organic compounds
4,5-Dibromo-1,2-dimethyl-1H-imidazol-3-ium bromide
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, bLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title salt, C5H7Br2N2+·Br−, the cation and anion are connected by an N—H⋯Br hydrogen bond. In the crystal, there are intercalated layers parallel to (10-2) in which bromide ions are located between the cations. Weak intermolecular C—H⋯Br hydrogen bonds are also observed.
Related literature
For the preparation of the title compound using the Ortoleva–King reaction, see: King (1944). For applications of C,N-substituted haloimidazole derivatives, see: Reepmeyer et al. (1975); Zamora et al. (2003); Schmidt & Schieffer (2003); Mashkovskii (2005); Amini et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812015310/lh5448sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812015310/lh5448Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812015310/lh5448Isup3.cml
Compound (I) was obtained from reaction of 4,5-dibromo-1,2-dimethyl-1H-imidazole dissolved in acetone with 1 eq. of bromine. After stirring at 303K during 1 h, a colorless suspension was obtained and a white solid was filtered off. A suitable crystal was obtained by slow evaporation at room temperature of a solution of (I) in a MeOH/CHCl3 mixture.
H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent C or N atom (with C—H = 0.96 Å, N—H = 0.88 Å and Uiso(H) = 1.5Ueq(C) or 1.2Ueq(N).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C5H7Br2N2+·Br− | F(000) = 624 |
Mr = 334.86 | Dx = 2.52 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3086 reflections |
a = 5.5938 (3) Å | θ = 2.9–27.5° |
b = 11.2522 (6) Å | µ = 13.64 mm−1 |
c = 14.4864 (9) Å | T = 150 K |
β = 104.571 (3)° | Prism, colourless |
V = 882.48 (9) Å3 | 0.31 × 0.22 × 0.17 mm |
Z = 4 |
Bruker APEXII diffractometer | 1747 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −6→7 |
Tmin = 0.058, Tmax = 0.098 | k = −14→12 |
7565 measured reflections | l = −18→17 |
2032 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.0201P)2 + 0.142P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.002 |
2032 reflections | Δρmax = 0.63 e Å−3 |
94 parameters | Δρmin = −0.86 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0075 (4) |
C5H7Br2N2+·Br− | V = 882.48 (9) Å3 |
Mr = 334.86 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.5938 (3) Å | µ = 13.64 mm−1 |
b = 11.2522 (6) Å | T = 150 K |
c = 14.4864 (9) Å | 0.31 × 0.22 × 0.17 mm |
β = 104.571 (3)° |
Bruker APEXII diffractometer | 2032 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1747 reflections with I > 2σ(I) |
Tmin = 0.058, Tmax = 0.098 | Rint = 0.050 |
7565 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.060 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.63 e Å−3 |
2032 reflections | Δρmin = −0.86 e Å−3 |
94 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.52217 (6) | 0.60967 (3) | 0.40218 (2) | 0.01621 (11) | |
Br2 | 0.12689 (6) | 0.86245 (3) | 0.44145 (2) | 0.01726 (11) | |
N2 | 0.7783 (5) | 0.7167 (2) | 0.57813 (19) | 0.0142 (6) | |
N5 | 0.5520 (5) | 0.8641 (3) | 0.5998 (2) | 0.0171 (6) | |
H5 | 0.4987 | 0.9266 | 0.6251 | 0.021* | |
C1 | 0.7626 (6) | 0.8069 (3) | 0.6365 (2) | 0.0163 (7) | |
C3 | 0.5709 (6) | 0.7178 (3) | 0.5019 (2) | 0.0141 (7) | |
C4 | 0.4301 (6) | 0.8096 (3) | 0.5154 (2) | 0.0140 (7) | |
C6 | 0.9445 (7) | 0.8397 (3) | 0.7253 (2) | 0.0222 (8) | |
H6A | 0.9879 | 0.7706 | 0.7647 | 0.033* | |
H6B | 0.8745 | 0.8986 | 0.7587 | 0.033* | |
H6C | 1.0896 | 0.8713 | 0.7103 | 0.033* | |
C7 | 0.9765 (7) | 0.6294 (3) | 0.5945 (3) | 0.0214 (8) | |
H7A | 1.1062 | 0.6531 | 0.6483 | 0.032* | |
H7B | 1.0403 | 0.6242 | 0.5390 | 0.032* | |
H7C | 0.9137 | 0.5532 | 0.6069 | 0.032* | |
Br3 | 0.58756 (6) | 0.58078 (3) | 0.77871 (2) | 0.01713 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0170 (2) | 0.01589 (19) | 0.01515 (19) | 0.00097 (14) | 0.00295 (14) | −0.00101 (12) |
Br2 | 0.01324 (19) | 0.0185 (2) | 0.01989 (19) | 0.00293 (14) | 0.00389 (14) | 0.00221 (13) |
N2 | 0.0086 (14) | 0.0175 (15) | 0.0156 (14) | −0.0021 (12) | 0.0013 (11) | 0.0037 (11) |
N5 | 0.0193 (16) | 0.0141 (15) | 0.0185 (15) | −0.0040 (12) | 0.0060 (12) | −0.0026 (11) |
C1 | 0.0153 (18) | 0.0171 (18) | 0.0162 (17) | −0.0055 (14) | 0.0031 (14) | 0.0020 (14) |
C3 | 0.0124 (17) | 0.0172 (17) | 0.0123 (16) | −0.0017 (14) | 0.0022 (13) | 0.0011 (13) |
C4 | 0.0107 (17) | 0.0173 (18) | 0.0138 (16) | −0.0015 (14) | 0.0029 (13) | −0.0020 (13) |
C6 | 0.021 (2) | 0.025 (2) | 0.0182 (18) | −0.0087 (16) | 0.0008 (15) | −0.0019 (15) |
C7 | 0.0156 (19) | 0.023 (2) | 0.024 (2) | 0.0058 (15) | 0.0019 (16) | 0.0075 (14) |
Br3 | 0.0163 (2) | 0.0161 (2) | 0.01874 (19) | −0.00155 (13) | 0.00405 (14) | −0.00052 (13) |
Br1—C3 | 1.855 (3) | C1—C6 | 1.472 (5) |
Br2—C4 | 1.861 (3) | C3—C4 | 1.343 (5) |
N2—C1 | 1.338 (4) | C6—H6A | 0.9600 |
N2—C3 | 1.386 (4) | C6—H6B | 0.9600 |
N2—C7 | 1.456 (4) | C6—H6C | 0.9600 |
N5—C1 | 1.329 (4) | C7—H7A | 0.9600 |
N5—C4 | 1.385 (4) | C7—H7B | 0.9600 |
N5—H5 | 0.8800 | C7—H7C | 0.9600 |
C1—N2—C3 | 108.8 (3) | N5—C4—Br2 | 122.8 (2) |
C1—N2—C7 | 125.3 (3) | C1—C6—H6A | 109.5 |
C3—N2—C7 | 125.9 (3) | C1—C6—H6B | 109.5 |
C1—N5—C4 | 109.2 (3) | H6A—C6—H6B | 109.5 |
C1—N5—H5 | 125.4 | C1—C6—H6C | 109.5 |
C4—N5—H5 | 125.4 | H6A—C6—H6C | 109.5 |
N5—C1—N2 | 107.9 (3) | H6B—C6—H6C | 109.5 |
N5—C1—C6 | 125.2 (3) | N2—C7—H7A | 109.5 |
N2—C1—C6 | 127.0 (3) | N2—C7—H7B | 109.5 |
C4—C3—N2 | 107.1 (3) | H7A—C7—H7B | 109.5 |
C4—C3—Br1 | 129.9 (2) | N2—C7—H7C | 109.5 |
N2—C3—Br1 | 123.0 (2) | H7A—C7—H7C | 109.5 |
C3—C4—N5 | 107.0 (3) | H7B—C7—H7C | 109.5 |
C3—C4—Br2 | 130.2 (2) | ||
C4—N5—C1—N2 | −0.3 (4) | C1—N2—C3—Br1 | 178.4 (2) |
C4—N5—C1—C6 | 179.1 (3) | C7—N2—C3—Br1 | −3.8 (5) |
C3—N2—C1—N5 | 0.4 (4) | N2—C3—C4—N5 | 0.0 (4) |
C7—N2—C1—N5 | −177.4 (3) | Br1—C3—C4—N5 | −178.5 (2) |
C3—N2—C1—C6 | −179.0 (3) | N2—C3—C4—Br2 | −179.7 (2) |
C7—N2—C1—C6 | 3.2 (5) | Br1—C3—C4—Br2 | 1.7 (5) |
C1—N2—C3—C4 | −0.2 (4) | C1—N5—C4—C3 | 0.2 (4) |
C7—N2—C3—C4 | 177.5 (3) | C1—N5—C4—Br2 | 180.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5···Br3i | 0.88 | 2.35 | 3.216 (3) | 168 |
C6—H6A···Br2ii | 0.96 | 2.90 | 3.796 (3) | 156 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H7Br2N2+·Br− |
Mr | 334.86 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 5.5938 (3), 11.2522 (6), 14.4864 (9) |
β (°) | 104.571 (3) |
V (Å3) | 882.48 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 13.64 |
Crystal size (mm) | 0.31 × 0.22 × 0.17 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.058, 0.098 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7565, 2032, 1747 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.060, 1.03 |
No. of reflections | 2032 |
No. of parameters | 94 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.86 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5···Br3i | 0.88 | 2.35 | 3.216 (3) | 168.00 |
C6—H6A···Br2ii | 0.96 | 2.90 | 3.796 (3) | 156.00 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, −y+3/2, z+1/2. |
Acknowledgements
We are grateful to all personel of the PHYSYNOR Laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.
References
Amini, M., Foroumadi, A., Vosooghi, M., Vahdatizadeh, H. R. & Shafiee, A. (2007). Asian J. Chem. 19, 4679–4683. CAS Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
King, L. C. (1944). J. Am. Chem. Soc. 66, 894–895. CrossRef CAS Google Scholar
Mashkovskii, M. D. (2005). Drugs, p. 444. Moscow: Novaya Volna. Google Scholar
Reepmeyer, J. C., Kirk, K. L. & Cohen, L. A. (1975). Tetrahedron Lett. pp. 4107–4110. CrossRef Google Scholar
Schmidt, B. & Schieffer, B. (2003). J. Med. Chem. 46, 2261–2270. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zamora, J., Afzelius, L. & Cruciani, G. (2003). J. Med. Chem. 46, 2313–2324. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Imidazole is an important synthon for the synthesis of diverse derivatives and various condensed heterocycles. The C,N-substituted haloimidazole derivatives have shown a high pharmacological activity (Zamora et al., 2003; Schmidt et al., 2003) and some have found practical use in medicine (Mashkovskii, 2005; Amini et al., 2007; Reepmeyer et al., 1975). Halo- and dihaloimidazoles form salts with mineral acids and picrates. The nitrates and picrates, which crystallize readily from water and alcohols, are quite often used for the additional characterization of compounds being studied. In this paper, we report the structure determination of 4,5-dibromo-1,2-dimethyl-1H-imidazolium bromide (I) resulting from an unexpected reaction of 1,2-dimethyl-1H-imidazole with bromine in acetone in a modified Ortoleva-King conditions reaction (King, 1944).
The molecular structure of (I) is shown in Fig. 1. The asymmetric unit of title molecule, (C5H7N2Br2)+, Br-, contains a 4,5-dibromo-1,2-dimethylimidazolium cation and bromide anion linked by an intermolecular N—H···Br hydrogen bond. The crystal packing can be described as intercalated layers parallel to (102) in which bromide ions are located between cations (Fig. 2). Further stabilization is provided by weak intermoleculer C—H···Br hydrogen bonds (Fig. 3).