organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1456

(Z)-1,3-Bis(4-chloro­phen­yl)-2-(1H-1,2,4-triazol-1-yl)prop-2-en-1-one

aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 8 April 2012; accepted 13 April 2012; online 21 April 2012)

In the title mol­ecule, C17H11Cl2N3O, the C=C bond connecting the triazole and 4-chloro­phenyl groups adopts a Z geometry. The dihedral angles formed by the triazole ring and the 4-chloro substituted benzene rings are 67.3 (1) and 59.1 (1)°. The dihedral angle between the two benzene rings is 73.5 (1)°.

Related literature

For the pharmacological activity of triazole compounds, see: Wang & Zhou (2011[Wang, Y. & Zhou, C.-H. (2011). Sci. Sin. Chim. 41, 1429-1456.]); Zhou & Wang (2012[Zhou, C.-H. & Wang, Y. (2012). Curr. Med. Chem. 19, 239-280.]). For the biological activity of chalcones, see: Jin et al. (2010[Jin, L., Yan, C.-Y., Gan, L.-L. & Zhou, C.-H. (2010). Chin. J. Biochem. Pharm., 31, 358-361.]). For related structures, see: Wang et al. (2009[Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.]); Yan et al. (2009[Yan, C.-Y., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2054.]). For the synthesis, see: Yin et al. (2012[Yin, B.-T., Lv, J.-S., Wang, Y. & Zhou, C.-H. (2012). Acta Cryst. E68, o1197.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11Cl2N3O

  • Mr = 344.19

  • Triclinic, [P \overline 1]

  • a = 5.588 (3) Å

  • b = 11.850 (7) Å

  • c = 12.653 (8) Å

  • α = 74.787 (10)°

  • β = 88.884 (9)°

  • γ = 86.461 (9)°

  • V = 807.1 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.941

  • 4414 measured reflections

  • 3104 independent reflections

  • 2458 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.02

  • 3104 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Triazoles as an important type of five-membered aromatic heterocycles have been paid increasing attention for their broad bioactive spectrum in medicinal chemistry (Wang et al., 2011; Zhou et al., 2012). The incorporation of a triazole ring into chalcone skeletons could largely improve bioactivities like antimicrobial, anticancer, antiviral and anti-inflammatory (Jin et al., 2010). In view of this, we have synthesized and reported some triazolylchalcones (Wang et al., 2009; Yan et al., 2009; Yin et al., 2012). Herein, the crystal structure of title compound (I) is reported.

The molecular structure of (I) is shown in Fig. 1. The C8C11 bond adopts a Z geometry. The atoms in the region of the double bond have an essentially planar arrangement i.e. the r.m.s. deviation the atoms C7/C8/C11/C12/N1 is 0.025 Å. The torsion angles of C12–C11C8–C7 and C12–C11C8–N1 are -174.66 (17)° and 5.7 (3)°. The dihedral angles formed by the triazole ring and the 4-chloro-substituted benzene rings are 67.3 (1)° (C1-C6) and 59.1 (1)° (C12-C17), respectively. The dihedral angle between the two benzene rings is 73.5 (1)°.

Related literature top

For the pharmacological activity of triazole compounds, see: Wang & Zhou (2011); Zhou & Wang (2012). For the biological activity of chalcones, see: Jin et al. (2010). For related structures, see: Wang et al. (2009); Yan et al. (2009). For the synthesis, see: Yin et al. (2012).

Experimental top

Compound (I) was prepared according to the procedure of Yin et al. (2012). Single crystals were grown by slow evaporation of a solution of (I) in ethyl acetate and petroleum ether (1:3, V/V) at room temperature.

Refinement top

H atoms were placed at calculated position with C—H = 0.93 Å. The Uiso(H) values were set equal to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the displacement ellipsoids at the 50% probability level.
(Z)-1,3-Bis(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)prop-2-en- 1-one top
Crystal data top
C17H11Cl2N3OZ = 2
Mr = 344.19F(000) = 352
Triclinic, P1Dx = 1.416 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.588 (3) ÅCell parameters from 2086 reflections
b = 11.850 (7) Åθ = 3.3–27.2°
c = 12.653 (8) ŵ = 0.41 mm1
α = 74.787 (10)°T = 296 K
β = 88.884 (9)°Block, yellow
γ = 86.461 (9)°0.22 × 0.18 × 0.15 mm
V = 807.1 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3104 independent reflections
Radiation source: fine-focus sealed tube2458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.915, Tmax = 0.941k = 714
4414 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.1439P]
where P = (Fo2 + 2Fc2)/3
3104 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H11Cl2N3Oγ = 86.461 (9)°
Mr = 344.19V = 807.1 (8) Å3
Triclinic, P1Z = 2
a = 5.588 (3) ÅMo Kα radiation
b = 11.850 (7) ŵ = 0.41 mm1
c = 12.653 (8) ÅT = 296 K
α = 74.787 (10)°0.22 × 0.18 × 0.15 mm
β = 88.884 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
3104 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2458 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.941Rint = 0.013
4414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
3104 reflectionsΔρmin = 0.26 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.58438 (14)0.60011 (6)0.17465 (5)0.1010 (3)
Cl20.14916 (9)0.80981 (5)0.64259 (4)0.07445 (19)
C11.4458 (4)0.6784 (2)0.08893 (15)0.0703 (6)
C21.5551 (4)0.7730 (2)0.07247 (16)0.0719 (6)
H2A1.69750.79640.10850.086*
C31.4505 (4)0.83280 (18)0.00168 (16)0.0654 (5)
H3A1.52350.89690.01000.079*
C41.2364 (3)0.79806 (16)0.05257 (14)0.0532 (4)
C51.1286 (4)0.70284 (18)0.03344 (15)0.0637 (5)
H5A0.98610.67880.06910.076*
C61.2320 (4)0.6435 (2)0.03847 (17)0.0733 (6)
H6A1.15790.58080.05250.088*
C71.1296 (3)0.87101 (16)0.12331 (15)0.0557 (4)
C80.9716 (3)0.81969 (14)0.21872 (14)0.0487 (4)
C91.1937 (3)0.63087 (16)0.31196 (15)0.0582 (5)
H9A1.34390.65940.31540.070*
C100.9086 (4)0.52367 (17)0.32519 (19)0.0736 (6)
H10A0.82220.45660.34250.088*
C110.8102 (3)0.88957 (15)0.25517 (14)0.0522 (4)
H11A0.79810.96690.21310.063*
C120.6506 (3)0.86366 (14)0.35025 (13)0.0475 (4)
C130.6915 (3)0.77059 (16)0.44322 (14)0.0554 (4)
H13A0.82480.71900.44520.067*
C140.5387 (3)0.75364 (16)0.53190 (15)0.0564 (4)
H14A0.56840.69110.59310.068*
C150.3405 (3)0.83027 (15)0.52953 (14)0.0524 (4)
C160.2943 (3)0.92271 (17)0.43910 (16)0.0637 (5)
H16A0.15950.97330.43730.076*
C170.4495 (3)0.93960 (15)0.35136 (15)0.0586 (5)
H17A0.41981.00330.29110.070*
N10.9986 (2)0.69650 (11)0.26747 (11)0.0466 (3)
N20.8100 (3)0.62670 (13)0.27539 (14)0.0621 (4)
N31.1434 (3)0.52092 (14)0.34991 (15)0.0737 (5)
O11.1701 (3)0.97469 (12)0.10500 (12)0.0776 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1303 (6)0.1091 (5)0.0559 (3)0.0454 (4)0.0020 (3)0.0198 (3)
Cl20.0717 (3)0.0773 (4)0.0663 (3)0.0119 (3)0.0173 (2)0.0097 (3)
C10.0846 (14)0.0750 (14)0.0403 (10)0.0208 (11)0.0000 (9)0.0016 (9)
C20.0633 (12)0.0815 (15)0.0578 (12)0.0082 (11)0.0113 (9)0.0014 (10)
C30.0629 (11)0.0632 (12)0.0620 (12)0.0054 (9)0.0100 (9)0.0024 (9)
C40.0524 (10)0.0568 (10)0.0446 (9)0.0020 (8)0.0029 (7)0.0033 (8)
C50.0644 (12)0.0749 (13)0.0514 (11)0.0129 (10)0.0062 (9)0.0143 (9)
C60.0929 (16)0.0733 (13)0.0536 (11)0.0080 (11)0.0012 (11)0.0158 (10)
C70.0547 (10)0.0540 (11)0.0542 (10)0.0096 (8)0.0019 (8)0.0052 (8)
C80.0478 (9)0.0483 (9)0.0477 (9)0.0061 (7)0.0004 (7)0.0079 (7)
C90.0458 (9)0.0616 (11)0.0635 (11)0.0033 (8)0.0018 (8)0.0117 (9)
C100.0772 (14)0.0486 (11)0.0915 (16)0.0111 (10)0.0164 (12)0.0116 (10)
C110.0581 (10)0.0459 (9)0.0495 (9)0.0011 (8)0.0021 (8)0.0070 (7)
C120.0507 (9)0.0439 (9)0.0483 (9)0.0003 (7)0.0032 (7)0.0131 (7)
C130.0527 (10)0.0569 (10)0.0523 (10)0.0133 (8)0.0012 (8)0.0102 (8)
C140.0606 (11)0.0529 (10)0.0495 (10)0.0077 (8)0.0020 (8)0.0051 (8)
C150.0532 (10)0.0534 (10)0.0514 (10)0.0010 (8)0.0013 (8)0.0161 (8)
C160.0636 (11)0.0584 (11)0.0634 (12)0.0193 (9)0.0022 (9)0.0113 (9)
C170.0719 (12)0.0465 (9)0.0517 (10)0.0112 (8)0.0022 (9)0.0061 (8)
N10.0400 (7)0.0463 (7)0.0520 (8)0.0052 (6)0.0049 (6)0.0101 (6)
N20.0496 (8)0.0545 (9)0.0815 (11)0.0141 (7)0.0071 (8)0.0146 (8)
N30.0744 (11)0.0538 (10)0.0842 (12)0.0101 (8)0.0069 (9)0.0065 (8)
O10.0930 (10)0.0584 (9)0.0789 (10)0.0199 (7)0.0262 (8)0.0121 (7)
Geometric parameters (Å, º) top
Cl1—C11.745 (2)C9—N11.342 (2)
Cl2—C151.743 (2)C9—H9A0.9300
C1—C21.372 (3)C10—N21.311 (3)
C1—C61.379 (3)C10—N31.351 (3)
C2—C31.381 (3)C10—H10A0.9300
C2—H2A0.9300C11—C121.461 (2)
C3—C41.398 (3)C11—H11A0.9300
C3—H3A0.9300C12—C131.397 (2)
C4—C51.389 (3)C12—C171.398 (2)
C4—C71.492 (3)C13—C141.377 (2)
C5—C61.386 (3)C13—H13A0.9300
C5—H5A0.9300C14—C151.384 (2)
C6—H6A0.9300C14—H14A0.9300
C7—O11.224 (2)C15—C161.377 (3)
C7—C81.499 (2)C16—C171.375 (3)
C8—C111.343 (2)C16—H16A0.9300
C8—N11.428 (2)C17—H17A0.9300
C9—N31.311 (3)N1—N21.366 (2)
C2—C1—C6121.6 (2)N2—C10—H10A122.1
C2—C1—Cl1118.80 (18)N3—C10—H10A122.1
C6—C1—Cl1119.6 (2)C8—C11—C12130.38 (16)
C1—C2—C3119.1 (2)C8—C11—H11A114.8
C1—C2—H2A120.5C12—C11—H11A114.8
C3—C2—H2A120.5C13—C12—C17117.31 (16)
C2—C3—C4120.7 (2)C13—C12—C11124.22 (15)
C2—C3—H3A119.6C17—C12—C11118.39 (15)
C4—C3—H3A119.6C14—C13—C12121.34 (16)
C5—C4—C3118.93 (19)C14—C13—H13A119.3
C5—C4—C7123.74 (16)C12—C13—H13A119.3
C3—C4—C7117.23 (18)C13—C14—C15119.61 (16)
C6—C5—C4120.40 (19)C13—C14—H14A120.2
C6—C5—H5A119.8C15—C14—H14A120.2
C4—C5—H5A119.8C16—C15—C14120.58 (17)
C1—C6—C5119.2 (2)C16—C15—Cl2119.85 (14)
C1—C6—H6A120.4C14—C15—Cl2119.56 (14)
C5—C6—H6A120.4C17—C16—C15119.36 (17)
O1—C7—C4120.59 (16)C17—C16—H16A120.3
O1—C7—C8118.20 (17)C15—C16—H16A120.3
C4—C7—C8121.21 (16)C16—C17—C12121.78 (17)
C11—C8—N1122.27 (15)C16—C17—H17A119.1
C11—C8—C7119.71 (16)C12—C17—H17A119.1
N1—C8—C7118.02 (14)C9—N1—N2109.33 (15)
N3—C9—N1110.62 (17)C9—N1—C8129.36 (14)
N3—C9—H9A124.7N2—N1—C8121.31 (13)
N1—C9—H9A124.7C10—N2—N1101.71 (16)
N2—C10—N3115.89 (18)C9—N3—C10102.45 (16)
C6—C1—C2—C31.4 (3)C17—C12—C13—C140.6 (3)
Cl1—C1—C2—C3177.75 (14)C11—C12—C13—C14177.44 (17)
C1—C2—C3—C40.0 (3)C12—C13—C14—C150.2 (3)
C2—C3—C4—C50.6 (3)C13—C14—C15—C160.4 (3)
C2—C3—C4—C7177.11 (17)C13—C14—C15—Cl2179.19 (14)
C3—C4—C5—C60.1 (3)C14—C15—C16—C171.1 (3)
C7—C4—C5—C6176.17 (18)Cl2—C15—C16—C17178.52 (15)
C2—C1—C6—C52.1 (3)C15—C16—C17—C121.6 (3)
Cl1—C1—C6—C5177.06 (15)C13—C12—C17—C161.3 (3)
C4—C5—C6—C11.4 (3)C11—C12—C17—C16178.32 (18)
C5—C4—C7—O1150.2 (2)N3—C9—N1—N20.5 (2)
C3—C4—C7—O126.1 (3)N3—C9—N1—C8178.82 (17)
C5—C4—C7—C830.1 (3)C11—C8—N1—C9122.4 (2)
C3—C4—C7—C8153.57 (17)C7—C8—N1—C958.0 (2)
O1—C7—C8—C1125.1 (3)C11—C8—N1—N256.9 (2)
C4—C7—C8—C11155.23 (17)C7—C8—N1—N2122.75 (17)
O1—C7—C8—N1155.21 (17)N3—C10—N2—N10.0 (2)
C4—C7—C8—N124.5 (2)C9—N1—N2—C100.3 (2)
N1—C8—C11—C125.7 (3)C8—N1—N2—C10179.08 (16)
C7—C8—C11—C12174.66 (17)N1—C9—N3—C100.5 (2)
C8—C11—C12—C1323.4 (3)N2—C10—N3—C90.3 (3)
C8—C11—C12—C17159.82 (19)

Experimental details

Crystal data
Chemical formulaC17H11Cl2N3O
Mr344.19
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.588 (3), 11.850 (7), 12.653 (8)
α, β, γ (°)74.787 (10), 88.884 (9), 86.461 (9)
V3)807.1 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.915, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
4414, 3104, 2458
Rint0.013
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.02
No. of reflections3104
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 21172181), the Key Program of the Natural Science Foundation of Chongqing (CSTC2012jjB10026), the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP 20110182110007) and the Research Funds for the Central Universities (XDJK2011D007, XDJK2012B026).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, L., Yan, C.-Y., Gan, L.-L. & Zhou, C.-H. (2010). Chin. J. Biochem. Pharm., 31, 358–361.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y. & Zhou, C.-H. (2011). Sci. Sin. Chim. 41, 1429–1456.  CrossRef Google Scholar
First citationYan, C.-Y., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, B.-T., Lv, J.-S., Wang, Y. & Zhou, C.-H. (2012). Acta Cryst. E68, o1197.  CSD CrossRef IUCr Journals Google Scholar
First citationZhou, C.-H. & Wang, Y. (2012). Curr. Med. Chem. 19, 239–280.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1456
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds