metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-4-Bromo-3,5-di­methyl­pyrazolato-κ2N1:N2)-μ-chlorido-bis­­[bis­(4-bromo-3,5-di­methyl­pyrazole-κN2)chloridocopper(II)] aceto­nitrile monosolvate

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bDepartment of Medical Imaging, Bethune Medical Non-Commissioned Officer's, College, Shijiazhuang, Hebei 050081, People's Republic of China
*Correspondence e-mail: weiwei_cnu@163.com

(Received 25 March 2012; accepted 31 March 2012; online 13 April 2012)

In the title dinuclear complex, [Cu2(C5H6BrN2)Cl3(C5H7BrN2)4]·CH3CN, both CuII ions are in slightly distorted square-pyramidal coordination geometries. The basal planes are defined by three N atoms from three 4-bromo-3,5-dimethyl­pyrazolate ligands, one of which is bridging, and one Cl ligand. A bridging Cl ligand forms the apical site for both CuII ions. In the crystal, N—H⋯Cl hydrogen bonds connect complex mol­ecules into chains along [100]. Intra­molecular N—H⋯Cl hydrogen bonds are also observed.

Related literature

For related structures, see: Mezei & Raptis (2004[Mezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279-3288.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C5H6BrN2)Cl3(C5H7BrN2)4]·CH4N

  • Mr = 1148.66

  • Monoclinic, P 21

  • a = 9.282 (2) Å

  • b = 15.849 (4) Å

  • c = 14.711 (4) Å

  • β = 108.048 (4)°

  • V = 2057.5 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.12 mm−1

  • T = 93 K

  • 0.33 × 0.30 × 0.27 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.235, Tmax = 0.292

  • 13972 measured reflections

  • 6853 independent reflections

  • 6098 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.036

  • S = 0.88

  • 6853 reflections

  • 444 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3105 Friedel pairs

  • Flack parameter: 0.004 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯Cl3i 0.88 2.36 3.194 (4) 160
N10—H10N⋯Cl2ii 0.88 2.33 3.144 (3) 155
N2—H2N⋯Cl3 0.88 2.54 3.400 (4) 165
N8—H8N⋯Cl2 0.88 2.34 3.212 (3) 170
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title binuclear complex is related to structures published by Mezei & Raptis (2004). The molecular structure of the title complex is shown in Fig. 1. Each CuII ion is five-coordinated, adopting a slight distorted square-pyramidal coordination geometry defined by three nitrogen atoms from three 4-bromo-3,5-dimethylpyrazolato (bdpz) ligands and two Cl ligands. The two CuII ions are linked via one µ2-Cl ligand and two nitrogen atoms from a µ2-bdpz ligand, giving a five-membered Cu2N2Cl ring. The bdpz ligands have two different coordination modes. One is monodentate and the other is bidentate. The bidentated bridge ligand is depronated so that both of the nitrogen atoms are able to coordinate to two CuII ions to form a binuclear structure with a Cu1···Cu2 distance of 3.6874 (10) Å. The monodentate bdpz ligands coordinate through one nitrogen atom each. The two CuII ions are charge balanced by the three Cl- ligands and one deprotaonted bdpz ligand. In the crystal, symmetry related complex molecules are connected bdpz via N—H···Cl hydrogen bonds (Table 1) to form a 1-D supramolecular structure (Fig 2). In addition, intramolecular N—H···O hydrogen bonds are present and it is worthy of note that a short C—Br···N contact exists (Br···N11 = 3.089 (2) Å).

Related literature top

For related structures, see: Mezei & Raptis (2004).

Experimental top

CuCl2.2H2O (0.170 g, 1 mmol) and bdpz (0.131 g, 0.75 mmol) were dissolved in 15 ml acetonitrile and stirred for ten minutes at room temprature. Then the mixture were transfered to a Teflon container and heated at 363K for 48 h. Green block-shaped crystals suitable for X-ray diffraction analysis were obtained after filtration. Yield: about 18% (based on the bdpz).

Refinement top

Hydrogen atoms positions were calculated and refined in a riding-model approxination with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing a one-dimensional chain assembled by intermolecular N—H···Cl hydrogen bonds (dashed lines). The symmetry codes are: (A) 1+x,y, z; (B) x-1, y, z.
(µ-4-Bromo-3,5-dimethylpyrazolato-κ2N1:N2)-µ-chlorido- bis[bis(4-bromo-3,5-dimethylpyrazole-κN2)chloridocopper(II)] acetonitrile monosolvate top
Crystal data top
[Cu2(C5H6BrN2)Cl3(C5H7BrN2)4]·CH4NF(000) = 1120
Mr = 1148.66Dx = 1.854 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1336 reflections
a = 9.282 (2) Åθ = 2.6–27.5°
b = 15.849 (4) ŵ = 6.12 mm1
c = 14.711 (4) ÅT = 93 K
β = 108.048 (4)°Block, green
V = 2057.5 (9) Å30.33 × 0.30 × 0.27 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
6853 independent reflections
Radiation source: fine-focus sealed tube6098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 119
Tmin = 0.235, Tmax = 0.292k = 1418
13972 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.036 [1.00000 + 0.00000exp(0.00(sinθ/λ)2)]/ [σ2(Fo2) + 0.0000 + 0.0000*P + (0.0021P)2 + 0.0000sinθ/λ]
where P = 0.00000Fo2 + 1.00000Fc2
S = 0.88(Δ/σ)max = 0.003
6853 reflectionsΔρmax = 0.48 e Å3
444 parametersΔρmin = 0.39 e Å3
1 restraintAbsolute structure: Flack (1983), 3105 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (5)
Crystal data top
[Cu2(C5H6BrN2)Cl3(C5H7BrN2)4]·CH4NV = 2057.5 (9) Å3
Mr = 1148.66Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.282 (2) ŵ = 6.12 mm1
b = 15.849 (4) ÅT = 93 K
c = 14.711 (4) Å0.33 × 0.30 × 0.27 mm
β = 108.048 (4)°
Data collection top
Bruker SMART CCD
diffractometer
6853 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
6098 reflections with I > 2σ(I)
Tmin = 0.235, Tmax = 0.292Rint = 0.027
13972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.036Δρmax = 0.48 e Å3
S = 0.88Δρmin = 0.39 e Å3
6853 reflectionsAbsolute structure: Flack (1983), 3105 Friedel pairs
444 parametersAbsolute structure parameter: 0.004 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.68535 (6)0.38846 (3)0.63798 (4)0.01178 (12)
Cu20.44108 (6)0.40441 (3)0.79285 (4)0.01135 (12)
Br10.30510 (5)0.30904 (3)0.23256 (3)0.02427 (12)
Br20.83209 (5)0.66236 (3)0.40460 (3)0.02460 (12)
Br30.64363 (5)0.05276 (3)0.78378 (3)0.02291 (12)
Br40.79097 (6)0.48030 (3)1.19888 (4)0.03071 (13)
Br50.24518 (6)0.74934 (3)0.87086 (4)0.03359 (14)
Cl10.54114 (12)0.49340 (6)0.69126 (7)0.0149 (2)
Cl20.90648 (11)0.37929 (6)0.76878 (8)0.0146 (3)
Cl30.21862 (11)0.35091 (6)0.68680 (8)0.0139 (2)
N10.5288 (4)0.3545 (2)0.5111 (3)0.0128 (8)
N20.3830 (4)0.3507 (2)0.5099 (3)0.0172 (9)
H2N0.35460.35740.56120.021*
N30.7845 (4)0.4692 (2)0.5715 (2)0.0152 (8)
N40.9346 (4)0.4677 (2)0.5834 (2)0.0160 (9)
H4N0.99760.43150.62070.019*
N50.6118 (4)0.29498 (19)0.6978 (2)0.0101 (8)
N60.5436 (3)0.30017 (19)0.7671 (2)0.0086 (8)
N70.5978 (4)0.41246 (19)0.9240 (2)0.0110 (8)
N80.7457 (4)0.41968 (19)0.9283 (2)0.0138 (8)
H8N0.77940.41090.87950.017*
N90.3306 (4)0.50622 (19)0.8246 (3)0.0138 (9)
N100.1781 (4)0.50677 (19)0.8051 (2)0.0147 (9)
H10N0.12020.46210.78640.018*
C10.6637 (5)0.3400 (3)0.3906 (3)0.0309 (13)
H1A0.75080.32650.44630.037*
H1B0.67860.39560.36570.037*
H1C0.65410.29730.34100.037*
C20.5228 (5)0.3410 (3)0.4194 (3)0.0181 (11)
C30.3752 (5)0.3290 (2)0.3633 (3)0.0179 (11)
C40.2858 (5)0.3356 (2)0.4227 (3)0.0158 (11)
C50.1197 (5)0.3286 (3)0.4027 (3)0.0281 (12)
H5A0.08810.27010.38620.034*
H5B0.06820.36560.34910.034*
H5C0.09290.34540.45950.034*
C60.5694 (5)0.5604 (3)0.4809 (3)0.0288 (12)
H6A0.54360.58190.53640.035*
H6B0.50430.51210.45360.035*
H6C0.55380.60500.43260.035*
C70.7300 (5)0.5335 (3)0.5110 (3)0.0149 (10)
C80.8482 (5)0.5690 (3)0.4860 (3)0.0150 (10)
C90.9774 (5)0.5268 (2)0.5328 (3)0.0164 (11)
C101.1380 (5)0.5415 (3)0.5360 (3)0.0278 (13)
H10A1.15340.51960.47740.033*
H10B1.20620.51230.59150.033*
H10C1.15970.60210.54130.033*
C110.7424 (5)0.1886 (2)0.6275 (3)0.0168 (11)
H11A0.83060.22550.63700.020*
H11B0.67690.19300.56110.020*
H11C0.77640.13010.64130.020*
C120.6563 (5)0.2149 (2)0.6930 (3)0.0127 (10)
C130.6099 (5)0.1685 (2)0.7602 (3)0.0123 (10)
C140.5387 (5)0.2238 (2)0.8043 (3)0.0117 (10)
C150.4627 (5)0.2064 (3)0.8781 (3)0.0219 (11)
H15A0.41910.25870.89350.026*
H15B0.53700.18410.93590.026*
H15C0.38190.16480.85320.026*
C160.4480 (5)0.4266 (3)1.0340 (3)0.0247 (12)
H16A0.37450.39230.98610.030*
H16B0.40760.48371.03430.030*
H16C0.46660.40101.09730.030*
C170.5926 (5)0.4307 (2)1.0104 (3)0.0135 (10)
C180.7366 (5)0.4500 (2)1.0693 (3)0.0161 (11)
C190.8344 (5)0.4419 (2)1.0159 (3)0.0158 (11)
C201.0009 (5)0.4534 (3)1.0394 (3)0.0265 (12)
H20A1.02600.51331.05150.032*
H20B1.03360.43410.98570.032*
H20C1.05280.42051.09660.032*
C210.5369 (5)0.6136 (3)0.8794 (3)0.0230 (12)
H21A0.59120.58380.84160.028*
H21B0.58480.60140.94740.028*
H21C0.54040.67450.86850.028*
C220.3763 (5)0.5851 (2)0.8501 (3)0.0146 (11)
C230.2503 (5)0.6333 (2)0.8453 (3)0.0178 (11)
C240.1258 (5)0.5825 (3)0.8175 (3)0.0211 (11)
C250.0401 (5)0.6002 (3)0.7997 (3)0.0304 (13)
H25A0.09080.54860.81030.036*
H25B0.08560.61920.73350.036*
H25C0.05180.64430.84350.036*
N110.1755 (5)0.2600 (3)0.0195 (3)0.0448 (12)
C260.0325 (7)0.1850 (3)0.1368 (5)0.085 (2)
H26A0.07980.13000.13900.102*
H26B0.03860.21960.19070.102*
H26C0.07400.17680.14090.102*
C270.1126 (6)0.2277 (3)0.0463 (4)0.0346 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0109 (3)0.0159 (3)0.0089 (3)0.0013 (2)0.0036 (2)0.0016 (2)
Cu20.0110 (3)0.0130 (3)0.0103 (3)0.0000 (2)0.0038 (2)0.0026 (2)
Br10.0301 (3)0.0309 (3)0.0095 (3)0.0036 (2)0.0028 (2)0.0027 (2)
Br20.0291 (3)0.0217 (3)0.0235 (3)0.0028 (2)0.0088 (2)0.0140 (2)
Br30.0333 (3)0.0139 (2)0.0234 (3)0.0052 (2)0.0115 (3)0.0051 (2)
Br40.0456 (4)0.0299 (3)0.0108 (3)0.0007 (3)0.0002 (3)0.0047 (2)
Br50.0331 (3)0.0134 (3)0.0488 (4)0.0019 (2)0.0047 (3)0.0100 (3)
Cl10.0175 (6)0.0137 (6)0.0159 (6)0.0007 (5)0.0087 (5)0.0013 (5)
Cl20.0103 (6)0.0209 (6)0.0116 (6)0.0028 (5)0.0020 (5)0.0036 (5)
Cl30.0080 (6)0.0159 (6)0.0154 (6)0.0014 (5)0.0002 (5)0.0077 (5)
N10.007 (2)0.022 (2)0.010 (2)0.0004 (16)0.0036 (18)0.0020 (16)
N20.020 (2)0.025 (2)0.009 (2)0.0033 (18)0.0074 (19)0.0008 (17)
N30.013 (2)0.023 (2)0.011 (2)0.0022 (17)0.0058 (18)0.0026 (17)
N40.009 (2)0.022 (2)0.016 (2)0.0066 (17)0.0026 (18)0.0076 (17)
N50.0070 (19)0.012 (2)0.010 (2)0.0009 (15)0.0021 (17)0.0060 (16)
N60.0056 (19)0.0113 (19)0.008 (2)0.0024 (16)0.0005 (16)0.0008 (16)
N70.0064 (19)0.013 (2)0.014 (2)0.0004 (15)0.0039 (17)0.0032 (16)
N80.017 (2)0.015 (2)0.010 (2)0.0005 (16)0.0048 (18)0.0008 (16)
N90.013 (2)0.012 (2)0.018 (2)0.0016 (16)0.0078 (19)0.0027 (16)
N100.008 (2)0.014 (2)0.020 (2)0.0045 (16)0.0023 (18)0.0077 (16)
C10.033 (3)0.047 (3)0.017 (3)0.002 (3)0.015 (3)0.005 (3)
C20.024 (3)0.020 (3)0.011 (3)0.003 (2)0.006 (2)0.002 (2)
C30.025 (3)0.017 (3)0.010 (3)0.008 (2)0.003 (2)0.005 (2)
C40.020 (3)0.016 (3)0.010 (3)0.000 (2)0.003 (2)0.0018 (19)
C50.021 (3)0.042 (3)0.021 (3)0.000 (2)0.006 (3)0.002 (2)
C60.021 (3)0.037 (3)0.029 (3)0.012 (2)0.009 (2)0.018 (3)
C70.015 (3)0.022 (3)0.004 (2)0.005 (2)0.001 (2)0.005 (2)
C80.016 (3)0.015 (2)0.016 (3)0.003 (2)0.007 (2)0.005 (2)
C90.018 (3)0.011 (2)0.021 (3)0.0001 (19)0.007 (2)0.0111 (19)
C100.022 (3)0.029 (3)0.041 (3)0.010 (2)0.022 (3)0.024 (3)
C110.017 (3)0.021 (3)0.014 (3)0.005 (2)0.008 (2)0.005 (2)
C120.011 (2)0.018 (3)0.008 (3)0.0029 (19)0.001 (2)0.007 (2)
C130.014 (2)0.007 (2)0.012 (2)0.002 (2)0.001 (2)0.004 (2)
C140.009 (2)0.018 (3)0.007 (2)0.0013 (19)0.001 (2)0.0011 (19)
C150.029 (3)0.024 (2)0.021 (3)0.001 (2)0.021 (2)0.001 (2)
C160.033 (3)0.029 (3)0.020 (3)0.002 (2)0.018 (3)0.002 (2)
C170.016 (3)0.009 (2)0.016 (3)0.0039 (19)0.007 (2)0.000 (2)
C180.031 (3)0.007 (2)0.009 (3)0.001 (2)0.004 (2)0.0002 (19)
C190.017 (3)0.006 (2)0.018 (3)0.0012 (19)0.004 (2)0.001 (2)
C200.023 (3)0.035 (3)0.018 (3)0.002 (2)0.002 (2)0.001 (2)
C210.026 (3)0.024 (3)0.020 (3)0.004 (2)0.008 (3)0.006 (2)
C220.021 (3)0.012 (2)0.013 (3)0.005 (2)0.009 (2)0.0044 (19)
C230.019 (3)0.007 (2)0.024 (3)0.002 (2)0.003 (2)0.003 (2)
C240.023 (3)0.017 (3)0.025 (3)0.006 (2)0.010 (2)0.000 (2)
C250.011 (3)0.029 (3)0.045 (4)0.005 (2)0.000 (3)0.009 (3)
N110.046 (3)0.052 (3)0.030 (3)0.008 (3)0.002 (3)0.003 (3)
C260.080 (6)0.042 (4)0.095 (6)0.006 (3)0.028 (5)0.011 (4)
C270.035 (4)0.029 (3)0.027 (4)0.004 (2)0.009 (3)0.001 (3)
Geometric parameters (Å, º) top
Cu1—N51.951 (3)C6—H6A0.9800
Cu1—N31.999 (3)C6—H6B0.9800
Cu1—N12.051 (4)C6—H6C0.9800
Cu1—Cl22.3429 (13)C7—C81.381 (5)
Cu1—Cl12.4128 (11)C8—C91.360 (5)
Cu2—N62.000 (3)C9—C101.495 (5)
Cu2—N72.028 (3)C10—H10A0.9800
Cu2—N92.042 (3)C10—H10B0.9800
Cu2—Cl32.3281 (12)C10—H10C0.9800
Cu2—Cl12.4382 (11)C11—C121.490 (5)
Br1—C31.857 (4)C11—H11A0.9800
Br2—C81.880 (4)C11—H11B0.9800
Br3—C131.875 (4)C11—H11C0.9800
Br4—C181.876 (4)C12—C131.403 (5)
Br5—C231.881 (4)C13—C141.375 (5)
N1—C21.349 (5)C14—C151.492 (5)
N1—N21.349 (4)C15—H15A0.9800
N2—C41.342 (5)C15—H15B0.9800
N2—H2N0.8800C15—H15C0.9800
N3—C71.345 (5)C16—C171.489 (5)
N3—N41.349 (4)C16—H16A0.9800
N4—C91.331 (4)C16—H16B0.9800
N4—H4N0.8800C16—H16C0.9800
N5—C121.343 (5)C17—C181.384 (6)
N5—N61.359 (4)C18—C191.379 (6)
N6—C141.334 (5)C19—C201.486 (6)
N7—C171.319 (5)C20—H20A0.9800
N7—N81.359 (4)C20—H20B0.9800
N8—C191.343 (5)C20—H20C0.9800
N8—H8N0.8800C21—C221.488 (5)
N9—C221.335 (5)C21—H21A0.9800
N9—N101.355 (4)C21—H21B0.9800
N10—C241.329 (5)C21—H21C0.9800
N10—H10N0.8800C22—C231.381 (5)
C1—C21.494 (5)C23—C241.362 (6)
C1—H1A0.9800C24—C251.506 (5)
C1—H1B0.9800C25—H25A0.9800
C1—H1C0.9800C25—H25B0.9800
C2—C31.376 (6)C25—H25C0.9800
C3—C41.383 (5)N11—C271.090 (6)
C4—C51.481 (5)C26—C271.473 (7)
C5—H5A0.9800C26—H26A0.9800
C5—H5B0.9800C26—H26B0.9800
C5—H5C0.9800C26—H26C0.9800
C6—C71.480 (5)
N5—Cu1—N3169.97 (13)C9—C8—Br2126.4 (3)
N5—Cu1—N187.87 (13)C7—C8—Br2125.3 (3)
N3—Cu1—N191.52 (13)N4—C9—C8105.1 (4)
N5—Cu1—Cl285.56 (10)N4—C9—C10124.0 (4)
N3—Cu1—Cl291.28 (11)C8—C9—C10130.8 (4)
N1—Cu1—Cl2157.62 (9)C9—C10—H10A109.5
N5—Cu1—Cl194.01 (9)C9—C10—H10B109.5
N3—Cu1—Cl195.96 (10)H10A—C10—H10B109.5
N1—Cu1—Cl199.72 (9)C9—C10—H10C109.5
Cl2—Cu1—Cl1102.06 (4)H10A—C10—H10C109.5
N6—Cu2—N789.37 (13)H10B—C10—H10C109.5
N6—Cu2—N9176.29 (13)C12—C11—H11A109.5
N7—Cu2—N989.75 (13)C12—C11—H11B109.5
N6—Cu2—Cl386.99 (10)H11A—C11—H11B109.5
N7—Cu2—Cl3152.38 (10)C12—C11—H11C109.5
N9—Cu2—Cl392.13 (11)H11A—C11—H11C109.5
N6—Cu2—Cl193.89 (9)H11B—C11—H11C109.5
N7—Cu2—Cl1104.44 (10)N5—C12—C13106.9 (3)
N9—Cu2—Cl189.81 (9)N5—C12—C11122.3 (4)
Cl3—Cu2—Cl1103.13 (4)C13—C12—C11130.8 (4)
Cu1—Cl1—Cu298.94 (4)C14—C13—C12107.2 (4)
C2—N1—N2104.5 (4)C14—C13—Br3127.9 (3)
C2—N1—Cu1138.6 (3)C12—C13—Br3125.0 (3)
N2—N1—Cu1116.6 (3)N6—C14—C13107.6 (3)
C4—N2—N1113.2 (3)N6—C14—C15123.4 (4)
C4—N2—H2N123.4C13—C14—C15129.0 (4)
N1—N2—H2N123.4C14—C15—H15A109.5
C7—N3—N4105.1 (3)C14—C15—H15B109.5
C7—N3—Cu1132.3 (3)H15A—C15—H15B109.5
N4—N3—Cu1122.6 (3)C14—C15—H15C109.5
C9—N4—N3113.0 (3)H15A—C15—H15C109.5
C9—N4—H4N123.5H15B—C15—H15C109.5
N3—N4—H4N123.5C17—C16—H16A109.5
C12—N5—N6108.6 (3)C17—C16—H16B109.5
C12—N5—Cu1122.5 (3)H16A—C16—H16B109.5
N6—N5—Cu1127.0 (2)C17—C16—H16C109.5
C14—N6—N5109.6 (3)H16A—C16—H16C109.5
C14—N6—Cu2126.3 (3)H16B—C16—H16C109.5
N5—N6—Cu2123.5 (2)N7—C17—C18109.6 (4)
C17—N7—N8105.9 (3)N7—C17—C16121.3 (4)
C17—N7—Cu2134.5 (3)C18—C17—C16129.0 (4)
N8—N7—Cu2117.8 (2)C19—C18—C17107.5 (4)
C19—N8—N7112.2 (3)C19—C18—Br4125.9 (4)
C19—N8—H8N123.9C17—C18—Br4126.6 (4)
N7—N8—H8N123.9N8—C19—C18104.8 (4)
C22—N9—N10105.9 (3)N8—C19—C20122.7 (4)
C22—N9—Cu2131.7 (3)C18—C19—C20132.5 (4)
N10—N9—Cu2121.5 (2)C19—C20—H20A109.5
C24—N10—N9112.3 (3)C19—C20—H20B109.5
C24—N10—H10N123.9H20A—C20—H20B109.5
N9—N10—H10N123.9C19—C20—H20C109.5
C2—C1—H1A109.5H20A—C20—H20C109.5
C2—C1—H1B109.5H20B—C20—H20C109.5
H1A—C1—H1B109.5C22—C21—H21A109.5
C2—C1—H1C109.5C22—C21—H21B109.5
H1A—C1—H1C109.5H21A—C21—H21B109.5
H1B—C1—H1C109.5C22—C21—H21C109.5
N1—C2—C3110.3 (4)H21A—C21—H21C109.5
N1—C2—C1121.1 (4)H21B—C21—H21C109.5
C3—C2—C1128.7 (4)N9—C22—C23108.3 (4)
C2—C3—C4107.0 (4)N9—C22—C21124.6 (4)
C2—C3—Br1127.5 (3)C23—C22—C21127.1 (4)
C4—C3—Br1125.5 (4)C24—C23—C22108.3 (4)
N2—C4—C3105.1 (4)C24—C23—Br5124.5 (3)
N2—C4—C5123.6 (4)C22—C23—Br5127.2 (3)
C3—C4—C5131.3 (4)N10—C24—C23105.2 (4)
C4—C5—H5A109.5N10—C24—C25122.7 (4)
C4—C5—H5B109.5C23—C24—C25132.0 (4)
H5A—C5—H5B109.5C24—C25—H25A109.5
C4—C5—H5C109.5C24—C25—H25B109.5
H5A—C5—H5C109.5H25A—C25—H25B109.5
H5B—C5—H5C109.5C24—C25—H25C109.5
C7—C6—H6A109.5H25A—C25—H25C109.5
C7—C6—H6B109.5H25B—C25—H25C109.5
H6A—C6—H6B109.5C27—C26—H26A109.5
C7—C6—H6C109.5C27—C26—H26B109.5
H6A—C6—H6C109.5H26A—C26—H26B109.5
H6B—C6—H6C109.5C27—C26—H26C109.5
N3—C7—C8108.6 (4)H26A—C26—H26C109.5
N3—C7—C6123.7 (4)H26B—C26—H26C109.5
C8—C7—C6127.8 (4)N11—C27—C26177.7 (7)
C9—C8—C7108.2 (4)
N5—Cu1—Cl1—Cu26.36 (10)N1—C2—C3—C40.2 (5)
N3—Cu1—Cl1—Cu2172.55 (10)C1—C2—C3—C4179.8 (4)
N1—Cu1—Cl1—Cu294.88 (10)N1—C2—C3—Br1179.5 (3)
Cl2—Cu1—Cl1—Cu279.95 (5)C1—C2—C3—Br10.9 (7)
N6—Cu2—Cl1—Cu10.07 (10)N1—N2—C4—C30.1 (5)
N7—Cu2—Cl1—Cu190.42 (10)N1—N2—C4—C5179.9 (3)
N9—Cu2—Cl1—Cu1179.89 (11)C2—C3—C4—N20.2 (5)
Cl3—Cu2—Cl1—Cu187.74 (5)Br1—C3—C4—N2179.5 (3)
N5—Cu1—N1—C2132.4 (4)C2—C3—C4—C5179.9 (4)
N3—Cu1—N1—C237.5 (4)Br1—C3—C4—C50.6 (7)
Cl2—Cu1—N1—C259.5 (5)N4—N3—C7—C81.0 (5)
Cl1—Cu1—N1—C2133.9 (4)Cu1—N3—C7—C8180.0 (3)
N5—Cu1—N1—N255.9 (3)N4—N3—C7—C6177.5 (4)
N3—Cu1—N1—N2134.2 (3)Cu1—N3—C7—C61.5 (7)
Cl2—Cu1—N1—N2128.8 (2)N3—C7—C8—C90.9 (5)
Cl1—Cu1—N1—N237.9 (3)C6—C7—C8—C9177.5 (4)
C2—N1—N2—C40.0 (4)N3—C7—C8—Br2178.8 (3)
Cu1—N1—N2—C4174.3 (3)C6—C7—C8—Br20.5 (7)
N5—Cu1—N3—C7140.2 (7)N3—N4—C9—C80.3 (5)
N1—Cu1—N3—C753.8 (4)N3—N4—C9—C10177.3 (4)
Cl2—Cu1—N3—C7148.4 (4)C7—C8—C9—N40.4 (5)
Cl1—Cu1—N3—C746.1 (4)Br2—C8—C9—N4178.3 (3)
N5—Cu1—N3—N441.0 (10)C7—C8—C9—C10176.4 (4)
N1—Cu1—N3—N4127.4 (3)Br2—C8—C9—C101.6 (8)
Cl2—Cu1—N3—N430.4 (3)N6—N5—C12—C131.7 (4)
Cl1—Cu1—N3—N4132.7 (3)Cu1—N5—C12—C13167.0 (3)
C7—N3—N4—C90.8 (4)N6—N5—C12—C11176.7 (4)
Cu1—N3—N4—C9179.9 (3)Cu1—N5—C12—C1111.4 (6)
N3—Cu1—N5—C125.8 (10)N5—C12—C13—C140.5 (5)
N1—Cu1—N5—C1280.9 (3)C11—C12—C13—C14177.8 (4)
Cl2—Cu1—N5—C1277.7 (3)N5—C12—C13—Br3179.8 (3)
Cl1—Cu1—N5—C12179.5 (3)C11—C12—C13—Br31.6 (7)
N3—Cu1—N5—N6156.7 (7)N5—N6—C14—C132.0 (5)
N1—Cu1—N5—N6116.6 (3)Cu2—N6—C14—C13173.5 (3)
Cl2—Cu1—N5—N684.8 (3)N5—N6—C14—C15176.2 (4)
Cl1—Cu1—N5—N617.0 (3)Cu2—N6—C14—C154.7 (6)
C12—N5—N6—C142.4 (4)C12—C13—C14—N61.0 (5)
Cu1—N5—N6—C14166.8 (3)Br3—C13—C14—N6178.4 (3)
C12—N5—N6—Cu2174.1 (3)C12—C13—C14—C15177.1 (4)
Cu1—N5—N6—Cu221.5 (4)Br3—C13—C14—C153.6 (7)
N7—Cu2—N6—C1474.1 (3)N8—N7—C17—C180.4 (4)
Cl3—Cu2—N6—C1478.5 (3)Cu2—N7—C17—C18163.3 (3)
Cl1—Cu2—N6—C14178.5 (3)N8—N7—C17—C16177.9 (3)
N7—Cu2—N6—N5115.6 (3)Cu2—N7—C17—C1618.4 (6)
Cl3—Cu2—N6—N591.8 (3)N7—C17—C18—C190.8 (5)
Cl1—Cu2—N6—N511.1 (3)C16—C17—C18—C19177.3 (4)
N6—Cu2—N7—C17138.3 (4)N7—C17—C18—Br4179.9 (3)
N9—Cu2—N7—C1738.1 (4)C16—C17—C18—Br42.0 (6)
Cl3—Cu2—N7—C1756.0 (5)N7—N8—C19—C180.7 (4)
Cl1—Cu2—N7—C17127.8 (4)N7—N8—C19—C20179.7 (3)
N6—Cu2—N7—N859.5 (3)C17—C18—C19—N80.9 (4)
N9—Cu2—N7—N8124.1 (3)Br4—C18—C19—N8179.8 (3)
Cl3—Cu2—N7—N8141.8 (2)C17—C18—C19—C20179.5 (4)
Cl1—Cu2—N7—N834.4 (3)Br4—C18—C19—C200.3 (6)
C17—N7—N8—C190.2 (4)N10—N9—C22—C230.3 (5)
Cu2—N7—N8—C19167.1 (3)Cu2—N9—C22—C23168.5 (3)
N7—Cu2—N9—C2258.1 (4)N10—N9—C22—C21178.9 (4)
Cl3—Cu2—N9—C22149.5 (4)Cu2—N9—C22—C2112.2 (7)
Cl1—Cu2—N9—C2246.3 (4)N9—C22—C23—C240.7 (5)
N7—Cu2—N9—N10134.5 (3)C21—C22—C23—C24178.5 (4)
Cl3—Cu2—N9—N1017.9 (3)N9—C22—C23—Br5178.7 (3)
Cl1—Cu2—N9—N10121.0 (3)C21—C22—C23—Br52.0 (7)
C22—N9—N10—C240.2 (5)N9—N10—C24—C230.7 (5)
Cu2—N9—N10—C24170.5 (3)N9—N10—C24—C25179.4 (4)
N2—N1—C2—C30.1 (5)C22—C23—C24—N100.8 (5)
Cu1—N1—C2—C3172.5 (3)Br5—C23—C24—N10178.6 (3)
N2—N1—C2—C1179.8 (3)C22—C23—C24—C25179.4 (5)
Cu1—N1—C2—C17.9 (6)Br5—C23—C24—C250.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···Cl3i0.882.363.194 (4)160
N10—H10N···Cl2ii0.882.333.144 (3)155
N2—H2N···Cl30.882.543.400 (4)165
N8—H8N···Cl20.882.343.212 (3)170
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C5H6BrN2)Cl3(C5H7BrN2)4]·CH4N
Mr1148.66
Crystal system, space groupMonoclinic, P21
Temperature (K)93
a, b, c (Å)9.282 (2), 15.849 (4), 14.711 (4)
β (°) 108.048 (4)
V3)2057.5 (9)
Z2
Radiation typeMo Kα
µ (mm1)6.12
Crystal size (mm)0.33 × 0.30 × 0.27
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.235, 0.292
No. of measured, independent and
observed [I > 2σ(I)] reflections
13972, 6853, 6098
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.036, 0.88
No. of reflections6853
No. of parameters444
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.39
Absolute structureFlack (1983), 3105 Friedel pairs
Absolute structure parameter0.004 (5)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···Cl3i0.882.363.194 (4)159.6
N10—H10N···Cl2ii0.882.333.144 (3)154.9
N2—H2N···Cl30.882.543.400 (4)165.3
N8—H8N···Cl20.882.343.212 (3)170.3
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

This study was supported by the National Natural Science Foundation of China (project Nos. 21001076 and 20801004), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR20100718) and the Scientific Research Common Program of Beijing Municipal Education Commission.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279–3288.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds