organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1340-o1341

4′-(4-Bromo­phen­yl)-1′-methyl­di­spiro­[ace­naphthyl­ene-1,2′-pyrrolidine-3′,2′′-indane]-2,1′′(1H)-dione

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 22 March 2012; accepted 2 April 2012; online 13 April 2012)

In the title compound, C30H22BrNO2, the cyclo­pentane ring of the dihydro­acenaphthyl­ene group and the pyrrolidine ring are both in envelope conformations with the spiro C atom and N atom, respectively, as the flap atom. The cyclo­pentane ring of the indane group adopts a half-chair conformation. A weak intra­molecular C—H⋯O hydrogen bond forms an S(8) ring motif. The naphthalene ring system of the dihydro­acenaphthyl­ene group forms dihedral angles of 41.76 (6) and 42.17 (6)° with the benzene ring of the bromo­phenyl group and the benzene ring of the indane group, respectively. The dihedral angle between the two benzene rings is 83.92 (7)°. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds into a two-dimensional network parallel to the ac plane. Weak C—H⋯π inter­actions are also observed.

Related literature

For related structures, see: Wei, Ali, Ismail et al. (2011[Wei, A. C., Ali, M. A., Ismail, R., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3124.]); Wei, Ali, Yoon et al. (2011[Wei, A. C., Ali, M. A., Yoon, Y. K., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o3274.]); Wei, Ali, Choon et al. (2011[Wei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2383.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C30H22BrNO2

  • Mr = 508.40

  • Monoclinic, P 21 /c

  • a = 8.6638 (1) Å

  • b = 19.9429 (2) Å

  • c = 13.5225 (1) Å

  • β = 94.937 (1)°

  • V = 2327.77 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 100 K

  • 0.42 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.522, Tmax = 0.748

  • 31742 measured reflections

  • 9279 independent reflections

  • 6879 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.085

  • S = 1.03

  • 9279 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29A⋯O1 0.95 2.25 3.1110 (17) 151
C4—H4A⋯O2i 0.95 2.59 3.3743 (19) 140
C16—H16A⋯N1ii 0.95 2.50 3.4278 (19) 165
C26—H26A⋯O1iii 0.95 2.43 3.2597 (18) 146
C5—H5ACg1iv 0.95 2.71 3.3186 (15) 123
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing search to discover novel heterocyclic compounds with antitubercular activity (Wei, Ali, Ismail et al., 2011; Wei, Ali, Yoon et al., 2011), our group has determined the crystal structure of the title compound.

In the molecular structure (Fig 1), the cyclopentane ring within the dihydro-acenaphthylene moiety (C1/C2/C10–C12) [puckering parameters, Q= 0.0742 (15) Å and ϕ= 151.2 (11)°] and the pyrrolidine ring (N1/C12/C13/C22/C23) [puckering parameters, Q= 0.4112 (14) Å and ϕ= 185.8 (2)°] are both in envelope conformation (Cremer & Pople, 1975) with atom C12 and atom N1 at the flap, respectively. Meanwhile, the cyclopentane ring (C13–C15/C20/C21) within the dihydro-indene moiety is twisted about C13–C14 bond [puckering parameters, Q= 0.2467 (15) Å and ϕ= 189.1 (3)°], thereby adopting half-chair conformation. The bond lengths and angles are within normal ranges and comparable to those related structures (Wei, Ali, Ismail et al., 2011; Wei, Ali, Yoon et al., 2011; Wei, Ali, Choon et al., 2011). An intramolecular C29—H29A···O1 hydrogen bond (Table 1) forms an S(8) ring motif (Bernstein et al., 1995). The naphthalene ring system (C2-C11) of dihydro-acenaphthylene group forms dihedral angles of 41.76 (6) and 42.17 (6)° with the benzene ring (C24-C29) of the bromophenyl group and the benzene ring (C15-C20) of the dihydro-indene group. The dihedral angle between the two benzene rings (C24-C29/C15-C20) is 83.92 (7)°.

The crystal packing is shown in Fig. 2. Weak intermolecular C4—H4A···O2i, C16—H16A···N1ii and C26—H26A···O16iii (Table 1) hydrogen bonds link molecules into a two-dimensional network parallel to ac-plane. The crystal structure is further stabilized by weak intermolecular C5—H5A···Cg1 (Table 1) interactions (Cg1 is the centroid of the C15–C20 ring).

Related literature top

For related structures, see: Wei, Ali, Ismail et al. (2011); Wei, Ali, Yoon et al. (2011); Wei, Ali, Choon et al. (2011). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of (E)-2-(4-bromobenzylidene)-2,3-dihydro-1H-indene-1- one (0.001 mol), acenaphthenequinone (0.001 mol) and sarcosine (0.002 mol) (1:1:2) were dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the excess solvent was evaporated slowly and the product was separated and recrystallized from methanol to reveal the title compound as yellow crystals.

Refinement top

All H atoms were positioned geometrically [C–H = 0.95 and 1.00 Å] and refined using a riding model with Uiso(H) = 1.2 and 1.5Ueq(C). A rotating group model was applied to the methyl group. Four reflections 10 0 4, 7 15 12, -3 19 13 and -6 20 12 were omitted in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a weak hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
4'-(4-Bromophenyl)-1'-methyldispiro[acenaphthylene-1,2'-pyrrolidine- 3',2''-indane]-2,1''(1H)-dione top
Crystal data top
C30H22BrNO2F(000) = 1040
Mr = 508.40Dx = 1.451 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9857 reflections
a = 8.6638 (1) Åθ = 2.5–33.4°
b = 19.9429 (2) ŵ = 1.80 mm1
c = 13.5225 (1) ÅT = 100 K
β = 94.937 (1)°Block, yellow
V = 2327.77 (4) Å30.42 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9279 independent reflections
Radiation source: fine-focus sealed tube6879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 33.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1213
Tmin = 0.522, Tmax = 0.748k = 2931
31742 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0334P)2 + 1.002P]
where P = (Fo2 + 2Fc2)/3
9279 reflections(Δ/σ)max = 0.002
308 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C30H22BrNO2V = 2327.77 (4) Å3
Mr = 508.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6638 (1) ŵ = 1.80 mm1
b = 19.9429 (2) ÅT = 100 K
c = 13.5225 (1) Å0.42 × 0.19 × 0.17 mm
β = 94.937 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9279 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6879 reflections with I > 2σ(I)
Tmin = 0.522, Tmax = 0.748Rint = 0.034
31742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.46 e Å3
9279 reflectionsΔρmin = 0.49 e Å3
308 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.480071 (19)0.521944 (7)0.244244 (11)0.02379 (5)
O11.13667 (12)0.37057 (5)0.06701 (8)0.0181 (2)
O20.73424 (12)0.23859 (5)0.19577 (7)0.0196 (2)
N11.02645 (13)0.34177 (6)0.14796 (8)0.0147 (2)
C11.14407 (15)0.31588 (7)0.02741 (10)0.0143 (2)
C21.25652 (15)0.26231 (7)0.05489 (10)0.0149 (2)
C31.37067 (16)0.25607 (7)0.13200 (10)0.0171 (3)
H3A1.38520.28950.18200.020*
C41.46532 (17)0.19825 (8)0.13408 (11)0.0199 (3)
H4A1.54260.19230.18760.024*
C51.44836 (16)0.15013 (7)0.06027 (11)0.0194 (3)
H5A1.51490.11220.06380.023*
C61.33380 (16)0.15627 (7)0.02048 (10)0.0162 (3)
C71.30942 (17)0.11341 (7)0.10429 (11)0.0187 (3)
H7A1.37060.07420.10870.022*
C81.19717 (17)0.12873 (7)0.17900 (11)0.0193 (3)
H8A1.18380.09990.23500.023*
C91.10026 (17)0.18618 (7)0.17541 (10)0.0168 (3)
H9A1.02380.19550.22820.020*
C101.11894 (16)0.22784 (6)0.09453 (10)0.0143 (2)
C111.23720 (15)0.21288 (7)0.01929 (10)0.0147 (2)
C121.03831 (15)0.29248 (7)0.06780 (10)0.0135 (2)
C130.86380 (15)0.28669 (6)0.04240 (10)0.0129 (2)
C140.84775 (16)0.25846 (7)0.06297 (10)0.0145 (2)
H14A0.93990.26960.10840.017*
H14B0.75430.27660.09080.017*
C150.83414 (15)0.18367 (7)0.04746 (10)0.0142 (2)
C160.85513 (16)0.13264 (7)0.11705 (11)0.0182 (3)
H16A0.88310.14240.18500.022*
C170.83410 (18)0.06670 (8)0.08463 (12)0.0222 (3)
H17A0.85060.03110.13110.027*
C180.78920 (18)0.05166 (7)0.01488 (12)0.0229 (3)
H18A0.77410.00630.03500.027*
C190.76666 (17)0.10280 (7)0.08419 (11)0.0198 (3)
H19A0.73480.09330.15170.024*
C200.79213 (16)0.16845 (7)0.05171 (10)0.0152 (2)
C210.78710 (16)0.23101 (7)0.11033 (10)0.0150 (2)
C220.79283 (15)0.35678 (7)0.07174 (10)0.0142 (2)
H22A0.70970.34890.12650.017*
C230.92408 (16)0.39505 (7)0.11737 (10)0.0157 (2)
H23A0.88300.42210.17510.019*
H23B0.97940.42500.06780.019*
C240.71902 (15)0.39472 (7)0.00913 (10)0.0148 (2)
C250.55805 (16)0.39731 (7)0.00765 (11)0.0182 (3)
H25A0.49690.37360.04250.022*
C260.48464 (17)0.43384 (7)0.07808 (12)0.0210 (3)
H26A0.37480.43560.07580.025*
C270.57526 (17)0.46743 (7)0.15114 (11)0.0176 (3)
C280.73546 (17)0.46420 (7)0.15679 (11)0.0185 (3)
H28A0.79600.48640.20880.022*
C290.80658 (16)0.42809 (7)0.08538 (11)0.0181 (3)
H29A0.91640.42610.08860.022*
C301.17364 (17)0.36523 (7)0.18036 (11)0.0200 (3)
H30A1.23860.32660.19360.030*
H30B1.22690.39290.12820.030*
H30C1.15420.39190.24100.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03158 (9)0.01891 (7)0.02255 (8)0.00434 (6)0.01203 (6)0.00014 (6)
O10.0180 (5)0.0160 (5)0.0198 (5)0.0010 (4)0.0013 (4)0.0046 (4)
O20.0239 (5)0.0195 (5)0.0144 (5)0.0010 (4)0.0047 (4)0.0009 (4)
N10.0153 (5)0.0139 (5)0.0150 (5)0.0004 (4)0.0016 (4)0.0022 (4)
C10.0133 (6)0.0162 (6)0.0134 (6)0.0021 (4)0.0009 (5)0.0006 (5)
C20.0141 (6)0.0155 (6)0.0151 (6)0.0003 (4)0.0008 (5)0.0011 (5)
C30.0164 (6)0.0189 (6)0.0156 (6)0.0007 (5)0.0010 (5)0.0007 (5)
C40.0159 (6)0.0247 (7)0.0187 (7)0.0014 (5)0.0017 (5)0.0040 (6)
C50.0182 (6)0.0193 (7)0.0207 (7)0.0039 (5)0.0013 (5)0.0044 (5)
C60.0166 (6)0.0163 (6)0.0160 (6)0.0014 (5)0.0024 (5)0.0022 (5)
C70.0220 (7)0.0150 (6)0.0196 (7)0.0039 (5)0.0039 (5)0.0002 (5)
C80.0249 (7)0.0172 (6)0.0160 (6)0.0010 (5)0.0030 (5)0.0018 (5)
C90.0202 (6)0.0171 (6)0.0129 (6)0.0010 (5)0.0004 (5)0.0001 (5)
C100.0155 (6)0.0138 (6)0.0136 (6)0.0005 (4)0.0015 (5)0.0008 (5)
C110.0145 (6)0.0151 (6)0.0146 (6)0.0005 (5)0.0018 (5)0.0013 (5)
C120.0134 (6)0.0137 (6)0.0131 (6)0.0004 (4)0.0009 (5)0.0005 (5)
C130.0139 (6)0.0122 (5)0.0122 (6)0.0004 (4)0.0005 (5)0.0004 (4)
C140.0172 (6)0.0142 (6)0.0118 (6)0.0015 (5)0.0002 (5)0.0001 (5)
C150.0137 (6)0.0142 (6)0.0146 (6)0.0012 (4)0.0007 (5)0.0006 (5)
C160.0184 (6)0.0188 (6)0.0175 (6)0.0009 (5)0.0008 (5)0.0026 (5)
C170.0247 (7)0.0170 (6)0.0249 (7)0.0011 (5)0.0030 (6)0.0049 (6)
C180.0281 (8)0.0128 (6)0.0282 (8)0.0017 (5)0.0052 (6)0.0020 (6)
C190.0242 (7)0.0164 (6)0.0190 (7)0.0032 (5)0.0033 (5)0.0037 (5)
C200.0163 (6)0.0141 (6)0.0150 (6)0.0020 (5)0.0004 (5)0.0001 (5)
C210.0153 (6)0.0147 (6)0.0148 (6)0.0006 (4)0.0005 (5)0.0016 (5)
C220.0156 (6)0.0135 (6)0.0130 (6)0.0013 (4)0.0013 (5)0.0000 (5)
C230.0193 (6)0.0119 (6)0.0157 (6)0.0008 (5)0.0006 (5)0.0015 (5)
C240.0162 (6)0.0120 (6)0.0160 (6)0.0009 (4)0.0006 (5)0.0016 (5)
C250.0171 (6)0.0157 (6)0.0214 (7)0.0022 (5)0.0003 (5)0.0016 (5)
C260.0171 (6)0.0192 (7)0.0273 (7)0.0010 (5)0.0050 (6)0.0001 (6)
C270.0230 (7)0.0130 (6)0.0178 (6)0.0017 (5)0.0063 (5)0.0022 (5)
C280.0225 (7)0.0157 (6)0.0171 (6)0.0012 (5)0.0006 (5)0.0013 (5)
C290.0173 (6)0.0179 (6)0.0189 (7)0.0015 (5)0.0003 (5)0.0018 (5)
C300.0188 (6)0.0200 (7)0.0217 (7)0.0012 (5)0.0044 (5)0.0028 (6)
Geometric parameters (Å, º) top
Br1—C271.9043 (13)C14—H14A0.9900
O1—C11.2192 (16)C14—H14B0.9900
O2—C211.2151 (17)C15—C161.3873 (19)
N1—C121.4604 (17)C15—C201.3925 (19)
N1—C301.4606 (17)C16—C171.393 (2)
N1—C231.4662 (17)C16—H16A0.9500
C1—C21.4718 (19)C17—C181.401 (2)
C1—C121.5848 (19)C17—H17A0.9500
C2—C31.380 (2)C18—C191.388 (2)
C2—C111.4061 (19)C18—H18A0.9500
C3—C41.414 (2)C19—C201.3924 (19)
C3—H3A0.9500C19—H19A0.9500
C4—C51.383 (2)C20—C211.4769 (19)
C4—H4A0.9500C22—C241.5158 (18)
C5—C61.416 (2)C22—C231.5418 (18)
C5—H5A0.9500C22—H22A1.0000
C6—C111.4062 (19)C23—H23A0.9900
C6—C71.421 (2)C23—H23B0.9900
C7—C81.375 (2)C24—C251.3941 (19)
C7—H7A0.9500C24—C291.395 (2)
C8—C91.424 (2)C25—C261.395 (2)
C8—H8A0.9500C25—H25A0.9500
C9—C101.3721 (19)C26—C271.381 (2)
C9—H9A0.9500C26—H26A0.9500
C10—C111.412 (2)C27—C281.385 (2)
C10—C121.5244 (18)C28—C291.3902 (19)
C12—C131.5831 (18)C28—H28A0.9500
C13—C141.5495 (18)C29—H29A0.9500
C13—C211.5533 (19)C30—H30A0.9800
C13—C221.5644 (18)C30—H30B0.9800
C14—C151.5093 (19)C30—H30C0.9800
C12—N1—C30115.52 (11)C20—C15—C14111.10 (11)
C12—N1—C23106.50 (10)C15—C16—C17118.23 (14)
C30—N1—C23114.67 (11)C15—C16—H16A120.9
O1—C1—C2126.66 (13)C17—C16—H16A120.9
O1—C1—C12124.87 (12)C16—C17—C18121.49 (14)
C2—C1—C12108.38 (11)C16—C17—H17A119.3
C3—C2—C11120.63 (13)C18—C17—H17A119.3
C3—C2—C1132.24 (13)C19—C18—C17120.20 (14)
C11—C2—C1107.05 (12)C19—C18—H18A119.9
C2—C3—C4117.74 (13)C17—C18—H18A119.9
C2—C3—H3A121.1C18—C19—C20117.95 (14)
C4—C3—H3A121.1C18—C19—H19A121.0
C5—C4—C3121.74 (14)C20—C19—H19A121.0
C5—C4—H4A119.1C19—C20—C15122.01 (13)
C3—C4—H4A119.1C19—C20—C21128.94 (13)
C4—C5—C6121.34 (13)C15—C20—C21109.02 (12)
C4—C5—H5A119.3O2—C21—C20127.35 (13)
C6—C5—H5A119.3O2—C21—C13125.48 (12)
C11—C6—C5116.03 (13)C20—C21—C13107.17 (11)
C11—C6—C7116.38 (13)C24—C22—C23114.40 (11)
C5—C6—C7127.53 (13)C24—C22—C13116.36 (11)
C8—C7—C6119.97 (13)C23—C22—C13104.86 (10)
C8—C7—H7A120.0C24—C22—H22A106.9
C6—C7—H7A120.0C23—C22—H22A106.9
C7—C8—C9122.40 (13)C13—C22—H22A106.9
C7—C8—H8A118.8N1—C23—C22103.83 (10)
C9—C8—H8A118.8N1—C23—H23A111.0
C10—C9—C8119.01 (13)C22—C23—H23A111.0
C10—C9—H9A120.5N1—C23—H23B111.0
C8—C9—H9A120.5C22—C23—H23B111.0
C9—C10—C11118.35 (12)H23A—C23—H23B109.0
C9—C10—C12132.54 (13)C25—C24—C29118.20 (12)
C11—C10—C12109.07 (12)C25—C24—C22119.46 (13)
C2—C11—C6122.45 (13)C29—C24—C22122.34 (12)
C2—C11—C10113.59 (12)C24—C25—C26121.59 (14)
C6—C11—C10123.85 (13)C24—C25—H25A119.2
N1—C12—C10113.43 (10)C26—C25—H25A119.2
N1—C12—C13101.69 (10)C27—C26—C25118.49 (13)
C10—C12—C13117.09 (11)C27—C26—H26A120.8
N1—C12—C1113.80 (11)C25—C26—H26A120.8
C10—C12—C1101.36 (11)C26—C27—C28121.48 (13)
C13—C12—C1109.96 (10)C26—C27—Br1119.86 (11)
C14—C13—C21102.49 (10)C28—C27—Br1118.63 (11)
C14—C13—C22119.57 (10)C27—C28—C29119.19 (14)
C21—C13—C22110.48 (11)C27—C28—H28A120.4
C14—C13—C12112.89 (11)C29—C28—H28A120.4
C21—C13—C12106.97 (10)C28—C29—C24121.00 (13)
C22—C13—C12103.99 (10)C28—C29—H29A119.5
C15—C14—C13104.09 (10)C24—C29—H29A119.5
C15—C14—H14A110.9N1—C30—H30A109.5
C13—C14—H14A110.9N1—C30—H30B109.5
C15—C14—H14B110.9H30A—C30—H30B109.5
C13—C14—H14B110.9N1—C30—H30C109.5
H14A—C14—H14B109.0H30A—C30—H30C109.5
C16—C15—C20120.09 (13)H30B—C30—H30C109.5
C16—C15—C14128.79 (12)
O1—C1—C2—C35.4 (2)C10—C12—C13—C22152.10 (11)
C12—C1—C2—C3178.06 (14)C1—C12—C13—C2292.99 (12)
O1—C1—C2—C11171.24 (13)C21—C13—C14—C1523.95 (13)
C12—C1—C2—C115.34 (14)C22—C13—C14—C15146.48 (11)
C11—C2—C3—C40.7 (2)C12—C13—C14—C1590.76 (12)
C1—C2—C3—C4176.92 (13)C13—C14—C15—C16162.48 (13)
C2—C3—C4—C51.9 (2)C13—C14—C15—C2018.65 (14)
C3—C4—C5—C60.7 (2)C20—C15—C16—C170.4 (2)
C4—C5—C6—C111.6 (2)C14—C15—C16—C17179.22 (13)
C4—C5—C6—C7175.66 (14)C15—C16—C17—C181.6 (2)
C11—C6—C7—C80.64 (19)C16—C17—C18—C190.9 (2)
C5—C6—C7—C8176.58 (14)C17—C18—C19—C200.9 (2)
C6—C7—C8—C91.2 (2)C18—C19—C20—C152.0 (2)
C7—C8—C9—C100.1 (2)C18—C19—C20—C21175.43 (14)
C8—C9—C10—C111.82 (19)C16—C15—C20—C191.4 (2)
C8—C9—C10—C12179.18 (13)C14—C15—C20—C19177.59 (12)
C3—C2—C11—C61.7 (2)C16—C15—C20—C21176.52 (12)
C1—C2—C11—C6175.40 (12)C14—C15—C20—C214.50 (15)
C3—C2—C11—C10177.99 (12)C19—C20—C21—O213.6 (2)
C1—C2—C11—C100.91 (15)C15—C20—C21—O2168.64 (14)
C5—C6—C11—C22.75 (19)C19—C20—C21—C13166.02 (14)
C7—C6—C11—C2174.79 (12)C15—C20—C21—C1311.70 (14)
C5—C6—C11—C10178.69 (12)C14—C13—C21—O2158.12 (13)
C7—C6—C11—C101.15 (19)C22—C13—C21—O229.63 (18)
C9—C10—C11—C2173.85 (12)C12—C13—C21—O282.93 (16)
C12—C10—C11—C24.09 (15)C14—C13—C21—C2022.21 (13)
C9—C10—C11—C62.4 (2)C22—C13—C21—C20150.69 (11)
C12—C10—C11—C6179.65 (12)C12—C13—C21—C2096.74 (12)
C30—N1—C12—C1061.01 (15)C14—C13—C22—C243.30 (17)
C23—N1—C12—C10170.39 (11)C21—C13—C22—C24121.81 (12)
C30—N1—C12—C13172.37 (11)C12—C13—C22—C24123.73 (12)
C23—N1—C12—C1343.77 (13)C14—C13—C22—C23130.78 (12)
C30—N1—C12—C154.18 (15)C21—C13—C22—C23110.71 (12)
C23—N1—C12—C174.42 (13)C12—C13—C22—C233.75 (13)
C9—C10—C12—N148.4 (2)C12—N1—C23—C2242.08 (13)
C11—C10—C12—N1129.14 (12)C30—N1—C23—C22171.17 (11)
C9—C10—C12—C1369.61 (19)C24—C22—C23—N1150.47 (11)
C11—C10—C12—C13112.85 (13)C13—C22—C23—N121.81 (13)
C9—C10—C12—C1170.79 (14)C23—C22—C24—C25133.34 (13)
C11—C10—C12—C16.75 (13)C13—C22—C24—C25104.04 (15)
O1—C1—C12—N147.22 (17)C23—C22—C24—C2946.03 (18)
C2—C1—C12—N1129.43 (11)C13—C22—C24—C2976.59 (16)
O1—C1—C12—C10169.35 (12)C29—C24—C25—C262.0 (2)
C2—C1—C12—C107.30 (13)C22—C24—C25—C26177.35 (13)
O1—C1—C12—C1366.10 (16)C24—C25—C26—C270.7 (2)
C2—C1—C12—C13117.25 (11)C25—C26—C27—C281.5 (2)
N1—C12—C13—C14159.00 (10)C25—C26—C27—Br1176.49 (11)
C10—C12—C13—C1476.81 (14)C26—C27—C28—C292.1 (2)
C1—C12—C13—C1438.09 (14)Br1—C27—C28—C29175.86 (11)
N1—C12—C13—C2189.02 (12)C27—C28—C29—C240.6 (2)
C10—C12—C13—C2135.17 (15)C25—C24—C29—C281.4 (2)
C1—C12—C13—C21150.08 (11)C22—C24—C29—C28178.00 (13)
N1—C12—C13—C2227.92 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C29—H29A···O10.952.253.1110 (17)151
C4—H4A···O2i0.952.593.3743 (19)140
C16—H16A···N1ii0.952.503.4278 (19)165
C26—H26A···O1iii0.952.433.2597 (18)146
C5—H5A···Cg1iv0.952.713.3186 (15)123
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC30H22BrNO2
Mr508.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.6638 (1), 19.9429 (2), 13.5225 (1)
β (°) 94.937 (1)
V3)2327.77 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.42 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.522, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
31742, 9279, 6879
Rint0.034
(sin θ/λ)max1)0.784
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.03
No. of reflections9279
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.49

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C29—H29A···O10.95002.25003.1110 (17)151.00
C4—H4A···O2i0.952.593.3743 (19)140.4
C16—H16A···N1ii0.952.503.4278 (19)164.7
C26—H26A···O1iii0.95002.43003.2597 (18)146.00
C5—H5A···Cg1iv0.95002.713.3186 (15)123
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors wish to express their thank to the Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malysia, Penang, and the Malaysian Goverment for the Research University Grant No. 1001/PSK/8620012 and No.1001/PFIZIK/811151 and also providing research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Ismail, R., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Yoon, Y. K., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o3274.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1340-o1341
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds