-Jaworska et al., 1988; Bayon et al., 1987; Yip et al., 1993) and other transition metal centers (for recent examples see Huo et al., 2004; Chen et al., 2006; Garcia et al., 2000; Hao et al., 2007; Gao et al., 2004). In the crystal, molecules are linked bt N—H···.Cl hydrogen bonds to form a three-dimensional network (Table 2).

Related literature top

For applications of platinum species bearing N-bonded heterocycles, see: Ravera et al. (2011); Esmaeilbeig et al. (2011); Al-Shuneigat et al. (2010); Wheate et al. (2007); van Zutphen et al. (2006); Fritsky et al. (2000); Krämer & Fritsky (2000). For the synthesis of platinum complexes with N-heterocyclic ligands, see: Bokach, Kuznetsov et al. (2011); Kritchenkov et al. (2011); Bokach, Balova et al. (2011); Tskhovrebov et al. (2009); Luzyanin et al. (2009); Bokach et al. (2009). For related structures, see: Khripun et al. (2006, 2007); Korte et al. (1981); Kuduk-Jaworska et al. (1988); Bayon et al. (1987); Yip et al. (1993); Chen et al. (2006); Gao et al. (2004); Garcia et al. (2000); Hao & Yu (2007); Huo et al. (2004); Orpen et al. (1989).

Experimental top

Complex (1) was synthesized by the reaction of cis-[PtCl4(EtCN)2] with 2 equivs of imidazole in CH2Cl2 solution at room temperature. The crystals suitable for X-ray crystallography were obtained from an acetone/toluene solution by a slow evaporation of the solvent at room temperature.

Refinement top

The NH hydrogen was initially located in difference Fourier maps but was included in a calculated position as riding with Uiso = 1.5 Ueq(N). Other H atoms were positioned geometrically and also allowed to ride on their parent atoms, with C—H = 0.95 Å, and Uiso = 1.2 Ueq(C). The highest peak is located 0.85 Å from atom Pt1 and the deepest hole is located 0.89 Å from atom Pt1.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level. Unlabled atoms are related by the symmetry operator (-x, y, -z+1/2).
cis-Tetrachloridobis(1H-imidazole-κN3)platinum(IV) top
Crystal data top
[PtCl4(C3H4N2)2]F(000) = 872
Mr = 473.05Dx = 2.649 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4469 reflections
a = 7.7264 (4) Åθ = 1.0–27.5°
b = 11.8757 (6) ŵ = 12.70 mm1
c = 12.9471 (5) ÅT = 120 K
β = 93.332 (3)°Plate, yellow
V = 1185.97 (10) Å30.15 × 0.13 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1362 independent reflections
Radiation source: fine-focus sealed tube1275 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.037
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ scans and ω scans with κ offseth = 910
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1515
Tmin = 0.193, Tmax = 0.411l = 1614
7759 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: mixed
wR(F2) = 0.037H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0108P)2 + 3.3813P]
where P = (Fo2 + 2Fc2)/3
1362 reflections(Δ/σ)max < 0.001
70 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[PtCl4(C3H4N2)2]V = 1185.97 (10) Å3
Mr = 473.05Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.7264 (4) ŵ = 12.70 mm1
b = 11.8757 (6) ÅT = 120 K
c = 12.9471 (5) Å0.15 × 0.13 × 0.07 mm
β = 93.332 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1362 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1275 reflections with I > 2σ(I)
Tmin = 0.193, Tmax = 0.411Rint = 0.037
7759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.037H-atom parameters constrained
S = 1.05Δρmax = 0.68 e Å3
1362 reflectionsΔρmin = 0.73 e Å3
70 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.00000.132240 (14)0.25000.01672 (7)
Cl10.07166 (12)0.00761 (7)0.37001 (7)0.02527 (19)
Cl20.28465 (11)0.13451 (7)0.29654 (7)0.02696 (19)
N10.0594 (4)0.2545 (2)0.3576 (2)0.0184 (6)
N20.1812 (4)0.3987 (3)0.4316 (2)0.0292 (7)
H2N0.25490.46620.43590.044*
C10.1675 (5)0.3389 (3)0.3449 (3)0.0265 (8)
H10.22590.35430.28380.032*
C20.0790 (5)0.3503 (3)0.5026 (3)0.0274 (8)
H20.06440.37540.57120.033*
C30.0036 (5)0.2603 (3)0.4555 (3)0.0266 (8)
H30.07470.20970.48520.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01632 (10)0.01756 (10)0.01655 (10)0.0000.00311 (7)0.000
Cl10.0301 (5)0.0228 (4)0.0226 (4)0.0022 (3)0.0010 (4)0.0041 (3)
Cl20.0199 (4)0.0313 (5)0.0303 (5)0.0019 (3)0.0074 (3)0.0022 (4)
N10.0200 (15)0.0182 (14)0.0168 (14)0.0014 (11)0.0002 (11)0.0001 (11)
N20.0340 (18)0.0251 (15)0.0287 (17)0.0063 (13)0.0030 (14)0.0034 (13)
C10.028 (2)0.0261 (18)0.025 (2)0.0052 (15)0.0041 (16)0.0030 (14)
C20.030 (2)0.0280 (19)0.0248 (19)0.0004 (15)0.0060 (16)0.0032 (15)
C30.028 (2)0.0293 (19)0.0236 (19)0.0000 (15)0.0072 (15)0.0002 (15)
Geometric parameters (Å, º) top
Pt1—N1i2.046 (3)N2—C11.327 (5)
Pt1—N12.046 (3)N2—C21.372 (5)
Pt1—Cl2i2.3141 (8)N2—H2N0.9830
Pt1—Cl22.3141 (8)C1—H10.9500
Pt1—Cl12.3193 (8)C2—C31.347 (5)
Pt1—Cl1i2.3193 (8)C2—H20.9500
N1—C11.321 (4)C3—H30.9500
N1—C31.364 (4)
N1i—Pt1—N189.55 (15)C1—N1—C3108.3 (3)
N1i—Pt1—Cl2i89.63 (8)C1—N1—Pt1124.9 (2)
N1—Pt1—Cl2i89.43 (8)C3—N1—Pt1126.7 (2)
N1i—Pt1—Cl289.43 (8)C1—N2—C2108.8 (3)
N1—Pt1—Cl289.63 (8)C1—N2—H2N120.1
Cl2i—Pt1—Cl2178.67 (4)C2—N2—H2N131.1
N1i—Pt1—Cl1178.88 (8)N1—C1—N2108.7 (3)
N1—Pt1—Cl190.97 (8)N1—C1—H1125.7
Cl2i—Pt1—Cl189.38 (3)N2—C1—H1125.7
Cl2—Pt1—Cl191.57 (3)C3—C2—N2106.3 (3)
N1i—Pt1—Cl1i90.97 (8)C3—C2—H2126.9
N1—Pt1—Cl1i178.88 (8)N2—C2—H2126.9
Cl2i—Pt1—Cl1i91.57 (3)C2—C3—N1108.0 (3)
Cl2—Pt1—Cl1i89.38 (3)C2—C3—H3126.0
Cl1—Pt1—Cl1i88.54 (4)N1—C3—H3126.0
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl1ii0.982.663.355 (3)128
N2—H2N···Cl2ii0.982.703.320 (3)122
N2—H2N···Cl1iii0.982.823.368 (3)116
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[PtCl4(C3H4N2)2]
Mr473.05
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)7.7264 (4), 11.8757 (6), 12.9471 (5)
β (°) 93.332 (3)
V3)1185.97 (10)
Z4
Radiation typeMo Kα
µ (mm1)12.70
Crystal size (mm)0.15 × 0.13 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.193, 0.411
No. of measured, independent and
observed [I > 2σ(I)] reflections
7759, 1362, 1275
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.037, 1.05
No. of reflections1362
No. of parameters70
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.73

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008).

Selected geometric parameters (Å, º) top
Pt1—N12.046 (3)Pt1—Cl12.3193 (8)
Pt1—Cl22.3141 (8)
N1i—Pt1—N189.55 (15)Cl2—Pt1—Cl191.57 (3)
N1—Pt1—Cl2i89.43 (8)N1—Pt1—Cl1i178.88 (8)
N1—Pt1—Cl289.63 (8)Cl2—Pt1—Cl1i89.38 (3)
Cl2i—Pt1—Cl2178.67 (4)Cl1—Pt1—Cl1i88.54 (4)
N1—Pt1—Cl190.97 (8)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl1ii0.982.663.355 (3)128.3
N2—H2N···Cl2ii0.982.703.320 (3)121.5
N2—H2N···Cl1iii0.982.823.368 (3)115.9
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the Russian Fund for Basic Research (grant 11–03–90417) and the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041). Financial support from the Visby Program through the Swedish Institute is gratefully acknowledged. Anatoly V. Khripun is thanked for experimental assistance.

References

First citationAl-Shuneigat, J., Yu, J. Q., Beale, P., Fisher, K. & Huq, F. (2010). Med. Chem. 6, 321–328.  Web of Science CAS PubMed Google Scholar
First citationBayon, J. C., Kolowich, J. B. & Rasmussen, P. G. (1987). Polyhedron, 6, 341–343.  CAS Google Scholar
First citationBokach, N. A., Balova, I. A., Haukka, M. & Kukushkin, V. Yu. (2011). Organometallics, 30, 595–602.  Web of Science CSD CrossRef CAS Google Scholar
First citationBokach, N. A., Kuznetsov, M. L., Haukka, M., Ovcharenko, V. I., Tretyakov, E. V. & Kukushkin, V. Yu. (2009). Organometallics, 28, 1406–1413.  Web of Science CSD CrossRef CAS Google Scholar
First citationBokach, N. A., Kuznetsov, M. L. & Kukushkin, V. Yu. (2011). Coord. Chem. Rev. 255, 2946–2967.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, Y., Zhang, H., Wang, X., Huang, Ch., Cao, Y. & Sun, R. (2006). J. Solid State Chem. 179, 1674–1680.  Web of Science CSD CrossRef CAS Google Scholar
First citationEsmaeilbeig, A., Samouei, H., Abedanzadeh, S. & Amirghofran, Z. (2011). J. Organomet. Chem. 696, 3135–3142.  Web of Science CSD CrossRef CAS Google Scholar
First citationFritsky, I. O., Ott, R. & Krämer, R. (2000). Angew. Chem. Int. Ed. 39, 3255–3258.  CrossRef CAS Google Scholar
First citationGao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m1329–m1330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGarcia, R., Paulo, A., Domingos, A., Santos, I., Ortner, K. & Alberto, R. (2000). J. Am. Chem. Soc. 122, 11240–11241.  Web of Science CSD CrossRef CAS Google Scholar
First citationHao, L.-J. & Yu, T.-L. (2007). Acta Cryst. E63, m2555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuo, L.-H., Gao, S., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m1747–m1749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhripun, A. V., Haukka, M. & Kukushkin, V. Yu. (2006). Russ. Chem. Bull. pp. 247–255.  Web of Science CrossRef Google Scholar
First citationKhripun, A. V., Kukushkin, V. Yu., Koldobskii, G. I. & Haukka, M. (2007). Inorg. Chem. Commun. 10, 250–254.  Web of Science CSD CrossRef CAS Google Scholar
First citationKorte, H.-J., Krebs, B., van Kralingen, C. G., Marcelis, A. T. M. & Reedijk, J. (1981). Inorg. Chim. Acta, 52, 61–67.  CSD CrossRef CAS Web of Science Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationKritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Yu. (2011). Dalton Trans. 40, 4175–4182.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKuduk-Jaworska, J., Kubiak, M. & Głowiak, T. (1988). Acta Cryst. C44, 437–439.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLuzyanin, K. V., Tshovrebov, A. G., Guedes da Silva, M. F. C., Haukka, M., Pombeiro, A. J. L. & Kukushkin, V. Yu. (2009). Chem. Eur. J. 15, 5969–5978.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRavera, M., Gabano, E., Sardi, M., Ermondi, G., Caron, G., McGlinchey, M. J., Müller-Bunz, H., Monti, E., Gariboldi, M. B. & Osella, D. (2011). J. Inorg. Biochem. 105, 400–409.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTskhovrebov, A. G., Bokach, N. A., Haukka, M. & Kukushkin, V. Yu. (2009). Inorg. Chem. 48, 8678–8688.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWheate, N. J., Taleb, R. I., Krause-Heuer, A. M., Cook, R. L., Wang, S., Higgins, V. J. & Aldrich-Wright, J. R. (2007). Dalton Trans. pp. 5055–5064.  Web of Science CrossRef Google Scholar
First citationYip, H.-K., Che, Ch.-M. & Peng, Sh.-M. (1993). J. Chem. Soc. Dalton Trans. pp. 179–187.  CSD CrossRef CAS Web of Science Google Scholar
First citationZutphen, S. van, Pantoja, E., Soriano, R., Soro, C., Tooke, D. M., Spek, A. L. den Dulk, H., Brouwer, J. & Reedijk, J. (2006). Dalton Trans. pp. 1020–1023.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m547-m548
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds