metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridyl-κ2N,N′)bis­­(dicyanamido-κN)manganese(II)

aDepartment of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: xxhxwang@126.com

(Received 20 March 2012; accepted 1 April 2012; online 13 April 2012)

In title complex, [Mn(C2N3)2(C10H8N2)2], the MnII ion is coordinated in a slightly distorted octa­hedral geometry by six N atoms. Four of the N atoms are from two chelating bipyridine ligands and two are from a pair of cis-coordinated dicyanamide ligands. The dihedral angle formed by the mean planes of the bipyridine rings is 85.93 (14)°. The central N atom of one of the dicyanamide ligands was refined as disordered over two sites with equal occupancies.

Related literature

For related structures, see: Lopes et al. (2011[Lopes, L. B., Corrêa, C. C. & Diniz, R. (2011). Acta Cryst. E67, m906-m907.]); Knight et al. (2010[Knight, J. C., Amoroso, A. J., Edwards, P. G., Prabaharan, R. & Singh, N. (2010). Dalton Trans. 39, 8925-8936.]); McCann et al. (1998[McCann, S., McCann, M., Casey, M. T., Jackman, M., Devereux, M. & McKee, V. (1998). Inorg. Chim. Acta, 279, 24-29.]); Lumme & Lindell (1988[Lumme, P. O. & Lindell, E. (1988). Acta Cryst. C44, 463-465.]); Li et al. (2002[Li, Z. Y., Xu, D. J., Nie, J. J., Wu, Z. Y., Wu, J. Y. & Chiang, M. (2002). J. Coord. Chem. 55, 1155-1160.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C2N3)2(C10H8N2)2]

  • Mr = 499.41

  • Monoclinic, P 21 /c

  • a = 9.232 (3) Å

  • b = 16.144 (6) Å

  • c = 16.670 (6) Å

  • β = 104.439 (6)°

  • V = 2406.0 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 293 K

  • 0.31 × 0.29 × 0.24 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.840, Tmax = 0.873

  • 11521 measured reflections

  • 4220 independent reflections

  • 2653 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.178

  • S = 1.03

  • 4220 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Due to the excellent chelating abilities to almost all the transition metal ions, 2,2'-bipyridine and its analogs have been widely introduced into coordination chemistry to construct homo- or heterometallic complexes with various structures. Here, we present the crystal structure of the title complex.

The molecular structure of the title complex is shown in figure 1. The coordination of the MnII ion is slightly distorted octahedral, for which four sites are from two 2,2-bipyridine ligands and the other two are occupied by two N atoms of the two dicyanamido ligands. The distances between the central MnII ion and the N atoms of the 2,2'-bipyridine ligands are in agreement with the Mn—N bond lengths in other manganese complexes contaning bipyridine ligands (Lopes et al., 2011; Knight et al., 2010; McCann et al., 1998; Lumme & Lindell, 1988; Li et al., 2002). The Mn—Ndicyanamido bond lengths are slightly shorter than the Mn—Nbipyridine lengths.

Related literature top

For related structures, see: Lopes et al. (2011); Knight et al. (2010); McCann et al. (1998); Lumme & Lindell (1988); Li et al. (2002).

Experimental top

The synthesis of the title complex was carried out by reacting Mn(ClO4)2.6H2O, 2,2'-bipyridine and sodium dicyanamide in a molar ratio of 1:2:2 in methanol. After the mixture was stirred for about 15 minutes at room temperature, it was filtrated. The filtrate was left to slowly evaperate in air for about one week to obtain single-crystals suitable for X-ray diffraction with the yield about 50%.

Refinement top

All H atoms bonded to the C atoms were placed using the HFIX command in SHELXL-97 (Sheldrick, 2008) with C—H distances of 0.93 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C). The atom N6 of one the dicyanamido ligands is disordered and was refined with over two sites with equall occupancies.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with 30% displacement ellipsoids. The disorder is not shown.
Bis(2,2'-bipyridyl-κ2N,N')bis(dicyanamido- κN)manganese(II) top
Crystal data top
[Mn(C2N3)2(C10H8N2)2]F(000) = 1020
Mr = 499.41Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2314 reflections
a = 9.232 (3) Åθ = 2.7–26.9°
b = 16.144 (6) ŵ = 0.58 mm1
c = 16.670 (6) ÅT = 293 K
β = 104.439 (6)°Block, yellow
V = 2406.0 (15) Å30.31 × 0.29 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
4220 independent reflections
Radiation source: fine-focus sealed tube2653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.840, Tmax = 0.873k = 1917
11521 measured reflectionsl = 919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0716P)2 + 2.6518P]
where P = (Fo2 + 2Fc2)/3
4220 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Mn(C2N3)2(C10H8N2)2]V = 2406.0 (15) Å3
Mr = 499.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.232 (3) ŵ = 0.58 mm1
b = 16.144 (6) ÅT = 293 K
c = 16.670 (6) Å0.31 × 0.29 × 0.24 mm
β = 104.439 (6)°
Data collection top
Bruker APEXII
diffractometer
4220 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2653 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.873Rint = 0.040
11521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.03Δρmax = 0.91 e Å3
4220 reflectionsΔρmin = 0.79 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.49855 (7)0.78202 (4)0.88004 (4)0.0570 (3)
N10.3997 (4)0.6864 (2)0.7812 (2)0.0592 (9)
N20.6547 (4)0.7703 (2)0.7951 (2)0.0583 (9)
N30.6062 (4)0.6721 (2)0.9643 (2)0.0601 (9)
N40.3479 (4)0.7467 (2)0.9633 (2)0.0590 (9)
N50.6450 (5)0.8677 (3)0.9614 (3)0.0847 (13)
N60.7237 (11)0.9877 (6)1.0436 (6)0.092 (3)0.50
N6A0.8534 (16)0.9247 (8)1.0702 (7)0.141 (5)0.50
N70.9807 (6)1.0470 (3)1.0971 (4)0.121 (2)
N80.3514 (5)0.8769 (3)0.8116 (3)0.0906 (13)
N90.2729 (7)0.9927 (3)0.7186 (4)0.1155 (17)
N100.0440 (6)1.0630 (4)0.6652 (4)0.1195 (19)
C10.2698 (5)0.6462 (3)0.7764 (3)0.0737 (13)
H10.21450.66020.81410.088*
C20.2151 (7)0.5859 (4)0.7192 (3)0.0963 (18)
H20.12600.55860.71870.116*
C30.2946 (7)0.5671 (4)0.6633 (4)0.111 (2)
H30.25860.52750.62270.134*
C40.4294 (6)0.6066 (3)0.6663 (3)0.0905 (17)
H40.48570.59260.62920.109*
C50.4786 (5)0.6672 (3)0.7258 (2)0.0587 (11)
C60.6193 (5)0.7143 (3)0.7328 (2)0.0554 (10)
C70.7090 (6)0.7030 (3)0.6796 (3)0.0839 (15)
H70.68290.66460.63680.101*
C80.8388 (7)0.7491 (4)0.6898 (4)0.1022 (19)
H80.90120.74140.65440.123*
C90.8740 (6)0.8057 (4)0.7518 (3)0.0873 (16)
H90.96010.83760.75910.105*
C100.7813 (5)0.8149 (3)0.8032 (3)0.0735 (13)
H100.80640.85350.84580.088*
C110.7362 (5)0.6361 (3)0.9617 (3)0.0779 (14)
H110.78670.65520.92360.094*
C120.7970 (6)0.5724 (4)1.0131 (4)0.0931 (17)
H120.88680.54861.00920.112*
C130.7265 (7)0.5440 (4)1.0694 (4)0.0966 (18)
H130.76740.50101.10490.116*
C140.5926 (6)0.5798 (3)1.0735 (3)0.0856 (15)
H140.54190.56121.11180.103*
C150.5350 (5)0.6441 (3)1.0195 (3)0.0579 (10)
C160.3902 (5)0.6855 (3)1.0189 (3)0.0592 (11)
C170.3024 (6)0.6625 (4)1.0715 (3)0.0934 (17)
H170.33270.61971.10930.112*
C180.1697 (7)0.7035 (4)1.0674 (4)0.117 (2)
H180.10960.68861.10230.141*
C190.1276 (6)0.7660 (4)1.0117 (4)0.0999 (19)
H190.03920.79491.00860.120*
C200.2176 (5)0.7856 (3)0.9603 (3)0.0763 (14)
H200.18740.82760.92170.092*
C210.7146 (8)0.9118 (4)1.0047 (3)0.111 (2)
C220.8884 (9)1.0045 (4)1.0761 (4)0.110 (2)
C230.3004 (7)0.9280 (4)0.7692 (4)0.0995 (19)
C240.1368 (8)1.0230 (4)0.6921 (4)0.0939 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0651 (4)0.0580 (4)0.0505 (4)0.0031 (3)0.0195 (3)0.0076 (3)
N10.061 (2)0.064 (2)0.0530 (19)0.0087 (18)0.0151 (17)0.0104 (17)
N20.057 (2)0.068 (2)0.0509 (19)0.0071 (17)0.0158 (16)0.0019 (17)
N30.061 (2)0.064 (2)0.057 (2)0.0070 (18)0.0188 (18)0.0044 (18)
N40.063 (2)0.061 (2)0.057 (2)0.0064 (18)0.0209 (18)0.0025 (18)
N50.116 (4)0.076 (3)0.063 (2)0.029 (3)0.025 (2)0.012 (2)
N60.095 (7)0.090 (6)0.102 (7)0.020 (6)0.043 (6)0.047 (6)
N6A0.189 (13)0.124 (10)0.090 (7)0.084 (10)0.006 (8)0.027 (7)
N70.090 (4)0.086 (4)0.154 (5)0.011 (3)0.029 (4)0.035 (3)
N80.108 (4)0.084 (3)0.081 (3)0.023 (3)0.026 (3)0.011 (3)
N90.123 (4)0.112 (4)0.115 (4)0.027 (4)0.036 (4)0.029 (4)
N100.102 (4)0.140 (5)0.118 (4)0.010 (4)0.030 (4)0.028 (4)
C10.070 (3)0.094 (3)0.060 (3)0.023 (3)0.022 (2)0.018 (3)
C20.098 (4)0.112 (4)0.084 (4)0.050 (4)0.032 (3)0.035 (3)
C30.129 (5)0.116 (5)0.093 (4)0.058 (4)0.036 (4)0.054 (4)
C40.104 (4)0.101 (4)0.076 (3)0.030 (3)0.040 (3)0.040 (3)
C50.065 (3)0.063 (3)0.048 (2)0.005 (2)0.015 (2)0.007 (2)
C60.060 (3)0.060 (2)0.046 (2)0.000 (2)0.0113 (19)0.003 (2)
C70.089 (4)0.099 (4)0.074 (3)0.016 (3)0.039 (3)0.022 (3)
C80.098 (4)0.132 (5)0.096 (4)0.023 (4)0.061 (4)0.024 (4)
C90.068 (3)0.115 (4)0.084 (4)0.025 (3)0.029 (3)0.005 (3)
C100.070 (3)0.089 (3)0.062 (3)0.019 (3)0.017 (2)0.008 (3)
C110.071 (3)0.085 (3)0.082 (3)0.020 (3)0.028 (3)0.003 (3)
C120.075 (4)0.096 (4)0.103 (4)0.033 (3)0.012 (3)0.002 (4)
C130.086 (4)0.090 (4)0.110 (5)0.025 (3)0.019 (4)0.032 (4)
C140.089 (4)0.081 (3)0.085 (3)0.007 (3)0.020 (3)0.020 (3)
C150.061 (3)0.054 (2)0.057 (2)0.000 (2)0.012 (2)0.004 (2)
C160.063 (3)0.063 (3)0.054 (2)0.003 (2)0.017 (2)0.006 (2)
C170.089 (4)0.107 (4)0.097 (4)0.013 (3)0.046 (3)0.031 (3)
C180.102 (5)0.144 (6)0.132 (5)0.027 (4)0.078 (4)0.039 (5)
C190.083 (4)0.115 (5)0.116 (5)0.025 (3)0.052 (4)0.005 (4)
C200.074 (3)0.081 (3)0.080 (3)0.020 (3)0.031 (3)0.001 (3)
C210.178 (7)0.111 (5)0.053 (3)0.087 (5)0.044 (4)0.023 (3)
C220.162 (7)0.082 (4)0.073 (4)0.045 (4)0.004 (4)0.008 (3)
C230.114 (5)0.096 (4)0.096 (4)0.032 (4)0.040 (4)0.024 (4)
C240.104 (5)0.092 (4)0.093 (4)0.027 (4)0.038 (4)0.025 (3)
Geometric parameters (Å, º) top
Mn1—N52.161 (5)C3—H30.9300
Mn1—N82.172 (5)C4—C51.387 (6)
Mn1—N22.267 (3)C4—H40.9300
Mn1—N42.270 (3)C5—C61.485 (6)
Mn1—N12.277 (3)C6—C71.369 (6)
Mn1—N32.326 (4)C7—C81.384 (7)
N1—C51.346 (5)C7—H70.9300
N1—C11.348 (5)C8—C91.357 (8)
N2—C101.350 (5)C8—H80.9300
N2—C61.354 (5)C9—C101.362 (6)
N3—C151.337 (5)C9—H90.9300
N3—C111.344 (5)C10—H100.9300
N4—C161.343 (5)C11—C121.366 (7)
N4—C201.347 (5)C11—H110.9300
N5—C211.099 (6)C12—C131.349 (8)
N6—C211.379 (10)C12—H120.9300
N6—C221.506 (12)C13—C141.381 (7)
N6A—C221.326 (12)C13—H130.9300
N6A—C211.476 (13)C14—C151.391 (6)
N7—C221.082 (7)C14—H140.9300
N8—C231.112 (7)C15—C161.492 (6)
N9—C241.317 (8)C16—C171.386 (6)
N9—C231.328 (8)C17—C181.379 (7)
N10—C241.077 (7)C17—H170.9300
C1—C21.368 (7)C18—C191.359 (8)
C1—H10.9300C18—H180.9300
C2—C31.357 (7)C19—C201.371 (7)
C2—H20.9300C19—H190.9300
C3—C41.387 (7)C20—H200.9300
N5—Mn1—N895.14 (19)C6—C7—C8119.6 (5)
N5—Mn1—N292.87 (15)C6—C7—H7120.2
N8—Mn1—N298.21 (15)C8—C7—H7120.2
N5—Mn1—N499.18 (14)C9—C8—C7119.4 (5)
N8—Mn1—N495.75 (16)C9—C8—H8120.3
N2—Mn1—N4160.64 (13)C7—C8—H8120.3
N5—Mn1—N1164.60 (14)C8—C9—C10118.9 (5)
N8—Mn1—N190.74 (16)C8—C9—H9120.5
N2—Mn1—N172.18 (12)C10—C9—H9120.5
N4—Mn1—N194.36 (13)N2—C10—C9122.9 (5)
N5—Mn1—N390.18 (15)N2—C10—H10118.6
N8—Mn1—N3166.36 (15)C9—C10—H10118.6
N2—Mn1—N394.05 (12)N3—C11—C12122.5 (5)
N4—Mn1—N370.96 (12)N3—C11—H11118.8
N1—Mn1—N387.33 (13)C12—C11—H11118.8
C5—N1—C1118.3 (4)C13—C12—C11119.8 (5)
C5—N1—Mn1117.7 (3)C13—C12—H12120.1
C1—N1—Mn1124.0 (3)C11—C12—H12120.1
C10—N2—C6118.0 (4)C12—C13—C14119.1 (5)
C10—N2—Mn1124.2 (3)C12—C13—H13120.5
C6—N2—Mn1117.7 (3)C14—C13—H13120.5
C15—N3—C11118.2 (4)C13—C14—C15118.9 (5)
C15—N3—Mn1117.6 (3)C13—C14—H14120.6
C11—N3—Mn1124.2 (3)C15—C14—H14120.6
C16—N4—C20118.2 (4)N3—C15—C14121.6 (4)
C16—N4—Mn1119.3 (3)N3—C15—C16116.0 (4)
C20—N4—Mn1122.5 (3)C14—C15—C16122.5 (4)
C21—N5—Mn1176.8 (5)N4—C16—C17121.2 (4)
C21—N6—C22105.5 (8)N4—C16—C15116.1 (4)
C22—N6A—C21110.0 (10)C17—C16—C15122.7 (4)
C23—N8—Mn1165.3 (5)C18—C17—C16119.5 (5)
C24—N9—C23121.4 (6)C18—C17—H17120.3
N1—C1—C2123.5 (4)C16—C17—H17120.3
N1—C1—H1118.2C19—C18—C17119.3 (5)
C2—C1—H1118.2C19—C18—H18120.3
C3—C2—C1117.9 (5)C17—C18—H18120.3
C3—C2—H2121.0C18—C19—C20118.9 (5)
C1—C2—H2121.0C18—C19—H19120.6
C2—C3—C4120.4 (5)C20—C19—H19120.6
C2—C3—H3119.8N4—C20—C19123.0 (5)
C4—C3—H3119.8N4—C20—H20118.5
C5—C4—C3118.7 (5)C19—C20—H20118.5
C5—C4—H4120.6N5—C21—N6147.3 (9)
C3—C4—H4120.6N5—C21—N6A146.5 (10)
N1—C5—C4121.1 (4)N6—C21—N6A65.6 (7)
N1—C5—C6116.2 (3)N7—C22—N6A143.0 (11)
C4—C5—C6122.8 (4)N7—C22—N6150.9 (8)
N2—C6—C7121.1 (4)N6A—C22—N665.9 (7)
N2—C6—C5116.2 (3)N8—C23—N9166.4 (7)
C7—C6—C5122.7 (4)N10—C24—N9162.7 (8)

Experimental details

Crystal data
Chemical formula[Mn(C2N3)2(C10H8N2)2]
Mr499.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.232 (3), 16.144 (6), 16.670 (6)
β (°) 104.439 (6)
V3)2406.0 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.31 × 0.29 × 0.24
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.840, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
11521, 4220, 2653
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.178, 1.03
No. of reflections4220
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.79

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Basic and Frontier Research Programs of Henan Province (No. 092300410194)

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKnight, J. C., Amoroso, A. J., Edwards, P. G., Prabaharan, R. & Singh, N. (2010). Dalton Trans. 39, 8925–8936.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, Z. Y., Xu, D. J., Nie, J. J., Wu, Z. Y., Wu, J. Y. & Chiang, M. (2002). J. Coord. Chem. 55, 1155–1160.  Web of Science CSD CrossRef CAS Google Scholar
First citationLopes, L. B., Corrêa, C. C. & Diniz, R. (2011). Acta Cryst. E67, m906–m907.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLumme, P. O. & Lindell, E. (1988). Acta Cryst. C44, 463–465.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcCann, S., McCann, M., Casey, M. T., Jackman, M., Devereux, M. & McKee, V. (1998). Inorg. Chim. Acta, 279, 24–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds