metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m563-m564

cis-[1,4-Bis(di­phenyl­phosphan­yl)butane-κ2P,P′]di­chlorido(cyclo­hexane-1,2-di­amine-κ2N,N′)ruthenium(II) di­chloro­methane monosolvate

aDepartment of Chemistry, AN-Najah National University, Nablus, Jordan
*Correspondence e-mail: ismailwarad@yahoo.fr

(Received 20 March 2012; accepted 31 March 2012; online 13 April 2012)

In the title compound, [RuCl2(C6H14N2)(C28H28P2)]·CH2Cl2, the RuII ion is coordinated in a slightly distorted octa­hedral environment, formed by two cis-oriented chloride ligands, two cis P atoms of a 1,4-bis­(diphenyl­phosphan­yl)butane ligand and two cis-chelating N atoms of a bidentate cyclo­hexane-1,2-diamine ligand. In the crystal, pairs of mol­ecules form inversion dimers via N—H⋯Cl hydrogen bonds. In addition, intra­molecular N—H⋯Cl and weak C—H⋯Cl, C—H⋯N, N—H⋯π and C—H⋯π hydrogen bonds are observed. One of the Cl atoms of the solvent mol­ecule is disordered over two sites with refined occupancies of 0.62 (1) and 0.38 (1).

Related literature

For the coordination chemistry of ruthenium complexes and their applications, see: Lindner, Mayer et al. (2003[Lindner, E., Mayer, H. A., Warad, I. & Eichele, K. (2003). J. Organomet. Chem. 665, 176-185.]); Noyori (1994[Noyori, R. (1994). In Asymmetric Catalysis in Organic Synthesis. New York: J. Wiley & Sons.], 2003[Noyori, R. (2003). Adv. Synth. Catal. 345, 15-32.]); Ohkuma et al. (2002[Ohkuma, T., Koizumi, M., Muniz, K., Hilt, G., Kabuta, C. & Noyori, R. (2002). J. Am. Chem. Soc. 124, 6508-6509.]); Lindner et al. (2005[Lindner, E., Lu, Z.-L., Mayer, A. H., Speiser, B., Tittel, C. & Warad, I. (2005). Electrochem. Commun. 7, 1013-1020.]); Noyori & Ohkuma (2001[Noyori, R. & Ohkuma, T. (2001). Angew. Chem. Int. Ed. 40, 40-73.]); Lindner, Warad et al. (2003[Lindner, E., Warad, I., Eichele, K. & Mayer, H. A. (2003). Inorg. Chim. Acta, 350, 49-56.]). For evidence of intra- and inter­molecular inter­actions in similar complexes, see: Warad (2007[Warad, I. (2007). Z. Kristallogr. 222, 415-417.], 2010[Warad, I. (2010). Z. Kristallogr. 225, 753-755.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C6H14N2)(C28H28P2)]·CH2Cl2

  • Mr = 797.53

  • Monoclinic, P 21 /c

  • a = 12.419 (7) Å

  • b = 19.722 (10) Å

  • c = 17.588 (7) Å

  • β = 123.25 (3)°

  • V = 3603 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 K

  • 0.28 × 0.17 × 0.09 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 9791 measured reflections

  • 8141 independent reflections

  • 6777 reflections with I > 2σ(I)

  • Rint = 0.028

  • 2 standard reflections every 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.135

  • S = 1.03

  • 8141 reflections

  • 413 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2 0.85 (1) 2.40 (3) 2.983 (4) 125 (3)
N2—H2B⋯Cl1i 0.90 2.62 3.390 (3) 143
C3—H3A⋯Cl2i 0.93 2.80 3.601 (5) 144
C9—H9A⋯Cl4Aii 0.93 2.83 3.492 (9) 130
C12—H12A⋯N1 0.93 2.51 3.305 (5) 144
C13—H13A⋯Cl1 0.97 2.76 3.383 (5) 123
C18—H18A⋯Cl1 0.93 2.76 3.499 (5) 137
C18—H18A⋯Cl2 0.93 2.79 3.361 (5) 121
C35A—H35A⋯Cl2i 0.97 2.57 3.520 (8) 167
N2—H2ACg1 0.90 2.74 3.612 164
C26—H26ACg2iii 0.93 2.78 3.577 142
Symmetry codes: (i) -x, -y, -z; (ii) [-x-1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Diphosphine compounds as chelate ligands have played a very important role in the design and development of metal complex-mediated catalysis (Lindner, Mayer et al., 2003; Noyori, 1994, 2003). The chelating effects of diphosphine ligands decreases the number of isomers in complexes which decomplicates their structures (Ohkuma et al., 2002; Lindner et al., 2005). Many mixed diamine/diphosphine/ruthenium(II) complexes have been synthesized and characterized for their applications in the field of asymmetrical catalytic hydrogenation, photolysis and bioinorganic chemistry (Noyori & Ohkuma, 2001; Lindner, Warad et al., 2003).

In this work, we report the synthesis and crystal structure of the title complex. The complex cis-[RuCl2(chd)(dppb)] is in full cis form (Fig. 1) with a solvent molecule of dichloromethane. The RuII ion is in a slightly distorted octahedral environment with a five-membered (chd) ring coordinating via N1 and N2, a seven-membered (dppb) ring coordinating via P1 and P2 as well as two Cl atoms. In the seven-membered ring of dppb the P—Ru—P angle is larger than the ideal value for perfectly octahedral. The 1,2-cyclohexanediamine ring also enforces distortion of the N—Ru—N angle [79.89 (13)°] while the Cl–Ru–Cl angle is closer to ideal [90.73 (4)°]. One Cl atom of the CH2Cl2 solvent is disordered over two positions with a site-occupancy ratio of 0.62 (1):0.38 (1). The molecular conformation and the crystal packing show various intra and intermolecular contacts of the types N–H···Cl, C–H···Cl and C–H···N (Table 1 and Fig. 2). The molecule and crystal structure are further stabilized by intramolecular N–H···π and intermolecular C–H···π interactions (Table 1). The values of these interactions are similar to those observed in other ruthenium complexes of the same type (Warad, 2007, 2010).

Related literature top

For the coordination chemistry of ruthenium complexes and their applications, see: Lindner, Mayer et al. (2003); Noyori (1994, 2003); Ohkuma et al. (2002); Lindner et al. (2005); Noyori & Ohkuma (2001); Lindner, Warad et al. (2003). For evidence of intra- and intermolecular interactions in similar complexes, see: Warad (2007, 2010).

Experimental top

1,2-cyclohexanediamine (0.21 mmol) was dissolved in 10 ml of dry dichloromethane and the resultant solution was added drop-wise to a stirred solution of (RuCl2(dppb)PPh3) complex (0.20 mmol) dissolved in 10 ml of dry dichloromethane. The reaction mixture was stirred for 5 min at room temperature under inert atmosphere resulting in a change in color from green to light yellow. The resulting yellow solution was concentrated by vacuum to 1 ml followed by addition of 30 ml of diethyl ether to cause desired complex formation as precipitation. The resulting precipitate was collected and recrystallized from dichloromethane/diethyl ether and obtained in analytically pure form.

