organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1391

4,5-Di­bromo-1,2-di­methyl-1H-imidazol-3-ium bromide

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, bLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 28 March 2012; accepted 7 April 2012; online 13 April 2012)

In the title salt, C5H7Br2N2+·Br, the cation and anion are connected by an N—H⋯Br hydrogen bond. In the crystal, there are inter­calated layers parallel to (10-2) in which bromide ions are located between the cations. Weak inter­molecular C—H⋯Br hydrogen bonds are also observed.

Related literature

For the preparation of the title compound using the Ortoleva–King reaction, see: King (1944[King, L. C. (1944). J. Am. Chem. Soc. 66, 894-895.]). For applications of C,N-substituted haloimidazole derivatives, see: Reepmeyer et al. (1975[Reepmeyer, J. C., Kirk, K. L. & Cohen, L. A. (1975). Tetrahedron Lett. pp. 4107-4110.]); Zamora et al. (2003[Zamora, J., Afzelius, L. & Cruciani, G. (2003). J. Med. Chem. 46, 2313-2324.]); Schmidt & Schieffer (2003[Schmidt, B. & Schieffer, B. (2003). J. Med. Chem. 46, 2261-2270.]); Mashkovskii (2005[Mashkovskii, M. D. (2005). Drugs, p. 444. Moscow: Novaya Volna.]); Amini et al. (2007[Amini, M., Foroumadi, A., Vosooghi, M., Vahdatizadeh, H. R. & Shafiee, A. (2007). Asian J. Chem. 19, 4679-4683.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7Br2N2+·Br

  • Mr = 334.86

  • Monoclinic, P 21 /c

  • a = 5.5938 (3) Å

  • b = 11.2522 (6) Å

  • c = 14.4864 (9) Å

  • β = 104.571 (3)°

  • V = 882.48 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.64 mm−1

  • T = 150 K

  • 0.31 × 0.22 × 0.17 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.058, Tmax = 0.098

  • 7565 measured reflections

  • 2032 independent reflections

  • 1747 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.060

  • S = 1.03

  • 2032 reflections

  • 94 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯Br3i 0.88 2.35 3.216 (3) 168
C6—H6A⋯Br2ii 0.96 2.90 3.796 (3) 156
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Imidazole is an important synthon for the synthesis of diverse derivatives and various condensed heterocycles. The C,N-substituted haloimidazole derivatives have shown a high pharmacological activity (Zamora et al., 2003; Schmidt et al., 2003) and some have found practical use in medicine (Mashkovskii, 2005; Amini et al., 2007; Reepmeyer et al., 1975). Halo- and dihaloimidazoles form salts with mineral acids and picrates. The nitrates and picrates, which crystallize readily from water and alcohols, are quite often used for the additional characterization of compounds being studied. In this paper, we report the structure determination of 4,5-dibromo-1,2-dimethyl-1H-imidazolium bromide (I) resulting from an unexpected reaction of 1,2-dimethyl-1H-imidazole with bromine in acetone in a modified Ortoleva-King conditions reaction (King, 1944).

The molecular structure of (I) is shown in Fig. 1. The asymmetric unit of title molecule, (C5H7N2Br2)+, Br-, contains a 4,5-dibromo-1,2-dimethylimidazolium cation and bromide anion linked by an intermolecular N—H···Br hydrogen bond. The crystal packing can be described as intercalated layers parallel to (102) in which bromide ions are located between cations (Fig. 2). Further stabilization is provided by weak intermoleculer C—H···Br hydrogen bonds (Fig. 3).

Related literature top

For the preparation of the title compound using the Ortoleva–King reaction, see: King (1944). For applications of C,N-substituted haloimidazole derivatives, see: Reepmeyer et al. (1975); Zamora et al. (2003); Schmidt & Schieffer (2003); Mashkovskii (2005); Amini et al. (2007).

Experimental top

Compound (I) was obtained from reaction of 4,5-dibromo-1,2-dimethyl-1H-imidazole dissolved in acetone with 1 eq. of bromine. After stirring at 303K during 1 h, a colorless suspension was obtained and a white solid was filtered off. A suitable crystal was obtained by slow evaporation at room temperature of a solution of (I) in a MeOH/CHCl3 mixture.

Refinement top

H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent C or N atom (with C—H = 0.96 Å, N—H = 0.88 Å and Uiso(H) = 1.5Ueq(C) or 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure viewed along the b axis.
[Figure 3] Fig. 3. Part of the crystal structure showing hydrogen bonds [N—H···Br (in red), C—H···Br (in blue)] as dashed lines.
4,5-Dibromo-1,2-dimethyl-1H-imidazol-3-ium bromide top
Crystal data top
C5H7Br2N2+·BrF(000) = 624
Mr = 334.86Dx = 2.52 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3086 reflections
a = 5.5938 (3) Åθ = 2.9–27.5°
b = 11.2522 (6) ŵ = 13.64 mm1
c = 14.4864 (9) ÅT = 150 K
β = 104.571 (3)°Prism, colourless
V = 882.48 (9) Å30.31 × 0.22 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 67
Tmin = 0.058, Tmax = 0.098k = 1412
7565 measured reflectionsl = 1817
2032 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0201P)2 + 0.142P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
2032 reflectionsΔρmax = 0.63 e Å3
94 parametersΔρmin = 0.86 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0075 (4)
Crystal data top
C5H7Br2N2+·BrV = 882.48 (9) Å3
Mr = 334.86Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.5938 (3) ŵ = 13.64 mm1
b = 11.2522 (6) ÅT = 150 K
c = 14.4864 (9) Å0.31 × 0.22 × 0.17 mm
β = 104.571 (3)°
Data collection top
Bruker APEXII
diffractometer
2032 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1747 reflections with I > 2σ(I)
Tmin = 0.058, Tmax = 0.098Rint = 0.050
7565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.03Δρmax = 0.63 e Å3
2032 reflectionsΔρmin = 0.86 e Å3
94 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.52217 (6)0.60967 (3)0.40218 (2)0.01621 (11)
Br20.12689 (6)0.86245 (3)0.44145 (2)0.01726 (11)
N20.7783 (5)0.7167 (2)0.57813 (19)0.0142 (6)
N50.5520 (5)0.8641 (3)0.5998 (2)0.0171 (6)
H50.49870.92660.62510.021*
C10.7626 (6)0.8069 (3)0.6365 (2)0.0163 (7)
C30.5709 (6)0.7178 (3)0.5019 (2)0.0141 (7)
C40.4301 (6)0.8096 (3)0.5154 (2)0.0140 (7)
C60.9445 (7)0.8397 (3)0.7253 (2)0.0222 (8)
H6A0.98790.77060.76470.033*
H6B0.87450.89860.75870.033*
H6C1.08960.87130.71030.033*
C70.9765 (7)0.6294 (3)0.5945 (3)0.0214 (8)
H7A1.10620.65310.64830.032*
H7B1.04030.62420.53900.032*
H7C0.91370.55320.60690.032*
Br30.58756 (6)0.58078 (3)0.77871 (2)0.01713 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0170 (2)0.01589 (19)0.01515 (19)0.00097 (14)0.00295 (14)0.00101 (12)
Br20.01324 (19)0.0185 (2)0.01989 (19)0.00293 (14)0.00389 (14)0.00221 (13)
N20.0086 (14)0.0175 (15)0.0156 (14)0.0021 (12)0.0013 (11)0.0037 (11)
N50.0193 (16)0.0141 (15)0.0185 (15)0.0040 (12)0.0060 (12)0.0026 (11)
C10.0153 (18)0.0171 (18)0.0162 (17)0.0055 (14)0.0031 (14)0.0020 (14)
C30.0124 (17)0.0172 (17)0.0123 (16)0.0017 (14)0.0022 (13)0.0011 (13)
C40.0107 (17)0.0173 (18)0.0138 (16)0.0015 (14)0.0029 (13)0.0020 (13)
C60.021 (2)0.025 (2)0.0182 (18)0.0087 (16)0.0008 (15)0.0019 (15)
C70.0156 (19)0.023 (2)0.024 (2)0.0058 (15)0.0019 (16)0.0075 (14)
Br30.0163 (2)0.0161 (2)0.01874 (19)0.00155 (13)0.00405 (14)0.00052 (13)
Geometric parameters (Å, º) top
Br1—C31.855 (3)C1—C61.472 (5)
Br2—C41.861 (3)C3—C41.343 (5)
N2—C11.338 (4)C6—H6A0.9600
N2—C31.386 (4)C6—H6B0.9600
N2—C71.456 (4)C6—H6C0.9600
N5—C11.329 (4)C7—H7A0.9600
N5—C41.385 (4)C7—H7B0.9600
N5—H50.8800C7—H7C0.9600
C1—N2—C3108.8 (3)N5—C4—Br2122.8 (2)
C1—N2—C7125.3 (3)C1—C6—H6A109.5
C3—N2—C7125.9 (3)C1—C6—H6B109.5
C1—N5—C4109.2 (3)H6A—C6—H6B109.5
C1—N5—H5125.4C1—C6—H6C109.5
C4—N5—H5125.4H6A—C6—H6C109.5
N5—C1—N2107.9 (3)H6B—C6—H6C109.5
N5—C1—C6125.2 (3)N2—C7—H7A109.5
N2—C1—C6127.0 (3)N2—C7—H7B109.5
C4—C3—N2107.1 (3)H7A—C7—H7B109.5
C4—C3—Br1129.9 (2)N2—C7—H7C109.5
N2—C3—Br1123.0 (2)H7A—C7—H7C109.5
C3—C4—N5107.0 (3)H7B—C7—H7C109.5
C3—C4—Br2130.2 (2)
C4—N5—C1—N20.3 (4)C1—N2—C3—Br1178.4 (2)
C4—N5—C1—C6179.1 (3)C7—N2—C3—Br13.8 (5)
C3—N2—C1—N50.4 (4)N2—C3—C4—N50.0 (4)
C7—N2—C1—N5177.4 (3)Br1—C3—C4—N5178.5 (2)
C3—N2—C1—C6179.0 (3)N2—C3—C4—Br2179.7 (2)
C7—N2—C1—C63.2 (5)Br1—C3—C4—Br21.7 (5)
C1—N2—C3—C40.2 (4)C1—N5—C4—C30.2 (4)
C7—N2—C3—C4177.5 (3)C1—N5—C4—Br2180.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···Br3i0.882.353.216 (3)168
C6—H6A···Br2ii0.962.903.796 (3)156
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H7Br2N2+·Br
Mr334.86
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)5.5938 (3), 11.2522 (6), 14.4864 (9)
β (°) 104.571 (3)
V3)882.48 (9)
Z4
Radiation typeMo Kα
µ (mm1)13.64
Crystal size (mm)0.31 × 0.22 × 0.17
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.058, 0.098
No. of measured, independent and
observed [I > 2σ(I)] reflections
7565, 2032, 1747
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.060, 1.03
No. of reflections2032
No. of parameters94
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.86

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···Br3i0.882.353.216 (3)168.00
C6—H6A···Br2ii0.962.903.796 (3)156.00
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+3/2, z+1/2.
 

Acknowledgements

We are grateful to all personel of the PHYSYNOR Laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

References

First citationAmini, M., Foroumadi, A., Vosooghi, M., Vahdatizadeh, H. R. & Shafiee, A. (2007). Asian J. Chem. 19, 4679–4683.  CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKing, L. C. (1944). J. Am. Chem. Soc. 66, 894–895.  CrossRef CAS Google Scholar
First citationMashkovskii, M. D. (2005). Drugs, p. 444. Moscow: Novaya Volna.  Google Scholar
First citationReepmeyer, J. C., Kirk, K. L. & Cohen, L. A. (1975). Tetrahedron Lett. pp. 4107–4110.  CrossRef Google Scholar
First citationSchmidt, B. & Schieffer, B. (2003). J. Med. Chem. 46, 2261–2270.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZamora, J., Afzelius, L. & Cruciani, G. (2003). J. Med. Chem. 46, 2313–2324.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1391
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds