organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1414-o1415

2-Amino-4-(4-chloro­phen­yl)-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, University of Leicester, Leicester, England, and dDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 4 April 2012; accepted 11 April 2012; online 18 April 2012)

In the title moleclue, C16H13ClN2O2, the cyclo­hexene ring is in a sofa conformation. The pyran ring is essentialy planar [maximum deviation = 0.038 (2) Å] and forms a dihedral angle of 89.68 (10)° with the benzene ring. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with R22(12) ring motifs. These dimers are further linked by N—H⋯O hydrogen bonds into chains along [110]. Weak C—H⋯O hydrogen bonds are also present.

Related literature

For pharmaceutical background to 2-amino-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbonitrile derivatives, see: Gao et al. (2001[Gao, Y., Tu, S.-J., Zhou, J.-F. & Shi, D.-Q. (2001). J. Org. Chem. 7, 535-537.]); Xu et al. (2011[Xu, J.-C., Li, W.-M., Zheng, H., Lai, Y.-F. & Zhang, P.-F. (2011). Tetrahedron, 67, 9582-9587.]); Luan et al. (2011[Luan, C.-J., Wang, J.-Q., Zhang, G.-H., Wang, W., Tang, S.-G. & Guo, C. (2011). J. Org. Chem. 31, 860-864.]); Wang & Zhu, (2007[Wang, J. & Zhu, S.-L. (2007). Acta Cryst. E63, o4190.]); O'Callaghan et al. (1995[O'Callaghan, C. N., McMurry, T. B. H. & O'Brien, J. E. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 417-420.]). For similar structures, see: Tu et al. (2001[Tu, S.-J., Deng, X., Fang, Y.-Y., Guo, Y.-M., Du, M. & Liu, X.-H. (2001). Acta Cryst. E57, o358-o359.]); Qiao et al. (2011[Qiao, Y., Kong, L., Chen, G., Li, S. & Gao, Z. (2011). Acta Cryst. E67, o3099.]); Kong et al. (2011[Kong, L., Ju, X., Qiao, Y., Zhang, J. & Gao, Z. (2011). Acta Cryst. E67, o3100.]); Hu et al. (2012[Hu, X.-L., Wang, Z.-X., Wang, F.-M. & Han, G.-F. (2012). Acta Cryst. E68, o823.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClN2O2

  • Mr = 300.73

  • Monoclinic, C 2/c

  • a = 13.753 (4) Å

  • b = 11.077 (3) Å

  • c = 19.370 (6) Å

  • β = 107.856 (5)°

  • V = 2808.7 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 150 K

  • 0.43 × 0.27 × 0.07 mm

Data collection
  • Bruker APEX 2000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.914, Tmax = 0.981

  • 10643 measured reflections

  • 2755 independent reflections

  • 2124 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.122

  • S = 1.02

  • 2755 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.88 2.25 3.132 (3) 177
N1—H1B⋯O1ii 0.88 2.15 2.955 (2) 151
C3—H3⋯N2iii 0.95 2.48 3.226 (3) 135
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The existence of an amino group and cyano group in tetrahydrochromenone compounds make them great substrates for building up multi organic transformations (Luan et al., 2011), preparing poly-functionalized substituted pyran derivatives (Wang & Zhu, 2007) and designing of poly-heterocyclic compounds (O'Callaghan et al.,1995). Moreover, such derivatives of tetrahydrochromenones have attracted strong interests of pharmacists and biologists because of their potential application in the treatment of psoriatic arthritis and rheumatoid arthritis (Xu et al., 2011). They also have wide biological applications such as anti-anaphylaxis, anti-achondroplasty and anti-cancer activity (Gao et al., 2001). To continue to our interest in the synthesis of biologically active compounds we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The (C8–C13) cyclohexene ring is in a sofa conformation with puckering parameters (Cremer & Pople, 1975) of QT = 0.466 (3) Å, θ = 58.3 (2) ° and ϕ = 173.5 (3) °. The pyran ring (O2/C7/C8/C13—C15) is essentialy planar with a maximum deviation of 0.038 (2) Å for C7, and forms a dihedral angle of 89.68 (10)° with the benzene ring (C1-C6). The bond lengths (Allen et al., 1987) and angles are similar to those for reported structures (Tu et al., 2001; Qiao et al., 2011; Kong et al., 2011; Hu et al., 2012).

In the crystal, molecules are linked by pairs of intermolecular N—H···N hydrogen bonds, forming inversion dimers with R 2 2(12) ring motifs (Bernstein et al., 1995; Etter et al., 1990), and these dimers are connected by weak C—H···N and N—H···O hydrogen bonds, generating one-dimensional chains along [110] (Table 1, Fig. 2).

Related literature top

For pharmaceutical background to 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile derivatives, see: Gao et al. (2001); Xu et al. (2011); Luan et al. (2011); Wang & Zhu, (2007); O'Callaghan et al. (1995). For similar structures, see: Tu et al. (2001); Qiao et al. (2011); Kong et al. (2011); Hu et al. (2012). For standard bond lengths, see: Allen et al. (1987). For geometric analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The title compound (I) was formed during a three component reaction of an equimolar ratios of (4-chlorobenzylidene)propanedinitrile (1 mmol), (4-aminophenyl)methanol (1 mmol) and cyclohexane-1,3-dione (1 mmol). The reaction mixture was heated in ethanol at 351 K. The reaction was monitored with TLC until completed after 5 h, then left in fume cupboard at room temperature until solvent evaporated. The resulting solid mass was recrystallized from ethanol to afford good quality crystals suitable for X-ray diffraction. [Yield: 83%, m.p.: 513 K].

Refinement top

All H atoms were positioned geometrically and refined using as riding model with N—H = 0.88 Å for NH2, C—H = 0.95 Å for aromatic, C—H = 0.99 Å for methylene and C—H = 1.00 Å for methine, and with Uiso(H) = 1.2Ueq(C,N)

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds shown as dashed lines. H atoms not involved in H-bonding are omitted for clarity. Symmetry codes: (b) -x+1, -y+1, -z+1; (c) x+1/2, y+1/2, z; (d) -x+1/2, -y+1/2, -z+1.
2-Amino-4-(4-chlorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3- carbonitrile top
Crystal data top
C16H13ClN2O2F(000) = 1248
Mr = 300.73Dx = 1.422 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 833 reflections
a = 13.753 (4) Åθ = 2.2–28.2°
b = 11.077 (3) ŵ = 0.28 mm1
c = 19.370 (6) ÅT = 150 K
β = 107.856 (5)°Plate, colourless
V = 2808.7 (14) Å30.43 × 0.27 × 0.07 mm
Z = 8
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
2755 independent reflections
Radiation source: fine-focus sealed tube2124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
phi and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.914, Tmax = 0.981k = 1313
10643 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0649P)2]
where P = (Fo2 + 2Fc2)/3
2755 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H13ClN2O2V = 2808.7 (14) Å3
Mr = 300.73Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.753 (4) ŵ = 0.28 mm1
b = 11.077 (3) ÅT = 150 K
c = 19.370 (6) Å0.43 × 0.27 × 0.07 mm
β = 107.856 (5)°
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
2755 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2124 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.981Rint = 0.063
10643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
2755 reflectionsΔρmin = 0.23 e Å3
190 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12556 (5)0.07141 (5)0.22343 (4)0.0510 (2)
O10.04515 (11)0.45923 (13)0.41373 (8)0.0395 (5)
O20.20240 (10)0.74455 (12)0.39806 (8)0.0320 (4)
N10.37218 (13)0.72339 (15)0.44001 (9)0.0347 (6)
N20.41870 (14)0.40760 (17)0.49094 (11)0.0440 (7)
C10.13012 (15)0.19541 (19)0.28039 (12)0.0337 (7)
C20.12955 (16)0.17534 (19)0.35014 (13)0.0374 (7)
C30.13788 (15)0.27229 (18)0.39614 (12)0.0332 (7)
C40.14684 (14)0.38895 (17)0.37333 (11)0.0274 (6)
C50.14494 (16)0.40667 (18)0.30168 (11)0.0348 (7)
C60.13673 (16)0.3107 (2)0.25501 (12)0.0378 (7)
C70.16120 (14)0.49363 (17)0.42613 (11)0.0270 (6)
C80.08175 (14)0.59034 (17)0.40049 (10)0.0274 (6)
C90.02395 (15)0.55980 (18)0.39594 (11)0.0311 (7)
C100.10332 (17)0.6565 (2)0.37309 (14)0.0470 (8)
C110.07795 (17)0.7496 (2)0.32396 (14)0.0465 (8)
C120.02871 (15)0.80147 (18)0.35920 (12)0.0360 (7)
C130.10411 (15)0.70407 (18)0.38660 (11)0.0286 (6)
C140.28249 (15)0.66677 (18)0.42763 (10)0.0285 (6)
C150.26669 (14)0.54985 (17)0.44117 (11)0.0271 (6)
C160.35154 (15)0.47326 (19)0.46903 (11)0.0304 (7)
H1A0.429600.683700.459100.0420*
H1B0.373700.800300.429100.0420*
H20.123500.095700.366500.0450*
H30.137500.258800.444500.0400*
H50.149400.486300.284700.0420*
H60.135600.323600.206300.0450*
H70.155700.461200.473000.0320*
H10A0.110200.697300.416800.0560*
H10B0.169900.618900.347400.0560*
H11A0.128900.815600.314300.0560*
H11B0.081100.711800.277000.0560*
H12A0.049200.850400.323200.0430*
H12B0.027500.855000.399800.0430*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0542 (4)0.0358 (4)0.0625 (4)0.0042 (3)0.0171 (3)0.0181 (3)
O10.0357 (8)0.0312 (9)0.0545 (10)0.0086 (7)0.0182 (7)0.0011 (7)
O20.0301 (8)0.0212 (7)0.0432 (8)0.0032 (6)0.0090 (6)0.0040 (6)
N10.0288 (9)0.0249 (9)0.0471 (11)0.0069 (7)0.0070 (8)0.0050 (8)
N20.0314 (10)0.0353 (11)0.0633 (13)0.0011 (8)0.0116 (9)0.0139 (10)
C10.0238 (10)0.0288 (12)0.0460 (13)0.0027 (9)0.0071 (9)0.0091 (10)
C20.0363 (12)0.0224 (11)0.0545 (14)0.0011 (9)0.0155 (10)0.0015 (10)
C30.0345 (12)0.0275 (11)0.0383 (12)0.0036 (9)0.0120 (9)0.0030 (9)
C40.0224 (10)0.0224 (10)0.0366 (11)0.0036 (8)0.0078 (8)0.0000 (8)
C50.0405 (12)0.0240 (11)0.0390 (12)0.0003 (9)0.0111 (10)0.0028 (9)
C60.0410 (12)0.0350 (13)0.0359 (12)0.0044 (10)0.0095 (10)0.0001 (10)
C70.0279 (10)0.0222 (10)0.0309 (11)0.0038 (8)0.0091 (8)0.0027 (8)
C80.0268 (10)0.0234 (11)0.0319 (11)0.0009 (8)0.0089 (8)0.0005 (8)
C90.0303 (11)0.0285 (12)0.0344 (11)0.0032 (9)0.0099 (9)0.0045 (9)
C100.0290 (12)0.0374 (13)0.0759 (18)0.0014 (10)0.0182 (11)0.0005 (12)
C110.0323 (13)0.0334 (13)0.0691 (17)0.0046 (10)0.0085 (12)0.0082 (12)
C120.0365 (12)0.0261 (11)0.0441 (13)0.0016 (9)0.0104 (10)0.0042 (10)
C130.0282 (11)0.0261 (11)0.0316 (11)0.0014 (9)0.0095 (8)0.0025 (9)
C140.0278 (11)0.0277 (11)0.0287 (11)0.0018 (8)0.0066 (8)0.0004 (8)
C150.0256 (10)0.0230 (10)0.0311 (11)0.0035 (8)0.0064 (8)0.0008 (8)
C160.0273 (11)0.0262 (11)0.0356 (12)0.0077 (9)0.0067 (9)0.0032 (9)
Geometric parameters (Å, º) top
Cl1—C11.751 (2)C8—C131.343 (3)
O1—C91.227 (3)C9—C101.496 (3)
O2—C131.376 (3)C10—C111.515 (3)
O2—C141.377 (3)C11—C121.528 (3)
N1—C141.338 (3)C12—C131.478 (3)
N2—C161.150 (3)C14—C151.352 (3)
N1—H1B0.8800C15—C161.410 (3)
N1—H1A0.8800C2—H20.9500
C1—C61.381 (3)C3—H30.9500
C1—C21.372 (3)C5—H50.9500
C2—C31.378 (3)C6—H60.9500
C3—C41.383 (3)C7—H71.0000
C4—C71.518 (3)C10—H10A0.9900
C4—C51.394 (3)C10—H10B0.9900
C5—C61.378 (3)C11—H11A0.9900
C7—C81.502 (3)C11—H11B0.9900
C7—C151.523 (3)C12—H12A0.9900
C8—C91.469 (3)C12—H12B0.9900
C13—O2—C14118.95 (15)O2—C14—C15121.62 (19)
H1A—N1—H1B120.00C7—C15—C14123.71 (18)
C14—N1—H1A120.00C7—C15—C16117.10 (17)
C14—N1—H1B120.00C14—C15—C16119.17 (19)
Cl1—C1—C2118.92 (16)N2—C16—C15177.8 (2)
C2—C1—C6121.4 (2)C1—C2—H2120.00
Cl1—C1—C6119.64 (17)C3—C2—H2120.00
C1—C2—C3119.1 (2)C2—C3—H3119.00
C2—C3—C4121.3 (2)C4—C3—H3119.00
C3—C4—C7120.28 (18)C4—C5—H5119.00
C3—C4—C5118.24 (18)C6—C5—H5119.00
C5—C4—C7121.46 (17)C1—C6—H6121.00
C4—C5—C6121.16 (19)C5—C6—H6121.00
C1—C6—C5118.8 (2)C4—C7—H7108.00
C8—C7—C15109.00 (16)C8—C7—H7108.00
C4—C7—C8113.00 (17)C15—C7—H7108.00
C4—C7—C15111.14 (16)C9—C10—H10A109.00
C7—C8—C9117.51 (17)C9—C10—H10B109.00
C7—C8—C13123.17 (19)C11—C10—H10A109.00
C9—C8—C13119.15 (18)C11—C10—H10B109.00
O1—C9—C8120.54 (19)H10A—C10—H10B108.00
C8—C9—C10118.15 (18)C10—C11—H11A110.00
O1—C9—C10121.2 (2)C10—C11—H11B110.00
C9—C10—C11112.7 (2)C12—C11—H11A109.00
C10—C11—C12110.5 (2)C12—C11—H11B110.00
C11—C12—C13110.97 (17)H11A—C11—H11B108.00
O2—C13—C8123.17 (18)C11—C12—H12A109.00
O2—C13—C12111.50 (17)C11—C12—H12B109.00
C8—C13—C12125.3 (2)C13—C12—H12A109.00
N1—C14—C15127.46 (19)C13—C12—H12B109.00
O2—C14—N1110.92 (17)H12A—C12—H12B108.00
C13—O2—C14—N1175.33 (16)C4—C7—C8—C13117.7 (2)
C13—O2—C14—C154.4 (3)C15—C7—C8—C9168.89 (17)
C14—O2—C13—C82.4 (3)C15—C7—C8—C136.4 (3)
C14—O2—C13—C12176.27 (17)C8—C7—C15—C16177.19 (17)
Cl1—C1—C2—C3177.03 (18)C13—C8—C9—C102.3 (3)
Cl1—C1—C6—C5177.07 (18)C7—C8—C13—C12178.03 (19)
C2—C1—C6—C51.3 (3)C9—C8—C13—O2171.79 (18)
C6—C1—C2—C31.4 (3)C7—C8—C13—O23.5 (3)
C1—C2—C3—C40.1 (3)C7—C8—C9—O11.2 (3)
C2—C3—C4—C7177.0 (2)C7—C8—C9—C10177.81 (18)
C2—C3—C4—C51.4 (3)C13—C8—C9—O1174.36 (19)
C3—C4—C7—C15112.8 (2)C9—C8—C13—C126.7 (3)
C3—C4—C7—C8124.3 (2)O1—C9—C10—C11154.9 (2)
C3—C4—C5—C61.5 (3)C8—C9—C10—C1128.4 (3)
C5—C4—C7—C857.4 (3)C9—C10—C11—C1253.7 (3)
C5—C4—C7—C1565.5 (2)C10—C11—C12—C1348.8 (2)
C7—C4—C5—C6176.9 (2)C11—C12—C13—O2161.65 (18)
C4—C5—C6—C10.1 (3)C11—C12—C13—C819.7 (3)
C4—C7—C15—C14120.7 (2)O2—C14—C15—C70.6 (3)
C4—C7—C15—C1657.6 (2)O2—C14—C15—C16177.71 (18)
C8—C7—C15—C144.5 (3)N1—C14—C15—C7179.11 (19)
C4—C7—C8—C967.0 (2)N1—C14—C15—C162.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.882.253.132 (3)177
N1—H1B···O1ii0.882.152.955 (2)151
C3—H3···N2iii0.952.483.226 (3)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H13ClN2O2
Mr300.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)13.753 (4), 11.077 (3), 19.370 (6)
β (°) 107.856 (5)
V3)2808.7 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.43 × 0.27 × 0.07
Data collection
DiffractometerBruker APEX 2000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.914, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10643, 2755, 2124
Rint0.063
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.122, 1.02
No. of reflections2755
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.882.253.132 (3)177
N1—H1B···O1ii0.882.152.955 (2)151
C3—H3···N2iii0.952.483.226 (3)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors gratefully thank the Higher Education Ministries in both the Arab Republic of Egypt and the Republic of Azerbaijan for their financial support to conduct this project. They also extend their thanks to Manchester Metropolitan University for facilitating this study.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGao, Y., Tu, S.-J., Zhou, J.-F. & Shi, D.-Q. (2001). J. Org. Chem. 7, 535–537.  Google Scholar
First citationHu, X.-L., Wang, Z.-X., Wang, F.-M. & Han, G.-F. (2012). Acta Cryst. E68, o823.  CSD CrossRef IUCr Journals Google Scholar
First citationKong, L., Ju, X., Qiao, Y., Zhang, J. & Gao, Z. (2011). Acta Cryst. E67, o3100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuan, C.-J., Wang, J.-Q., Zhang, G.-H., Wang, W., Tang, S.-G. & Guo, C. (2011). J. Org. Chem. 31, 860–864.  CAS Google Scholar
First citationO'Callaghan, C. N., McMurry, T. B. H. & O'Brien, J. E. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 417–420.  Google Scholar
First citationQiao, Y., Kong, L., Chen, G., Li, S. & Gao, Z. (2011). Acta Cryst. E67, o3099.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, S.-J., Deng, X., Fang, Y.-Y., Guo, Y.-M., Du, M. & Liu, X.-H. (2001). Acta Cryst. E57, o358–o359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, J. & Zhu, S.-L. (2007). Acta Cryst. E63, o4190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, J.-C., Li, W.-M., Zheng, H., Lai, Y.-F. & Zhang, P.-F. (2011). Tetrahedron, 67, 9582–9587.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1414-o1415
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds