organic compounds
3-Carbamoyl-1-(2-nitrobenzyl)pyridinium bromide
aDepartment of Fine Chemistry, Seoul National University of Science & Technology, Seoul 139-743, Republic of Korea, bClean Energy Research Center, Korea Institute of Science & Technology, Seoul 130-650, Republic of Korea, and cDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@seoultech.ac.kr, ymeekim@ewha.ac.kr
In the title compound, C13H12N3O3+·Br−, the benzene and pyridinium rings form a dihedral angle of 82.0 (1)°. In the crystal, N—H⋯Br and N—H⋯O hydrogen bonds link the components into chains along [001]. In addition, weak C—H⋯O and C—H⋯Br hydrogen bonds are observed.
Related literature
The title compound was prepared as an NAD+ (nicotinamide adenine dinucleotide) model. For effective regeneration systems for co-enzymes (e.g. NADH), see: Hollmann et al. (2001); Lee et al. (2011); Maenaka et al. (2012); Park et al. (2008); Ruppert et al. (1988); Zhu et al. (2006). For the mechanisms of redox interconversions (NADH/NAD+), see: Zhu et al. (2003); Song et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812015917/lh5450sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812015917/lh5450Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812015917/lh5450Isup3.cml
Nicotinamide (123.4 mg, 1 mmol) was dissolved in 10 ml acetonitrile. After stirring for a few minutes, 2-nitrobenzyl bromide (220.4 mg, 1 mmol) was carefully added to the reaction mixture. The solution was stirred for 3 h at 353K. The precipitate was filtered, washed three times with methylene chloride, and dried under vacuum. Crystals suitable for X-ray analysis were obtained from a methanol soution of the title compound in a few days.
H atoms bonded to C atoms were placed in calculated positions with C—H distances of 0.93 Å for aromatic C atoms and 0.97 Å for a methylene C atoms. They were included in the
in riding-motion approximation with Uiso(H) = 1.2Ueq(C). The positions of N—H atoms of the amine were refined with N—H = 0.860 (2) Å and Uiso(H) =1.2Ueq(N).Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure with displacement ellipsoids shown at the 50% probability level. |
C13H12N3O3+·Br− | F(000) = 680 |
Mr = 338.17 | Dx = 1.636 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 11909 reflections |
a = 17.576 (4) Å | θ = 2.7–27.6° |
b = 7.9990 (16) Å | µ = 3.01 mm−1 |
c = 10.152 (2) Å | T = 293 K |
β = 105.88 (3)° | Block, colorless |
V = 1372.8 (5) Å3 | 0.15 × 0.15 × 0.10 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 2684 independent reflections |
Radiation source: fine-focus sealed tube | 2081 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −21→21 |
Tmin = 0.661, Tmax = 0.753 | k = −9→9 |
7399 measured reflections | l = −10→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0287P)2 + 0.3626P] where P = (Fo2 + 2Fc2)/3 |
2684 reflections | (Δ/σ)max = 0.001 |
187 parameters | Δρmax = 0.36 e Å−3 |
2 restraints | Δρmin = −0.38 e Å−3 |
C13H12N3O3+·Br− | V = 1372.8 (5) Å3 |
Mr = 338.17 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 17.576 (4) Å | µ = 3.01 mm−1 |
b = 7.9990 (16) Å | T = 293 K |
c = 10.152 (2) Å | 0.15 × 0.15 × 0.10 mm |
β = 105.88 (3)° |
Bruker SMART CCD diffractometer | 2684 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 2081 reflections with I > 2σ(I) |
Tmin = 0.661, Tmax = 0.753 | Rint = 0.034 |
7399 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 2 restraints |
wR(F2) = 0.086 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.36 e Å−3 |
2684 reflections | Δρmin = −0.38 e Å−3 |
187 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.299001 (18) | 0.53711 (4) | 0.36253 (3) | 0.04487 (13) | |
N1 | 0.51901 (17) | 0.2174 (4) | 0.9902 (3) | 0.0556 (7) | |
H1A | 0.5634 (10) | 0.181 (4) | 1.041 (3) | 0.067* | |
H1B | 0.506 (2) | 0.193 (5) | 0.9045 (10) | 0.067* | |
N2 | 0.09788 (14) | 0.6339 (3) | 1.1536 (2) | 0.0374 (6) | |
N3 | 0.27770 (14) | 0.5158 (3) | 0.9346 (2) | 0.0333 (5) | |
O1 | 0.48818 (12) | 0.3289 (3) | 1.1724 (2) | 0.0515 (6) | |
O2 | 0.11894 (12) | 0.7569 (3) | 1.1007 (2) | 0.0468 (5) | |
O3 | 0.06762 (15) | 0.6449 (3) | 1.2487 (3) | 0.0648 (7) | |
C1 | 0.47318 (17) | 0.3051 (4) | 1.0485 (3) | 0.0396 (7) | |
C2 | 0.40031 (16) | 0.3825 (3) | 0.9549 (3) | 0.0330 (6) | |
C3 | 0.38718 (18) | 0.3982 (4) | 0.8142 (3) | 0.0411 (7) | |
H3 | 0.4249 | 0.3592 | 0.7728 | 0.049* | |
C4 | 0.31891 (19) | 0.4710 (4) | 0.7355 (3) | 0.0444 (8) | |
H4 | 0.3101 | 0.4811 | 0.6412 | 0.053* | |
C5 | 0.26429 (18) | 0.5282 (4) | 0.7981 (3) | 0.0397 (7) | |
H5 | 0.2175 | 0.5760 | 0.7459 | 0.048* | |
C6 | 0.34414 (16) | 0.4456 (3) | 1.0136 (3) | 0.0329 (6) | |
H6 | 0.3523 | 0.4396 | 1.1080 | 0.040* | |
C7 | 0.21733 (16) | 0.5811 (3) | 0.9988 (3) | 0.0340 (7) | |
H7A | 0.1859 | 0.6657 | 0.9398 | 0.041* | |
H7B | 0.2436 | 0.6335 | 1.0854 | 0.041* | |
C8 | 0.16318 (15) | 0.4428 (3) | 1.0230 (3) | 0.0298 (6) | |
C9 | 0.16802 (17) | 0.2812 (4) | 0.9765 (3) | 0.0372 (7) | |
H9 | 0.2030 | 0.2585 | 0.9246 | 0.045* | |
C10 | 0.12235 (18) | 0.1532 (4) | 1.0052 (3) | 0.0443 (8) | |
H10 | 0.1267 | 0.0464 | 0.9717 | 0.053* | |
C11 | 0.07044 (18) | 0.1813 (4) | 1.0828 (3) | 0.0429 (7) | |
H11 | 0.0404 | 0.0941 | 1.1028 | 0.051* | |
C12 | 0.06342 (17) | 0.3402 (4) | 1.1305 (3) | 0.0394 (7) | |
H12 | 0.0284 | 0.3615 | 1.1825 | 0.047* | |
C13 | 0.10931 (15) | 0.4683 (3) | 1.1001 (3) | 0.0307 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0467 (2) | 0.0500 (2) | 0.0367 (2) | −0.00517 (15) | 0.00936 (14) | 0.00137 (15) |
N1 | 0.0406 (17) | 0.066 (2) | 0.0561 (19) | 0.0114 (15) | 0.0063 (15) | −0.0072 (16) |
N2 | 0.0361 (14) | 0.0353 (15) | 0.0415 (15) | 0.0064 (11) | 0.0120 (11) | −0.0022 (12) |
N3 | 0.0364 (14) | 0.0322 (13) | 0.0346 (13) | −0.0001 (10) | 0.0152 (11) | 0.0025 (10) |
O1 | 0.0402 (12) | 0.0710 (16) | 0.0435 (14) | 0.0001 (11) | 0.0117 (10) | 0.0118 (12) |
O2 | 0.0491 (13) | 0.0332 (12) | 0.0613 (15) | −0.0007 (10) | 0.0202 (11) | −0.0023 (11) |
O3 | 0.0894 (19) | 0.0559 (16) | 0.0689 (16) | 0.0129 (13) | 0.0549 (15) | −0.0026 (13) |
C1 | 0.0320 (16) | 0.0412 (18) | 0.047 (2) | −0.0050 (13) | 0.0134 (14) | 0.0044 (15) |
C2 | 0.0314 (15) | 0.0317 (16) | 0.0369 (16) | −0.0060 (12) | 0.0111 (12) | 0.0002 (13) |
C3 | 0.0445 (18) | 0.0419 (17) | 0.0431 (18) | −0.0009 (14) | 0.0224 (15) | −0.0049 (15) |
C4 | 0.053 (2) | 0.0526 (19) | 0.0301 (16) | 0.0042 (16) | 0.0158 (14) | 0.0022 (15) |
C5 | 0.0418 (17) | 0.0398 (17) | 0.0348 (17) | 0.0044 (14) | 0.0056 (14) | 0.0070 (14) |
C6 | 0.0343 (15) | 0.0359 (17) | 0.0289 (15) | −0.0028 (13) | 0.0092 (12) | 0.0045 (12) |
C7 | 0.0352 (16) | 0.0331 (16) | 0.0373 (16) | 0.0037 (12) | 0.0160 (13) | 0.0013 (12) |
C8 | 0.0278 (14) | 0.0323 (16) | 0.0274 (14) | 0.0010 (11) | 0.0044 (11) | 0.0011 (12) |
C9 | 0.0395 (16) | 0.0374 (17) | 0.0363 (17) | 0.0032 (13) | 0.0131 (13) | −0.0050 (13) |
C10 | 0.0530 (19) | 0.0298 (17) | 0.0490 (19) | −0.0039 (14) | 0.0121 (15) | −0.0054 (14) |
C11 | 0.0438 (18) | 0.0368 (18) | 0.0486 (19) | −0.0129 (14) | 0.0134 (15) | 0.0015 (15) |
C12 | 0.0330 (16) | 0.0449 (19) | 0.0425 (18) | −0.0027 (13) | 0.0141 (13) | 0.0028 (14) |
C13 | 0.0307 (14) | 0.0283 (14) | 0.0320 (15) | −0.0001 (12) | 0.0067 (12) | −0.0019 (12) |
N1—C1 | 1.324 (4) | C4—H4 | 0.9300 |
N1—H1A | 0.860 (2) | C5—H5 | 0.9300 |
N1—H1B | 0.860 (2) | C6—H6 | 0.9300 |
N2—O2 | 1.226 (3) | C7—C8 | 1.523 (4) |
N2—O3 | 1.227 (3) | C7—H7A | 0.9700 |
N2—C13 | 1.466 (4) | C7—H7B | 0.9700 |
N3—C5 | 1.344 (4) | C8—C9 | 1.387 (4) |
N3—C6 | 1.345 (4) | C8—C13 | 1.398 (4) |
N3—C7 | 1.484 (3) | C9—C10 | 1.381 (4) |
O1—C1 | 1.227 (4) | C9—H9 | 0.9300 |
C1—C2 | 1.503 (4) | C10—C11 | 1.377 (4) |
C2—C6 | 1.381 (4) | C10—H10 | 0.9300 |
C2—C3 | 1.389 (4) | C11—C12 | 1.377 (4) |
C3—C4 | 1.376 (4) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | C12—C13 | 1.390 (4) |
C4—C5 | 1.367 (4) | C12—H12 | 0.9300 |
C1—N1—H1A | 119 (2) | C2—C6—H6 | 120.0 |
C1—N1—H1B | 124 (3) | N3—C7—C8 | 111.6 (2) |
H1A—N1—H1B | 118 (4) | N3—C7—H7A | 109.3 |
O2—N2—O3 | 122.4 (3) | C8—C7—H7A | 109.3 |
O2—N2—C13 | 118.3 (2) | N3—C7—H7B | 109.3 |
O3—N2—C13 | 119.3 (3) | C8—C7—H7B | 109.3 |
C5—N3—C6 | 121.6 (2) | H7A—C7—H7B | 108.0 |
C5—N3—C7 | 118.8 (2) | C9—C8—C13 | 116.1 (2) |
C6—N3—C7 | 119.6 (2) | C9—C8—C7 | 121.5 (2) |
O1—C1—N1 | 123.7 (3) | C13—C8—C7 | 122.2 (2) |
O1—C1—C2 | 119.4 (3) | C10—C9—C8 | 121.8 (3) |
N1—C1—C2 | 116.9 (3) | C10—C9—H9 | 119.1 |
C6—C2—C3 | 118.3 (3) | C8—C9—H9 | 119.1 |
C6—C2—C1 | 117.6 (3) | C11—C10—C9 | 120.9 (3) |
C3—C2—C1 | 124.1 (3) | C11—C10—H10 | 119.5 |
C4—C3—C2 | 120.6 (3) | C9—C10—H10 | 119.5 |
C4—C3—H3 | 119.7 | C10—C11—C12 | 119.3 (3) |
C2—C3—H3 | 119.7 | C10—C11—H11 | 120.4 |
C5—C4—C3 | 118.9 (3) | C12—C11—H11 | 120.4 |
C5—C4—H4 | 120.6 | C11—C12—C13 | 119.3 (3) |
C3—C4—H4 | 120.6 | C11—C12—H12 | 120.4 |
N3—C5—C4 | 120.5 (3) | C13—C12—H12 | 120.4 |
N3—C5—H5 | 119.8 | C12—C13—C8 | 122.6 (3) |
C4—C5—H5 | 119.8 | C12—C13—N2 | 115.9 (2) |
N3—C6—C2 | 120.1 (3) | C8—C13—N2 | 121.4 (2) |
N3—C6—H6 | 120.0 | ||
O1—C1—C2—C6 | −14.2 (4) | N3—C7—C8—C13 | 170.4 (2) |
N1—C1—C2—C6 | 167.5 (3) | C13—C8—C9—C10 | −0.2 (4) |
O1—C1—C2—C3 | 164.0 (3) | C7—C8—C9—C10 | 176.1 (3) |
N1—C1—C2—C3 | −14.3 (4) | C8—C9—C10—C11 | −0.6 (5) |
C6—C2—C3—C4 | −1.7 (4) | C9—C10—C11—C12 | 0.9 (5) |
C1—C2—C3—C4 | −179.9 (3) | C10—C11—C12—C13 | −0.5 (5) |
C2—C3—C4—C5 | 0.2 (5) | C11—C12—C13—C8 | −0.3 (4) |
C6—N3—C5—C4 | −0.8 (4) | C11—C12—C13—N2 | 179.5 (3) |
C7—N3—C5—C4 | 179.3 (3) | C9—C8—C13—C12 | 0.7 (4) |
C3—C4—C5—N3 | 1.0 (5) | C7—C8—C13—C12 | −175.6 (3) |
C5—N3—C6—C2 | −0.7 (4) | C9—C8—C13—N2 | −179.2 (2) |
C7—N3—C6—C2 | 179.2 (2) | C7—C8—C13—N2 | 4.6 (4) |
C3—C2—C6—N3 | 1.9 (4) | O2—N2—C13—C12 | −160.2 (3) |
C1—C2—C6—N3 | −179.8 (2) | O3—N2—C13—C12 | 19.6 (4) |
C5—N3—C7—C8 | 97.2 (3) | O2—N2—C13—C8 | 19.7 (4) |
C6—N3—C7—C8 | −82.7 (3) | O3—N2—C13—C8 | −160.5 (3) |
N3—C7—C8—C9 | −5.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O1i | 0.86 (1) | 2.30 (1) | 3.143 (4) | 168 (4) |
N1—H1A···Br1ii | 0.86 (1) | 2.61 (1) | 3.454 (3) | 166 (3) |
C4—H4···Br1 | 0.93 | 2.82 | 3.743 (3) | 173 |
C7—H7B···Br1iii | 0.97 | 2.82 | 3.595 (3) | 137 |
C5—H5···O2iv | 0.93 | 2.36 | 3.271 (4) | 167 |
C3—H3···O1i | 0.93 | 2.27 | 3.150 (4) | 157 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x, y, z+1; (iv) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H12N3O3+·Br− |
Mr | 338.17 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 17.576 (4), 7.9990 (16), 10.152 (2) |
β (°) | 105.88 (3) |
V (Å3) | 1372.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.01 |
Crystal size (mm) | 0.15 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.661, 0.753 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7399, 2684, 2081 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.086, 1.04 |
No. of reflections | 2684 |
No. of parameters | 187 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.38 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O1i | 0.860 (2) | 2.296 (9) | 3.143 (4) | 168 (4) |
N1—H1A···Br1ii | 0.860 (2) | 2.614 (9) | 3.454 (3) | 166 (3) |
C4—H4···Br1 | 0.93 | 2.82 | 3.743 (3) | 173.2 |
C7—H7B···Br1iii | 0.97 | 2.82 | 3.595 (3) | 137.3 |
C5—H5···O2iv | 0.93 | 2.36 | 3.271 (4) | 166.7 |
C3—H3···O1i | 0.93 | 2.27 | 3.150 (4) | 157.2 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x, y, z+1; (iv) x, −y+3/2, z−1/2. |
Acknowledgements
Financial support from the Converging Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011 K000675 and 2011 K000660), and Seoul National University of Science & Technology is gratefully acknowledged.
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hollmann, F., Schmid, A. & Steckhan, E. (2001). Angew. Chem. Int. Ed. 40, 169–171. Web of Science CrossRef CAS Google Scholar
Lee, H. J., Lee, S. H., Park, C. B. & Won, K. (2011). Chem. Commun. 47, 12538–12540. Web of Science CrossRef CAS Google Scholar
Maenaka, Y., Suenobu, T. & Fukuzumi, S. (2012). J. Am. Chem. Soc. 134, 367–374. Web of Science CSD CrossRef CAS PubMed Google Scholar
Park, C. B., Lee, S. H., Subramanian, E., Kale, B. B., Lee, S. M. & Baeg, J.-O. (2008). Chem. Commun. pp. 5423–5425. Web of Science CrossRef Google Scholar
Ruppert, R., Herrmann, S. & Steckhan, E. (1988). J. Chem. Soc. Chem. Commun. pp. 1150–1151. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, H.-K., Lee, S. H., Won, K., Park, J. H., Kim, J. K., Lee, H., Moon, S.-J., Kim, D. K. & Park, C. B. (2008). Angew. Chem. Int. Ed. 47, 1749–1752. Web of Science CrossRef CAS Google Scholar
Zhu, X.-Q., Yang, Y., Zhang, M. & Cheng, J.-P. (2003). J. Am. Chem. Soc. 125, 15298–15299. Web of Science CrossRef PubMed CAS Google Scholar
Zhu, X.-Q., Zhang, J.-Y. & Cheng, J.-P. (2006). J. Org. Chem. 71, 7007–7015. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
One of the most important challenges in applying mono-oxygenases reactions in vitro is to find an effective regeneration system for the necessary co-enzyme (mostly NAD(P)H) (Hollmann et al., 2001; Lee et al.,2011; Maenaka et al., 2012; Park et al., 2008; Ruppert et al., 1988; Zhu et al., 2006). The well established methods for the regeneration of the nicotinamide co-enzyme mainly consist of an enzyme-coupled approach utilizing formate dehydrogenase or glucose-6-phosphate dehydrogenase. Because the redox coenzyme couple NADH/NAD+ is ubiquitous and controls so much of our oxidation/reduction nature, there has been a long-standing interest in the mechanisms of the redox interconversions (Zhu et al., 2003). The high cost of these co-factors, however, is prohibitive of industrialization of many promising enzymatic processes. An efficient method of their in situ regeneration is the only means for making the processes economically and industrially feasible (Song et al., 2008). Therefore, many researchers have given considerable attention to the chemistry of NADH and its models (Hollmann et al., 2001). In this work, we have synthesized the title compound as a NAD+ model and report herein its crystal structure.
The molecular structure of the title compound is shown in Fig. 1. The benzene ring (C8-C13) and pyridine ring (N3/C2-C6) form a dihedral angle of 82.0 (1)°. In the crystal, intermolecular N—H···Br and N—H···O hydrogen bonds link the components to form chains along [001]. In addition, weak C—H···O and C—H···Br hydrogen bonds are observed.