Refinement top

All H atoms attached to C and N atoms except those attached to N1 atom, were fixed geometrically and treated as riding, with C—H = 0.93-0.98 Å and N—H = 0.90 Å and with Uiso(H) = 1.2Ueq(C or N). The H atoms bonded to N1 were refined independently with Uiso= 0.05Å2.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP (Farrugia, 1997) view of the title complex. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view of the crystal packing of (I). The H-atoms not involved in H-bonding have been omitted. Hydrogen bonds are shown as dashed lines.
cis-[1,4-Bis(diphenylphosphanyl)butane- κ2P,P']dichlorido(cyclohexane-1,2-diamine- κ2N,N')ruthenium(II) dichloromethane monosolvate top
Crystal data top
[RuCl2(C6H14N2)(C28H28P2)]·CH2Cl2F(000) = 1640
Mr = 797.53Dx = 1.470 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.419 (7) Åθ = 9–11°
b = 19.722 (10) ŵ = 0.85 mm1
c = 17.588 (7) ÅT = 296 K
β = 123.25 (3)°Prism, colorless
V = 3603 (3) Å30.28 × 0.17 × 0.09 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.028
Radiation source: fine-focus sealed tubeθmax = 27.6°, θmin = 2.2°
Graphite monochromatorh = 151
non–profiled ω scansk = 251
9791 measured reflectionsl = 1922
8141 independent reflections2 standard reflections every 120 min
6777 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0616P)2 + 6.8898P]
where P = (Fo2 + 2Fc2)/3
8141 reflections(Δ/σ)max < 0.001
413 parametersΔρmax = 0.95 e Å3
5 restraintsΔρmin = 0.97 e Å3
Crystal data top
[RuCl2(C6H14N2)(C28H28P2)]·CH2Cl2V = 3603 (3) Å3
Mr = 797.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.419 (7) ŵ = 0.85 mm1
b = 19.722 (10) ÅT = 296 K
c = 17.588 (7) Å0.28 × 0.17 × 0.09 mm
β = 123.25 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.028
9791 measured reflections2 standard reflections every 120 min
8141 independent reflections intensity decay: none
6777 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0505 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.95 e Å3
8141 reflectionsΔρmin = 0.97 e Å3
413 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.09441 (3)0.117180 (13)0.157004 (17)0.02961 (9)
Cl10.08731 (10)0.10589 (5)0.01660 (6)0.0414 (2)
Cl20.25788 (10)0.02474 (5)0.22871 (7)0.0479 (2)
P10.07122 (9)0.19245 (4)0.08538 (6)0.03276 (19)
P20.24807 (9)0.19891 (5)0.21823 (6)0.03282 (19)
N10.0960 (3)0.10147 (17)0.2766 (2)0.0420 (7)
H1A0.166 (2)0.0786 (17)0.303 (2)0.050*
H1B0.106 (3)0.1333 (10)0.3119 (14)0.050*
N20.0355 (3)0.03164 (15)0.1149 (2)0.0402 (7)
H2A0.11490.04430.06930.048*
H2B0.00860.00170.09420.048*
C10.2286 (4)0.14977 (19)0.0157 (2)0.0386 (8)
C20.2516 (4)0.1105 (2)0.0582 (3)0.0510 (10)
H2C0.19020.10890.07290.061*
C30.3651 (4)0.0737 (3)0.1098 (3)0.0662 (14)
H3A0.37910.04790.15870.079*
C40.4553 (4)0.0753 (3)0.0893 (4)0.0680 (14)
H4A0.53110.05080.12440.082*
C50.4353 (4)0.1130 (3)0.0169 (4)0.0600 (12)
H5A0.49750.11370.00290.072*
C60.3225 (4)0.1500 (2)0.0354 (3)0.0474 (9)
H6A0.30980.17530.08440.057*
C70.1044 (4)0.25398 (18)0.1491 (3)0.0393 (8)
C80.2028 (5)0.3004 (3)0.1063 (4)0.0697 (15)
H8A0.25640.30080.04320.084*
C90.2226 (5)0.3467 (3)0.1572 (5)0.0783 (18)
H9A0.28890.37820.12740.094*
C100.1476 (5)0.3469 (2)0.2489 (4)0.0619 (14)
H10A0.16370.37760.28180.074*
C110.0477 (6)0.3017 (2)0.2936 (3)0.0613 (13)
H11A0.00620.30220.35670.074*
C120.0286 (5)0.2551 (2)0.2427 (3)0.0477 (10)
H12A0.03760.22370.27280.057*
C130.0866 (4)0.2454 (2)0.0064 (3)0.0461 (9)
H13A0.07790.21560.04660.055*
H13B0.17390.26290.04110.055*
C140.0028 (5)0.3051 (2)0.0151 (3)0.0568 (11)
H14A0.01330.33850.04820.068*
H14B0.01930.32580.04180.068*
C150.1463 (4)0.2893 (2)0.0701 (3)0.0483 (9)
H15A0.19110.32430.05920.058*
H15B0.16020.24650.04950.058*
C160.2036 (4)0.28476 (19)0.1728 (3)0.0419 (8)
H16A0.14120.30230.18470.050*
H16B0.27940.31340.20470.050*
C170.3984 (4)0.1885 (2)0.2220 (2)0.0413 (8)
C180.4145 (4)0.1354 (2)0.1772 (3)0.0475 (9)
H18A0.34900.10400.14420.057*
C190.5304 (5)0.1299 (3)0.1827 (3)0.0641 (14)
H19A0.54230.09380.15390.077*
C200.6273 (5)0.1765 (4)0.2294 (3)0.0729 (17)
H20A0.70380.17210.23190.087*
C210.6104 (4)0.2297 (4)0.2724 (3)0.0707 (16)
H21A0.67500.26190.30320.085*
C220.4981 (4)0.2353 (3)0.2698 (3)0.0551 (11)
H22A0.48840.27080.30040.066*
C230.3157 (4)0.2116 (2)0.3403 (3)0.0450 (9)
C240.3864 (5)0.1601 (4)0.4000 (3)0.0715 (16)
H24A0.40480.12140.37890.086*
C250.4309 (5)0.1654 (4)0.4920 (3)0.085 (2)
H25A0.48110.13100.53210.102*
C260.4006 (6)0.2211 (4)0.5231 (3)0.081 (2)
H26A0.42770.22400.58390.097*
C270.3314 (7)0.2712 (3)0.4653 (4)0.083 (2)
H27A0.31150.30910.48670.100*
C280.2889 (5)0.2678 (2)0.3741 (3)0.0611 (13)
H28A0.24190.30360.33550.073*
C290.0180 (5)0.0627 (2)0.2553 (3)0.0558 (11)
H29A0.09200.09340.22290.067*
C300.0406 (5)0.0062 (2)0.1918 (4)0.0569 (11)
H30A0.03230.02490.22560.068*
C310.1612 (5)0.0348 (2)0.1633 (4)0.0633 (13)
H31A0.23710.00710.12550.076*
H31B0.16610.07380.12800.076*
C320.1579 (7)0.0581 (3)0.2464 (5)0.091 (2)
H32A0.23990.07900.22690.109*
H32B0.09180.09260.27730.109*
C330.1323 (8)0.0032 (4)0.3119 (6)0.100 (2)
H33A0.12210.02290.36600.120*
H33B0.20590.02700.28500.120*
C340.0132 (5)0.0374 (3)0.3388 (4)0.0661 (14)
H34A0.06260.00930.37510.079*
H34B0.00650.07580.37570.079*
Cl30.6261 (2)0.06177 (11)0.35466 (17)0.1163 (7)
Cl4A0.6581 (11)0.0287 (6)0.4888 (4)0.362 (13)0.620 (10)
Cl4B0.7233 (6)0.0653 (3)0.4351 (5)0.122 (3)0.380 (10)
C35A0.5949 (7)0.0161 (4)0.3781 (6)0.122 (3)
H35A0.50240.02240.34500.146*0.620 (10)
H35B0.62890.05000.35660.146*0.620 (10)
H35C0.55640.01110.41310.146*0.380 (10)
H35D0.53230.03830.32130.146*0.380 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03435 (15)0.02501 (14)0.03072 (14)0.00161 (10)0.01864 (12)0.00178 (10)
Cl10.0523 (5)0.0394 (4)0.0376 (4)0.0056 (4)0.0280 (4)0.0104 (3)
Cl20.0515 (6)0.0389 (5)0.0629 (6)0.0154 (4)0.0376 (5)0.0105 (4)
P10.0346 (4)0.0312 (4)0.0287 (4)0.0030 (3)0.0149 (4)0.0027 (3)
P20.0328 (4)0.0365 (4)0.0302 (4)0.0034 (3)0.0179 (4)0.0055 (3)
N10.0481 (19)0.0428 (17)0.0407 (17)0.0090 (14)0.0279 (15)0.0071 (13)
N20.0461 (18)0.0267 (14)0.0563 (19)0.0031 (12)0.0334 (16)0.0053 (13)
C10.0381 (19)0.0397 (19)0.0343 (17)0.0006 (15)0.0175 (15)0.0078 (14)
C20.041 (2)0.064 (3)0.047 (2)0.0062 (19)0.0234 (18)0.0206 (19)
C30.047 (2)0.081 (3)0.062 (3)0.009 (2)0.024 (2)0.038 (3)
C40.036 (2)0.080 (4)0.074 (3)0.012 (2)0.022 (2)0.031 (3)
C50.037 (2)0.075 (3)0.069 (3)0.004 (2)0.029 (2)0.018 (2)
C60.039 (2)0.054 (2)0.044 (2)0.0042 (17)0.0196 (17)0.0126 (18)
C70.0379 (19)0.0327 (17)0.0446 (19)0.0001 (14)0.0209 (16)0.0083 (15)
C80.053 (3)0.061 (3)0.064 (3)0.020 (2)0.012 (2)0.021 (2)
C90.051 (3)0.053 (3)0.111 (5)0.014 (2)0.032 (3)0.025 (3)
C100.074 (3)0.039 (2)0.103 (4)0.019 (2)0.068 (3)0.032 (2)
C110.107 (4)0.038 (2)0.063 (3)0.006 (2)0.062 (3)0.011 (2)
C120.073 (3)0.0336 (18)0.048 (2)0.0026 (18)0.041 (2)0.0034 (16)
C130.046 (2)0.046 (2)0.0369 (19)0.0057 (17)0.0170 (17)0.0095 (16)
C140.059 (3)0.045 (2)0.059 (3)0.004 (2)0.027 (2)0.017 (2)
C150.053 (2)0.040 (2)0.054 (2)0.0015 (18)0.031 (2)0.0070 (17)
C160.044 (2)0.0339 (18)0.049 (2)0.0071 (15)0.0264 (18)0.0071 (15)
C170.0355 (19)0.058 (2)0.0319 (17)0.0004 (16)0.0193 (15)0.0049 (16)
C180.048 (2)0.059 (2)0.043 (2)0.0144 (19)0.0295 (19)0.0114 (18)
C190.063 (3)0.087 (4)0.059 (3)0.027 (3)0.044 (3)0.025 (3)
C200.038 (2)0.135 (5)0.051 (3)0.017 (3)0.027 (2)0.027 (3)
C210.034 (2)0.135 (5)0.035 (2)0.014 (3)0.0141 (18)0.002 (3)
C220.038 (2)0.089 (3)0.037 (2)0.013 (2)0.0195 (17)0.007 (2)
C230.0346 (19)0.066 (3)0.0338 (18)0.0139 (18)0.0185 (16)0.0112 (17)
C240.051 (3)0.122 (5)0.039 (2)0.025 (3)0.023 (2)0.007 (3)
C250.048 (3)0.163 (7)0.037 (2)0.013 (3)0.019 (2)0.014 (3)
C260.072 (3)0.138 (6)0.040 (2)0.046 (4)0.036 (3)0.030 (3)
C270.133 (6)0.078 (4)0.064 (3)0.045 (4)0.071 (4)0.033 (3)
C280.095 (4)0.051 (2)0.051 (2)0.028 (2)0.049 (3)0.021 (2)
C290.072 (3)0.046 (2)0.070 (3)0.006 (2)0.052 (3)0.008 (2)
C300.072 (3)0.037 (2)0.079 (3)0.001 (2)0.052 (3)0.007 (2)
C310.065 (3)0.038 (2)0.108 (4)0.001 (2)0.061 (3)0.008 (2)
C320.103 (5)0.058 (3)0.160 (7)0.009 (3)0.102 (5)0.035 (4)
C330.137 (6)0.082 (4)0.151 (6)0.024 (4)0.123 (6)0.040 (4)
C340.086 (4)0.060 (3)0.079 (3)0.021 (3)0.062 (3)0.027 (3)
Cl30.1221 (16)0.1016 (14)0.1364 (17)0.0333 (12)0.0780 (14)0.0096 (12)
Cl4A0.335 (12)0.317 (12)0.119 (5)0.249 (11)0.076 (7)0.104 (7)
Cl4B0.128 (5)0.099 (4)0.078 (4)0.016 (3)0.018 (3)0.020 (3)
C35A0.079 (5)0.085 (5)0.150 (7)0.025 (4)0.030 (5)0.001 (5)
C35B0.079 (5)0.085 (5)0.150 (7)0.025 (4)0.030 (5)0.001 (5)
Geometric parameters (Å, º) top
Ru1—N12.115 (3)C15—H15A0.9700
Ru1—N22.165 (3)C15—H15B0.9700
Ru1—P22.2684 (13)C16—H16A0.9700
Ru1—P12.2761 (13)C16—H16B0.9700
Ru1—Cl12.4325 (13)C17—C181.389 (6)
Ru1—Cl22.4956 (14)C17—C221.397 (6)
P1—C131.843 (4)C18—C191.393 (6)
P1—C11.845 (4)C18—H18A0.9300
P1—C71.845 (4)C19—C201.372 (8)
P2—C161.824 (4)C19—H19A0.9300
P2—C171.843 (4)C20—C211.376 (9)
P2—C231.844 (4)C20—H20A0.9300
N1—C291.466 (6)C21—C221.375 (6)
N1—H1A0.854 (10)C21—H21A0.9300
N1—H1B0.843 (10)C22—H22A0.9300
N2—C301.475 (5)C23—C241.376 (7)
N2—H2A0.9000C23—C281.382 (6)
N2—H2B0.9000C24—C251.398 (6)
C1—C61.387 (6)C24—H24A0.9300
C1—C21.402 (5)C25—C261.369 (9)
C2—C31.390 (6)C25—H25A0.9300
C2—H2C0.9300C26—C271.338 (9)
C3—C41.352 (7)C26—H26A0.9300
C3—H3A0.9300C27—C281.387 (7)
C4—C51.375 (7)C27—H27A0.9300
C4—H4A0.9300C28—H28A0.9300
C5—C61.388 (6)C29—C301.492 (7)
C5—H5A0.9300C29—C341.520 (6)
C6—H6A0.9300C29—H29A0.9800
C7—C81.374 (6)C30—C311.525 (6)
C7—C121.377 (6)C30—H30A0.9800
C8—C91.392 (7)C31—C321.510 (8)
C8—H8A0.9300C31—H31A0.9700
C9—C101.350 (8)C31—H31B0.9700
C9—H9A0.9300C32—C331.484 (10)
C10—C111.372 (7)C32—H32A0.9700
C10—H10A0.9300C32—H32B0.9700
C11—C121.391 (5)C33—C341.512 (9)
C11—H11A0.9300C33—H33A0.9700
C12—H12A0.9300C33—H33B0.9700
C13—C141.517 (6)C34—H34A0.9700
C13—H13A0.9700C34—H34B0.9700
C13—H13B0.9700Cl3—C35A1.689 (8)
C14—C151.522 (6)Cl4A—C35A1.672 (9)
C14—H14A0.9700C35A—H35A0.9700
C14—H14B0.9700C35A—H35B0.9700
C15—C161.539 (6)
N1—Ru1—N279.90 (13)C16—C15—H15A109.1
N1—Ru1—P294.89 (10)C14—C15—H15B109.1
N2—Ru1—P2172.40 (9)C16—C15—H15B109.1
N1—Ru1—P199.14 (10)H15A—C15—H15B107.8
N2—Ru1—P192.35 (10)C15—C16—P2113.7 (3)
P2—Ru1—P193.96 (6)C15—C16—H16A108.8
N1—Ru1—Cl1166.27 (10)P2—C16—H16A108.8
N2—Ru1—Cl188.65 (9)C15—C16—H16B108.8
P2—Ru1—Cl195.72 (4)P2—C16—H16B108.8
P1—Ru1—Cl188.80 (5)H16A—C16—H16B107.7
N1—Ru1—Cl280.15 (10)C18—C17—C22118.9 (4)
N2—Ru1—Cl281.42 (10)C18—C17—P2121.5 (3)
P2—Ru1—Cl292.28 (6)C22—C17—P2119.6 (3)
P1—Ru1—Cl2173.76 (4)C17—C18—C19119.0 (5)
Cl1—Ru1—Cl290.73 (4)C17—C18—H18A120.5
C13—P1—C196.53 (18)C19—C18—H18A120.5
C13—P1—C7102.05 (19)C20—C19—C18121.6 (5)
C1—P1—C7101.27 (17)C20—C19—H19A119.2
C13—P1—Ru1118.85 (15)C18—C19—H19A119.2
C1—P1—Ru1112.13 (13)C19—C20—C21119.4 (4)
C7—P1—Ru1121.88 (13)C19—C20—H20A120.3
C16—P2—C17100.21 (19)C21—C20—H20A120.3
C16—P2—C23102.6 (2)C22—C21—C20120.1 (5)
C17—P2—C2399.64 (17)C22—C21—H21A120.0
C16—P2—Ru1118.54 (13)C20—C21—H21A120.0
C17—P2—Ru1120.63 (14)C21—C22—C17121.0 (5)
C23—P2—Ru1112.16 (13)C21—C22—H22A119.5
C29—N1—Ru1110.0 (3)C17—C22—H22A119.5
C29—N1—H1A114 (3)C24—C23—C28117.9 (4)
Ru1—N1—H1A94 (3)C24—C23—P2118.7 (4)
C29—N1—H1B108 (3)C28—C23—P2123.1 (4)
Ru1—N1—H1B123 (2)C23—C24—C25120.7 (6)
H1A—N1—H1B107.4 (16)C23—C24—H24A119.7
C30—N2—Ru1110.5 (3)C25—C24—H24A119.7
C30—N2—H2A109.6C26—C25—C24120.1 (6)
Ru1—N2—H2A109.6C26—C25—H25A120.0
C30—N2—H2B109.6C24—C25—H25A120.0
Ru1—N2—H2B109.6C27—C26—C25119.4 (5)
H2A—N2—H2B108.1C27—C26—H26A120.3
C6—C1—C2117.5 (4)C25—C26—H26A120.3
C6—C1—P1124.2 (3)C26—C27—C28121.5 (6)
C2—C1—P1118.1 (3)C26—C27—H27A119.2
C3—C2—C1120.8 (4)C28—C27—H27A119.2
C3—C2—H2C119.6C23—C28—C27120.4 (5)
C1—C2—H2C119.6C23—C28—H28A119.8
C4—C3—C2120.4 (4)C27—C28—H28A119.8
C4—C3—H3A119.8N1—C29—C30109.8 (4)
C2—C3—H3A119.8N1—C29—C34113.8 (4)
C3—C4—C5120.3 (4)C30—C29—C34111.8 (4)
C3—C4—H4A119.9N1—C29—H29A107.0
C5—C4—H4A119.9C30—C29—H29A107.0
C4—C5—C6120.2 (4)C34—C29—H29A107.0
C4—C5—H5A119.9N2—C30—C29110.4 (3)
C6—C5—H5A119.9N2—C30—C31114.1 (4)
C1—C6—C5120.9 (4)C29—C30—C31112.9 (4)
C1—C6—H6A119.6N2—C30—H30A106.3
C5—C6—H6A119.6C29—C30—H30A106.3
C8—C7—C12117.6 (4)C31—C30—H30A106.3
C8—C7—P1122.3 (3)C32—C31—C30110.1 (5)
C12—C7—P1120.2 (3)C32—C31—H31A109.6
C7—C8—C9120.2 (5)C30—C31—H31A109.6
C7—C8—H8A119.9C32—C31—H31B109.6
C9—C8—H8A119.9C30—C31—H31B109.6
C10—C9—C8121.4 (5)H31A—C31—H31B108.2
C10—C9—H9A119.3C33—C32—C31114.1 (5)
C8—C9—H9A119.3C33—C32—H32A108.7
C9—C10—C11119.8 (4)C31—C32—H32A108.7
C9—C10—H10A120.1C33—C32—H32B108.7
C11—C10—H10A120.1C31—C32—H32B108.7
C10—C11—C12118.7 (5)H32A—C32—H32B107.6
C10—C11—H11A120.7C32—C33—C34112.7 (5)
C12—C11—H11A120.7C32—C33—H33A109.0
C7—C12—C11122.3 (4)C34—C33—H33A109.0
C7—C12—H12A118.8C32—C33—H33B109.0
C11—C12—H12A118.8C34—C33—H33B109.0
C14—C13—P1120.7 (3)H33A—C33—H33B107.8
C14—C13—H13A107.1C33—C34—C29110.9 (5)
P1—C13—H13A107.1C33—C34—H34A109.5
C14—C13—H13B107.1C29—C34—H34A109.5
P1—C13—H13B107.1C33—C34—H34B109.5
H13A—C13—H13B106.8C29—C34—H34B109.5
C13—C14—C15116.1 (4)H34A—C34—H34B108.0
C13—C14—H14A108.2Cl4A—C35A—Cl3113.2 (5)
C15—C14—H14A108.2Cl4A—C35A—H35A108.9
C13—C14—H14B108.2Cl3—C35A—H35A108.9
C15—C14—H14B108.2Cl4A—C35A—H35B108.9
H14A—C14—H14B107.4Cl3—C35A—H35B108.9
C14—C15—C16112.6 (4)H35A—C35A—H35B107.7
C14—C15—H15A109.1
N1—Ru1—P1—C13160.98 (18)C9—C10—C11—C121.9 (7)
N2—Ru1—P1—C13118.88 (18)C8—C7—C12—C111.0 (7)
P2—Ru1—P1—C1365.37 (16)P1—C7—C12—C11178.3 (4)
Cl1—Ru1—P1—C1330.29 (16)C10—C11—C12—C71.7 (7)
N1—Ru1—P1—C187.66 (16)C1—P1—C13—C14165.2 (4)
N2—Ru1—P1—C17.52 (15)C7—P1—C13—C1462.2 (4)
P2—Ru1—P1—C1176.73 (13)Ru1—P1—C13—C1475.0 (4)
Cl1—Ru1—P1—C181.08 (13)P1—C13—C14—C1556.9 (5)
N1—Ru1—P1—C732.42 (18)C13—C14—C15—C1681.9 (5)
N2—Ru1—P1—C7112.57 (17)C14—C15—C16—P2109.5 (4)
P2—Ru1—P1—C763.18 (15)C17—P2—C16—C1576.2 (3)
Cl1—Ru1—P1—C7158.84 (15)C23—P2—C16—C15178.6 (3)
N1—Ru1—P2—C16114.72 (17)Ru1—P2—C16—C1557.3 (3)
P1—Ru1—P2—C1615.18 (15)C16—P2—C17—C18123.4 (3)
Cl1—Ru1—P2—C1674.01 (15)C23—P2—C17—C18131.7 (3)
Cl2—Ru1—P2—C16164.98 (15)Ru1—P2—C17—C188.7 (4)
N1—Ru1—P2—C17121.46 (17)C16—P2—C17—C2255.7 (4)
P1—Ru1—P2—C17139.01 (14)C23—P2—C17—C2249.1 (4)
Cl1—Ru1—P2—C1749.81 (14)Ru1—P2—C17—C22172.1 (3)
Cl2—Ru1—P2—C1741.16 (14)C22—C17—C18—C191.0 (6)
N1—Ru1—P2—C234.63 (18)P2—C17—C18—C19179.8 (3)
P1—Ru1—P2—C23104.16 (16)C17—C18—C19—C201.4 (7)
Cl1—Ru1—P2—C23166.64 (16)C18—C19—C20—C210.3 (7)
Cl2—Ru1—P2—C2375.67 (16)C19—C20—C21—C221.2 (8)
N2—Ru1—N1—C2920.2 (3)C20—C21—C22—C171.7 (7)
P2—Ru1—N1—C29165.4 (3)C18—C17—C22—C210.5 (7)
P1—Ru1—N1—C2970.6 (3)P2—C17—C22—C21178.7 (4)
Cl1—Ru1—N1—C2954.1 (5)C16—P2—C23—C24165.3 (4)
Cl2—Ru1—N1—C29103.2 (3)C17—P2—C23—C2462.4 (4)
N1—Ru1—N2—C305.7 (3)Ru1—P2—C23—C2466.4 (4)
P1—Ru1—N2—C30104.5 (3)C16—P2—C23—C2821.1 (4)
Cl1—Ru1—N2—C30166.7 (3)C17—P2—C23—C28124.0 (4)
Cl2—Ru1—N2—C3075.8 (3)Ru1—P2—C23—C28107.2 (4)
C13—P1—C1—C6123.7 (4)C28—C23—C24—C250.9 (8)
C7—P1—C1—C620.0 (4)P2—C23—C24—C25174.9 (4)
Ru1—P1—C1—C6111.5 (3)C23—C24—C25—C262.3 (9)
C13—P1—C1—C261.1 (4)C24—C25—C26—C272.0 (9)
C7—P1—C1—C2164.8 (3)C25—C26—C27—C280.5 (9)
Ru1—P1—C1—C263.7 (4)C24—C23—C28—C270.6 (7)
C6—C1—C2—C30.5 (7)P2—C23—C28—C27173.1 (4)
P1—C1—C2—C3176.0 (4)C26—C27—C28—C230.8 (9)
C1—C2—C3—C40.1 (8)Ru1—N1—C29—C3043.0 (4)
C2—C3—C4—C50.3 (9)Ru1—N1—C29—C34169.1 (3)
C3—C4—C5—C60.3 (9)Ru1—N2—C30—C2930.3 (5)
C2—C1—C6—C50.5 (7)Ru1—N2—C30—C31158.6 (3)
P1—C1—C6—C5175.7 (4)N1—C29—C30—N248.7 (5)
C4—C5—C6—C10.1 (8)C34—C29—C30—N2176.0 (4)
C13—P1—C7—C843.3 (4)N1—C29—C30—C31177.7 (4)
C1—P1—C7—C856.0 (4)C34—C29—C30—C3155.1 (6)
Ru1—P1—C7—C8178.9 (4)N2—C30—C31—C32179.7 (4)
C13—P1—C7—C12135.9 (3)C29—C30—C31—C3252.6 (6)
C1—P1—C7—C12124.8 (3)C30—C31—C32—C3351.3 (7)
Ru1—P1—C7—C120.4 (4)C31—C32—C33—C3452.4 (8)
C12—C7—C8—C90.5 (8)C32—C33—C34—C2952.3 (7)
P1—C7—C8—C9178.7 (4)N1—C29—C34—C33178.9 (4)
C7—C8—C9—C100.8 (9)C30—C29—C34—C3353.8 (6)
C8—C9—C10—C111.5 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl20.85 (1)2.40 (3)2.983 (4)125 (3)
N2—H2B···Cl1i0.902.623.390 (3)143
C3—H3A···Cl2i0.932.803.601 (5)144
C9—H9A···Cl4Aii0.932.833.492 (9)130
C12—H12A···N10.932.513.305 (5)144
C13—H13A···Cl10.972.763.383 (5)123
C18—H18A···Cl10.932.763.499 (5)137
C18—H18A···Cl20.932.793.361 (5)121
C35A—H35A···Cl2i0.972.573.520 (8)167
N2—H2A···Cg10.902.743.612164
C26—H26A···Cg2iii0.932.783.577142
Symmetry codes: (i) x, y, z; (ii) x1, y+1/2, z1/2; (iii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[RuCl2(C6H14N2)(C28H28P2)]·CH2Cl2
Mr797.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.419 (7), 19.722 (10), 17.588 (7)
β (°) 123.25 (3)
V3)3603 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.28 × 0.17 × 0.09
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9791, 8141, 6777
Rint0.028
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.03
No. of reflections8141
No. of parameters413
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 0.97

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl20.854 (10)2.40 (3)2.983 (4)125 (3)
N2—H2B···Cl1i0.902.623.390 (3)143.4
C3—H3A···Cl2i0.932.803.601 (5)144.3
C9—H9A···Cl4Aii0.932.833.492 (9)129.5
C12—H12A···N10.932.513.305 (5)144.0
C13—H13A···Cl10.972.763.383 (5)122.5
C18—H18A···Cl10.932.763.499 (5)137.4
C18—H18A···Cl20.932.793.361 (5)120.7
C35A—H35A···Cl2i0.972.573.520 (8)167.0
N2—H2A···Cg10.902.743.612164.1
C26—H26A···Cg2iii0.932.783.577141.8
Symmetry codes: (i) x, y, z; (ii) x1, y+1/2, z1/2; (iii) x, y1/2, z1/2.
 

Footnotes

Department of Chemistry, King Saud University PO Box 2455, Riyadh 11451, Saudi Arabia.

Acknowledgements

The project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLindner, E., Lu, Z.-L., Mayer, A. H., Speiser, B., Tittel, C. & Warad, I. (2005). Electrochem. Commun. 7, 1013–1020.  Web of Science CrossRef CAS Google Scholar
First citationLindner, E., Mayer, H. A., Warad, I. & Eichele, K. (2003). J. Organomet. Chem. 665, 176–185.  Web of Science CSD CrossRef CAS Google Scholar
First citationLindner, E., Warad, I., Eichele, K. & Mayer, H. A. (2003). Inorg. Chim. Acta, 350, 49–56.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoyori, R. (1994). In Asymmetric Catalysis in Organic Synthesis. New York: J. Wiley & Sons.  Google Scholar
First citationNoyori, R. (2003). Adv. Synth. Catal. 345, 15–32.  Web of Science CrossRef CAS Google Scholar
First citationNoyori, R. & Ohkuma, T. (2001). Angew. Chem. Int. Ed. 40, 40–73.  Web of Science CrossRef CAS Google Scholar
First citationOhkuma, T., Koizumi, M., Muniz, K., Hilt, G., Kabuta, C. & Noyori, R. (2002). J. Am. Chem. Soc. 124, 6508–6509.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarad, I. (2007). Z. Kristallogr. 222, 415–417.  CAS Google Scholar
First citationWarad, I. (2010). Z. Kristallogr. 225, 753–755.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m563-m564
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds