metal-organic compounds
cis-Tetrachloridobis(1H-imidazole-κN3)platinum(IV)
aDepartment of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, bDepartment of Chemistry, Taras Shevchenko National University, 01601 Kiev, Ukraine, and cDepartment of Chemistry, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: nusenko@univ.kiev.ua
In the title complex, cis-[PtCl4(C3H4N2)2], the PtIV ion lies on a twofold rotation axis and is coordinated in a slightly distorted octahedral geometry. The dihedral angle between the imidazole rings is 69.9 (2)°. In the crystal, molecules are linked by N—H⋯Cl hydrogen bonds, forming a three-dimensional network.
Related literature
For applications of platinum species bearing N-bonded heterocycles, see: Ravera et al. (2011); Esmaeilbeig et al. (2011); Al-Shuneigat et al. (2010); Wheate et al. (2007); van Zutphen et al. (2006); Fritsky et al. (2000); Krämer & Fritsky (2000). For the synthesis of platinum complexes with N-heterocyclic ligands, see: Bokach, Kuznetsov et al. (2011); Kritchenkov et al. (2011); Bokach, Balova et al. (2011); Tskhovrebov et al. (2009); Luzyanin et al. (2009); Bokach et al. (2009). For related structures, see: Khripun et al. (2006, 2007); Korte et al. (1981); Kuduk-Jaworska et al. (1988); Bayon et al. (1987); Yip et al. (1993); Chen et al. (2006); Gao et al. (2004); Garcia et al. (2000); Hao & Yu (2007); Huo et al. (2004). For bond-length data, see: Orpen et al. (1989).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 2000); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812013323/lh5433sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812013323/lh5433Isup2.hkl
Complex (1) was synthesized by the reaction of cis-[PtCl4(EtCN)2] with 2 equivs of imidazole in CH2Cl2 solution at room temperature. The crystals suitable for X-ray crystallography were obtained from an acetone/toluene solution by a slow evaporation of the solvent at room temperature.
The NH hydrogen was initially located in difference Fourier maps but was included in a calculated position as riding with Uiso = 1.5 Ueq(N). Other H atoms were positioned geometrically and also allowed to ride on their parent atoms, with C—H = 0.95 Å, and Uiso = 1.2 Ueq(C). The highest peak is located 0.85 Å from atom Pt1 and the deepest hole is located 0.89 Å from atom Pt1.
Data collection: COLLECT (Nonius, 2000); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level. Unlabled atoms are related by the symmetry operator (-x, y, -z+1/2). |
[PtCl4(C3H4N2)2] | F(000) = 872 |
Mr = 473.05 | Dx = 2.649 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 4469 reflections |
a = 7.7264 (4) Å | θ = 1.0–27.5° |
b = 11.8757 (6) Å | µ = 12.70 mm−1 |
c = 12.9471 (5) Å | T = 120 K |
β = 93.332 (3)° | Plate, yellow |
V = 1185.97 (10) Å3 | 0.15 × 0.13 × 0.07 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 1362 independent reflections |
Radiation source: fine-focus sealed tube | 1275 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.037 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ϕ scans and ω scans with κ offset | h = −9→10 |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | k = −15→15 |
Tmin = 0.193, Tmax = 0.411 | l = −16→14 |
7759 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: mixed |
wR(F2) = 0.037 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0108P)2 + 3.3813P] where P = (Fo2 + 2Fc2)/3 |
1362 reflections | (Δ/σ)max < 0.001 |
70 parameters | Δρmax = 0.68 e Å−3 |
0 restraints | Δρmin = −0.73 e Å−3 |
[PtCl4(C3H4N2)2] | V = 1185.97 (10) Å3 |
Mr = 473.05 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 7.7264 (4) Å | µ = 12.70 mm−1 |
b = 11.8757 (6) Å | T = 120 K |
c = 12.9471 (5) Å | 0.15 × 0.13 × 0.07 mm |
β = 93.332 (3)° |
Nonius KappaCCD diffractometer | 1362 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 1275 reflections with I > 2σ(I) |
Tmin = 0.193, Tmax = 0.411 | Rint = 0.037 |
7759 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 0 restraints |
wR(F2) = 0.037 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.68 e Å−3 |
1362 reflections | Δρmin = −0.73 e Å−3 |
70 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.0000 | 0.132240 (14) | 0.2500 | 0.01672 (7) | |
Cl1 | 0.07166 (12) | −0.00761 (7) | 0.37001 (7) | 0.02527 (19) | |
Cl2 | −0.28465 (11) | 0.13451 (7) | 0.29654 (7) | 0.02696 (19) | |
N1 | 0.0594 (4) | 0.2545 (2) | 0.3576 (2) | 0.0184 (6) | |
N2 | 0.1812 (4) | 0.3987 (3) | 0.4316 (2) | 0.0292 (7) | |
H2N | 0.2549 | 0.4662 | 0.4359 | 0.044* | |
C1 | 0.1675 (5) | 0.3389 (3) | 0.3449 (3) | 0.0265 (8) | |
H1 | 0.2259 | 0.3543 | 0.2838 | 0.032* | |
C2 | 0.0790 (5) | 0.3503 (3) | 0.5026 (3) | 0.0274 (8) | |
H2 | 0.0644 | 0.3754 | 0.5712 | 0.033* | |
C3 | 0.0036 (5) | 0.2603 (3) | 0.4555 (3) | 0.0266 (8) | |
H3 | −0.0747 | 0.2097 | 0.4852 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.01632 (10) | 0.01756 (10) | 0.01655 (10) | 0.000 | 0.00311 (7) | 0.000 |
Cl1 | 0.0301 (5) | 0.0228 (4) | 0.0226 (4) | −0.0022 (3) | −0.0010 (4) | 0.0041 (3) |
Cl2 | 0.0199 (4) | 0.0313 (5) | 0.0303 (5) | −0.0019 (3) | 0.0074 (3) | 0.0022 (4) |
N1 | 0.0200 (15) | 0.0182 (14) | 0.0168 (14) | −0.0014 (11) | 0.0002 (11) | −0.0001 (11) |
N2 | 0.0340 (18) | 0.0251 (15) | 0.0287 (17) | −0.0063 (13) | 0.0030 (14) | −0.0034 (13) |
C1 | 0.028 (2) | 0.0261 (18) | 0.025 (2) | −0.0052 (15) | 0.0041 (16) | −0.0030 (14) |
C2 | 0.030 (2) | 0.0280 (19) | 0.0248 (19) | 0.0004 (15) | 0.0060 (16) | −0.0032 (15) |
C3 | 0.028 (2) | 0.0293 (19) | 0.0236 (19) | 0.0000 (15) | 0.0072 (15) | −0.0002 (15) |
Pt1—N1i | 2.046 (3) | N2—C1 | 1.327 (5) |
Pt1—N1 | 2.046 (3) | N2—C2 | 1.372 (5) |
Pt1—Cl2i | 2.3141 (8) | N2—H2N | 0.9830 |
Pt1—Cl2 | 2.3141 (8) | C1—H1 | 0.9500 |
Pt1—Cl1 | 2.3193 (8) | C2—C3 | 1.347 (5) |
Pt1—Cl1i | 2.3193 (8) | C2—H2 | 0.9500 |
N1—C1 | 1.321 (4) | C3—H3 | 0.9500 |
N1—C3 | 1.364 (4) | ||
N1i—Pt1—N1 | 89.55 (15) | C1—N1—C3 | 108.3 (3) |
N1i—Pt1—Cl2i | 89.63 (8) | C1—N1—Pt1 | 124.9 (2) |
N1—Pt1—Cl2i | 89.43 (8) | C3—N1—Pt1 | 126.7 (2) |
N1i—Pt1—Cl2 | 89.43 (8) | C1—N2—C2 | 108.8 (3) |
N1—Pt1—Cl2 | 89.63 (8) | C1—N2—H2N | 120.1 |
Cl2i—Pt1—Cl2 | 178.67 (4) | C2—N2—H2N | 131.1 |
N1i—Pt1—Cl1 | 178.88 (8) | N1—C1—N2 | 108.7 (3) |
N1—Pt1—Cl1 | 90.97 (8) | N1—C1—H1 | 125.7 |
Cl2i—Pt1—Cl1 | 89.38 (3) | N2—C1—H1 | 125.7 |
Cl2—Pt1—Cl1 | 91.57 (3) | C3—C2—N2 | 106.3 (3) |
N1i—Pt1—Cl1i | 90.97 (8) | C3—C2—H2 | 126.9 |
N1—Pt1—Cl1i | 178.88 (8) | N2—C2—H2 | 126.9 |
Cl2i—Pt1—Cl1i | 91.57 (3) | C2—C3—N1 | 108.0 (3) |
Cl2—Pt1—Cl1i | 89.38 (3) | C2—C3—H3 | 126.0 |
Cl1—Pt1—Cl1i | 88.54 (4) | N1—C3—H3 | 126.0 |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···Cl1ii | 0.98 | 2.66 | 3.355 (3) | 128 |
N2—H2N···Cl2ii | 0.98 | 2.70 | 3.320 (3) | 122 |
N2—H2N···Cl1iii | 0.98 | 2.82 | 3.368 (3) | 116 |
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [PtCl4(C3H4N2)2] |
Mr | 473.05 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 120 |
a, b, c (Å) | 7.7264 (4), 11.8757 (6), 12.9471 (5) |
β (°) | 93.332 (3) |
V (Å3) | 1185.97 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 12.70 |
Crystal size (mm) | 0.15 × 0.13 × 0.07 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.193, 0.411 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7759, 1362, 1275 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.037, 1.05 |
No. of reflections | 1362 |
No. of parameters | 70 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.68, −0.73 |
Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008).
Pt1—N1 | 2.046 (3) | Pt1—Cl1 | 2.3193 (8) |
Pt1—Cl2 | 2.3141 (8) | ||
N1i—Pt1—N1 | 89.55 (15) | Cl2—Pt1—Cl1 | 91.57 (3) |
N1—Pt1—Cl2i | 89.43 (8) | N1—Pt1—Cl1i | 178.88 (8) |
N1—Pt1—Cl2 | 89.63 (8) | Cl2—Pt1—Cl1i | 89.38 (3) |
Cl2i—Pt1—Cl2 | 178.67 (4) | Cl1—Pt1—Cl1i | 88.54 (4) |
N1—Pt1—Cl1 | 90.97 (8) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···Cl1ii | 0.98 | 2.66 | 3.355 (3) | 128.3 |
N2—H2N···Cl2ii | 0.98 | 2.70 | 3.320 (3) | 121.5 |
N2—H2N···Cl1iii | 0.98 | 2.82 | 3.368 (3) | 115.9 |
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z+1. |
Acknowledgements
This work was supported by the Russian Fund for Basic Research (grant 11–03–90417) and the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041). Financial support from the Visby Program through the Swedish Institute is gratefully acknowledged. Anatoly V. Khripun is thanked for experimental assistance.
References
Al-Shuneigat, J., Yu, J. Q., Beale, P., Fisher, K. & Huq, F. (2010). Med. Chem. 6, 321–328. Web of Science CAS PubMed Google Scholar
Bayon, J. C., Kolowich, J. B. & Rasmussen, P. G. (1987). Polyhedron, 6, 341–343. CAS Google Scholar
Bokach, N. A., Balova, I. A., Haukka, M. & Kukushkin, V. Yu. (2011). Organometallics, 30, 595–602. Web of Science CSD CrossRef CAS Google Scholar
Bokach, N. A., Kuznetsov, M. L., Haukka, M., Ovcharenko, V. I., Tretyakov, E. V. & Kukushkin, V. Yu. (2009). Organometallics, 28, 1406–1413. Web of Science CSD CrossRef CAS Google Scholar
Bokach, N. A., Kuznetsov, M. L. & Kukushkin, V. Yu. (2011). Coord. Chem. Rev. 255, 2946–2967. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chen, Y., Zhang, H., Wang, X., Huang, Ch., Cao, Y. & Sun, R. (2006). J. Solid State Chem. 179, 1674–1680. Web of Science CSD CrossRef CAS Google Scholar
Esmaeilbeig, A., Samouei, H., Abedanzadeh, S. & Amirghofran, Z. (2011). J. Organomet. Chem. 696, 3135–3142. Web of Science CSD CrossRef CAS Google Scholar
Fritsky, I. O., Ott, R. & Krämer, R. (2000). Angew. Chem. Int. Ed. 39, 3255–3258. CrossRef CAS Google Scholar
Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m1329–m1330. Web of Science CSD CrossRef IUCr Journals Google Scholar
Garcia, R., Paulo, A., Domingos, A., Santos, I., Ortner, K. & Alberto, R. (2000). J. Am. Chem. Soc. 122, 11240–11241. Web of Science CSD CrossRef CAS Google Scholar
Hao, L.-J. & Yu, T.-L. (2007). Acta Cryst. E63, m2555. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huo, L.-H., Gao, S., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m1747–m1749. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khripun, A. V., Haukka, M. & Kukushkin, V. Yu. (2006). Russ. Chem. Bull. pp. 247–255. Web of Science CrossRef Google Scholar
Khripun, A. V., Kukushkin, V. Yu., Koldobskii, G. I. & Haukka, M. (2007). Inorg. Chem. Commun. 10, 250–254. Web of Science CSD CrossRef CAS Google Scholar
Korte, H.-J., Krebs, B., van Kralingen, C. G., Marcelis, A. T. M. & Reedijk, J. (1981). Inorg. Chim. Acta, 52, 61–67. CSD CrossRef CAS Web of Science Google Scholar
Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510. Google Scholar
Kritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Yu. (2011). Dalton Trans. 40, 4175–4182. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kuduk-Jaworska, J., Kubiak, M. & Głowiak, T. (1988). Acta Cryst. C44, 437–439. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Luzyanin, K. V., Tshovrebov, A. G., Guedes da Silva, M. F. C., Haukka, M., Pombeiro, A. J. L. & Kukushkin, V. Yu. (2009). Chem. Eur. J. 15, 5969–5978. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83. CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Ravera, M., Gabano, E., Sardi, M., Ermondi, G., Caron, G., McGlinchey, M. J., Müller-Bunz, H., Monti, E., Gariboldi, M. B. & Osella, D. (2011). J. Inorg. Biochem. 105, 400–409. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tskhovrebov, A. G., Bokach, N. A., Haukka, M. & Kukushkin, V. Yu. (2009). Inorg. Chem. 48, 8678–8688. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wheate, N. J., Taleb, R. I., Krause-Heuer, A. M., Cook, R. L., Wang, S., Higgins, V. J. & Aldrich-Wright, J. R. (2007). Dalton Trans. pp. 5055–5064. Web of Science CrossRef Google Scholar
Yip, H.-K., Che, Ch.-M. & Peng, Sh.-M. (1993). J. Chem. Soc. Dalton Trans. pp. 179–187. CSD CrossRef CAS Web of Science Google Scholar
Zutphen, S. van, Pantoja, E., Soriano, R., Soro, C., Tooke, D. M., Spek, A. L. den Dulk, H., Brouwer, J. & Reedijk, J. (2006). Dalton Trans. pp. 1020–1023. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Platinum species, bearing N-bonded heterocycles (including, in particular, imidazoles) have drawn attention as efficient antitumor agents (Ravera et al., 2011; Esmaeilbeig et al., 2011; Al-Shuneigat et al., 2010; Wheate et al., 2007; van Zutphen et al., 2006). Within the framework of our projects the focus is on the synthesis of platinum complexes with N-heterocyclic ligands (Bokach, Kuznetsov et al., 2011; Kritchenkov et al., 2011; Bokach, Balova et al., 2011; Tskhovrebov et al., 2009; Luzyanin et al., 2009; Bokach et al., 2009; Krämer et al., 2000; Fritsky et al., 2000), the title compound (I) was synthesized and characterized by single-crystal X-ray diffraction.
In (I) the PtIV ion is in a slightly distorted octahedral coordination geometry formed by two N and four Cl atoms. Two imidazole ligands are in a cis orientation. The Pt—Cl bond distances are similar, within 3σ, to other Pt—Cl bond lengths [2.323 (38) Å] in platinum(IV) complexes (Orpen et al., 1989). The Pt—N distances are usual for platinum complexes bearing two cis-coordinated N-bonded heterocycles, e.g. 2.044 (3)–2.055 (5) Å in platinum(IV) complexes (Khripun et al., 2007; Khripun et al., 2006).
The title compound (1) represents the first example of the structurally characterized platinum complex having the neutral unsubstituted imidazole ligand and the second example of an imidazole Pt(IV) complex (Kuduk-Jaworska et al., 1988). The dihedral angle between the imidazole rings is 69.9 (2)°. The bond distances and angles in the heterocyclic ligands are in good agreement with those previously observed for imidazole ligands at platinum (Korte et al., 1981; Kuduk-Jaworska et al., 1988; Bayon et al., 1987; Yip et al., 1993) and other transition metal centers (for recent examples see Huo et al., 2004; Chen et al., 2006; Garcia et al., 2000; Hao et al., 2007; Gao et al., 2004). In the crystal, molecules are linked bt N—H···.Cl hydrogen bonds to form a three-dimensional network (Table 2).