organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1468-o1469

rac-3-exo-Ammonio-7-anti-carb­­oxy­tri­cyclo­[2.2.1.0.2,6]heptane-3-endo-carboxyl­ate monohydrate

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, 4111, Australia, and cEskitis Institute, Griffith University, Nathan, Queensland, 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 10 April 2012; accepted 14 April 2012; online 21 April 2012)

The racemic title compound, C9H11NO4·H2O, a tricyclic rearranged amino­norbornane dicarb­oxy­lic acid, is a conformationally rigid analogue of glutamic acid and exists as an ammonium-carboxyl­ate zwitterion, with the bridghead carb­oxy­lic acid group anti-related. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds involving the ammonium, carb­oxy­lic acid and water donor groups with both water and carboxyl O-atom acceptors give a three-dimensional framework structure.

Related literature

For background to G-protein receptors, see: Liu & Doller (2011[Liu, K. G. & Doller, D. (2011). Annual Reports in Medicinal Chemistry, pp. 3-17. Amsterdam: Elsevier.]). For the Strecher and Bucherer–Bergs reactions, see: Strecher (1850[Strecher, A. (1850). Ann. Chem. Pharm. 75, 27-45.]); Bucherer & Steiner (1934[Bucherer, H. T. & Steiner, W. J. (1934). J. Prakt. Chem. 140, 291-316.]). For the synthesis of amino­norbornane carb­oxy­lic acids, see: Apgar & Ludwig (1972[Apgar, P. A. & Ludwig, M. L. (1972). J. Am. Chem. Soc. 94, 964-967.]); Tager & Christensen (1972[Tager, H. S. & Christensen, H. N. (1972). J. Am. Chem. Soc. 94, 968-972.]); Wermuth (1995[Wermuth, U. D. (1995). PhD thesis, Griffith University, Nathan, Australia.]). For the chemistry of hydantoins, see: Avendaño López & González Trigo (1985[Avendaño López, C. & González Trigo, G. (1985). Advances in Heterocyclic Chemistry, Vol. 38, edited by A. R. Katritsky, pp. 177-228. Amsterdam: Elsevier.]). For the structure of a similar monocarb­oxy­lic acid tricyclic cage compound, see: Fortier et al. (1979[Fortier, S., DeTitta, G., Fronckowiak, M., Smith, G. D. & Hauptman, H. A. (1979). Acta Cryst. B35, 2062-2066.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO4·H2O

  • Mr = 215.20

  • Monoclinic, P 21 /c

  • a = 7.7565 (2) Å

  • b = 11.4103 (2) Å

  • c = 10.3339 (3) Å

  • β = 94.888 (2)°

  • V = 911.27 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 223 K

  • 0.30 × 0.30 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.990, Tmax = 1.000

  • 7572 measured reflections

  • 2128 independent reflections

  • 1589 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.091

  • S = 0.97

  • 2128 reflections

  • 160 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O71i 0.90 (2) 2.02 (2) 2.9161 (16) 176 (2)
O1W—H12W⋯O31ii 0.93 (2) 1.77 (2) 2.6792 (16) 168 (2)
N31—H31A⋯O31ii 0.94 (2) 1.87 (2) 2.7712 (17) 161 (2)
N31—H31B⋯O71iii 0.91 (2) 2.29 (2) 3.1261 (17) 153.0 (15)
N31—H31B⋯O72iii 0.91 (2) 2.27 (2) 3.0720 (17) 147.6 (15)
N31—H31C⋯O32iv 0.874 (18) 1.925 (17) 2.7769 (16) 164.4 (17)
O72—H72⋯O1W 0.94 (3) 1.60 (3) 2.5282 (16) 174 (3)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) x+1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

G-protein-coupled receptors (GPCRs) constitute a superfamily of proteins whose main function is to convert extracellular stimuli into intracellular signals (Liu & Doller, 2011). Metabotropic glutamate (mGu) receptors belong to the class C GPCR group and are activated by L-glutamate. The title compound, C9H11NO4. H2O (I), is a hydrated tricyclic rearranged aminonorbornane dicarboxylic acid cage compound which is a conformationally rigid analogue of glutamic acid, and was synthesized as a potential ligand for metabotropic glutamate receptors in order to explore the requirements for activity at these receptors (Wermuth, 1995). For the synthesis of amino-substituted norbornane carboxylic acids, see also Tager & Christensen (1972) and Apgar & Ludwig (1972).

The title compound exists as an ammonium carboxylate zwitterion with the C3 carboxylate group endo-oriented (Fig. 1). Note that the stereochemical assignment of exo and endo on such nortricyclic systems is somewhat arbitrary and depends on how the system is drawn. The carboxylic acid group at C7 in (I) is exo and has the acid H-atom (H72) anti-located, forming a hydrogen bond with the water molecule of solvation (Table 1). This water molecule gives intermolecular hydrogen-bonding associations with carboxyl O-atom acceptors, while the ammonium group also forms four hydrogen bonds with carboxyl O-atom acceptors. These include a symmetric cyclic N—H···O,O' head-to-tail association [graph set R21(4) (Etter et al., 1990)] which links the molecules along (100). Overall, a three-dimensional framework structure is formed (Fig. 2).

The structures of similar tricyclic norbornane compounds are rare in the crystallographic literature. The nortricyclic keto acid which served as the precursor to (IV) in the synthesis of (I) (Fig. 3) is known (Fortier et al., 1979).

Related literature top

For background to G-protein receptors, see: Liu & Doller (2011). For the Strecher and Bucherer–Bergs reactions, see: Strecher (1850); Bucherer & Steiner (1934). For the synthesis of aminonorbornane carboxylic acids, see: Apgar & Ludwig (1972); Tager & Christensen (1972); Wermuth (1995). For the chemistry of hydantoins, see: Avendaño López & González Trigo (1985). For the structure of a similar monocarboxylic acid tricyclic cage compound, see: Fortier et al. (1979). For graph-set analysis, see: Etter et al. (1990).

Experimental top

The title compound (I) was synthesized (Wermuth, 1995) by the hydrolysis with Ba(OH)2 of the diasteroisomeric hydantoin mixture (II), which was obtained by a Read synthesis (Avendaño López & González Trigo, 1985) performed on the nortricyclic keto-ester (IV) (Fig. 3). Briefly, a Strecker aminonitrile (Streker, 1850) is formed in the usual manner (50% yield) and this was converted to a hydrochloride (III) and reacted with KOCN in an acetic acid–water mixture at 273K for 1 h followed by the addition of conc. HCl and heating for a further 15 min at 273K. The product was a diastereomeric mixture of hydantoins in 49% yield after recrystallization from 50% aqueous ethanol. The stereochemistry of the amino acid moiety is the inverse (carboxylic acid group exo) of that normally formed in the Bucherer-Bergs reaction (Bucherer & Steiner, 1934). The colourless product obtained gave an elemental analysis consistent with a 0.25 hydrate but recrystallization from various solvents gave no crystals suitable for X-ray analysis. However, colourless plates of a monohydrate (I) were obtained from the attempted reaction of this partial hydrate with picrylsulfonic acid in 80% propan-2-ol-water and a specimen suitable for the X-ray analysis was cleaved from a larger crystal.

Refinement top

Ammonium and water H atoms were located in a difference Fourier map and both positional and isotropic displacenment parameters were refined. Other H atoms were included in the refinement at calculated positions [C—H = 0.97–0.98 Å] with Uiso(H) = 1.2Ueq(C), using a riding-model approximation. The relative configuration of the molecule described for (I) is C1(R), C2(S), C3(R), C4(R), C6(S), C7(R).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme of the zwitterionic title compound (I). The inter-species hydrogen bond is shown as a dashed line and displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Hydrogen-bonding (shown as dashed lines) in the three-dimensionlal structure of the title compound, viewed approximately along the c axis. The symmetry codes are as in Table 1.
[Figure 3] Fig. 3. The reaction scheme for the synthesis of the title compound.
rac-3-exo-Ammonio-7-anti- carboxytricyclo[2.2.1.02,6]heptane-3-endo-carboxylate monohydrate top
Crystal data top
C9H11NO4·H2OF(000) = 456
Mr = 215.20Dx = 1.569 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3396 reflections
a = 7.7565 (2) Åθ = 3.2–28.6°
b = 11.4103 (2) ŵ = 0.13 mm1
c = 10.3339 (3) ÅT = 223 K
β = 94.888 (2)°Plate, colourless
V = 911.27 (4) Å30.30 × 0.30 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
2128 independent reflections
Radiation source: Enhance (Mo) X-ray source1589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.077 pixels mm-1θmax = 28.6°, θmin = 3.2°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1515
Tmin = 0.990, Tmax = 1.000l = 1313
7572 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.0562P]
where P = (Fo2 + 2Fc2)/3
2128 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C9H11NO4·H2OV = 911.27 (4) Å3
Mr = 215.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7565 (2) ŵ = 0.13 mm1
b = 11.4103 (2) ÅT = 223 K
c = 10.3339 (3) Å0.30 × 0.30 × 0.15 mm
β = 94.888 (2)°
Data collection top
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
2128 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1589 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 1.000Rint = 0.026
7572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.31 e Å3
2128 reflectionsΔρmin = 0.25 e Å3
160 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O310.60834 (14)0.12616 (8)0.03042 (10)0.0217 (3)
O320.57555 (15)0.27409 (8)0.16495 (11)0.0291 (4)
O710.10727 (14)0.05736 (9)0.32326 (12)0.0311 (4)
O720.08102 (14)0.06274 (9)0.16170 (11)0.0273 (3)
N310.53370 (17)0.03193 (10)0.20183 (13)0.0166 (3)
C10.26343 (19)0.07189 (12)0.39029 (14)0.0190 (4)
C20.43453 (18)0.12186 (11)0.35275 (13)0.0165 (4)
C30.45247 (17)0.08675 (11)0.21340 (13)0.0142 (4)
C40.25626 (18)0.08423 (11)0.16738 (13)0.0152 (4)
C50.19989 (19)0.20682 (11)0.20992 (13)0.0176 (4)
C60.27559 (19)0.19863 (12)0.35020 (14)0.0184 (4)
C70.18333 (18)0.00565 (12)0.27376 (13)0.0171 (4)
C310.55486 (18)0.17107 (11)0.13073 (14)0.0163 (4)
C710.01187 (19)0.00291 (12)0.25744 (15)0.0210 (4)
O1W0.10015 (16)0.21234 (11)0.05407 (12)0.0312 (4)
H10.245900.048700.479500.0230*
H20.534700.132900.416000.0200*
H40.225100.062300.076700.0180*
H5A0.252100.269100.162700.0210*
H5B0.075100.215900.202800.0210*
H60.266100.263100.411900.0220*
H70.230800.073800.271300.0210*
H31A0.509 (3)0.0598 (15)0.117 (2)0.033 (5)*
H31B0.650 (3)0.0273 (14)0.2222 (17)0.028 (5)*
H31C0.501 (2)0.0843 (15)0.2564 (18)0.024 (4)*
H720.007 (4)0.115 (2)0.124 (2)0.063 (7)*
H11W0.108 (3)0.283 (2)0.092 (2)0.063 (7)*
H12W0.207 (3)0.1929 (19)0.026 (2)0.054 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O310.0263 (6)0.0193 (5)0.0209 (5)0.0048 (4)0.0095 (4)0.0035 (4)
O320.0346 (7)0.0157 (5)0.0393 (7)0.0075 (5)0.0158 (5)0.0080 (5)
O710.0185 (6)0.0331 (6)0.0433 (7)0.0021 (5)0.0119 (5)0.0028 (5)
O720.0153 (5)0.0251 (5)0.0410 (7)0.0032 (5)0.0002 (5)0.0035 (5)
N310.0143 (6)0.0135 (5)0.0223 (7)0.0010 (5)0.0038 (5)0.0020 (5)
C10.0167 (7)0.0230 (7)0.0175 (7)0.0017 (6)0.0032 (6)0.0026 (5)
C20.0156 (7)0.0182 (6)0.0157 (7)0.0008 (6)0.0008 (5)0.0003 (5)
C30.0126 (7)0.0126 (6)0.0176 (7)0.0006 (5)0.0020 (5)0.0021 (5)
C40.0135 (7)0.0164 (6)0.0156 (7)0.0001 (5)0.0008 (5)0.0002 (5)
C50.0167 (7)0.0160 (6)0.0203 (7)0.0025 (6)0.0030 (6)0.0009 (5)
C60.0187 (7)0.0182 (6)0.0187 (7)0.0015 (6)0.0034 (6)0.0031 (6)
C70.0140 (7)0.0158 (6)0.0220 (7)0.0021 (6)0.0038 (6)0.0026 (5)
C310.0127 (7)0.0167 (6)0.0193 (7)0.0005 (5)0.0008 (5)0.0002 (5)
C710.0172 (7)0.0168 (6)0.0294 (8)0.0010 (6)0.0047 (6)0.0055 (6)
O1W0.0263 (7)0.0294 (6)0.0394 (7)0.0032 (5)0.0118 (5)0.0012 (5)
Geometric parameters (Å, º) top
O31—C311.2580 (17)C2—C61.511 (2)
O32—C311.2341 (16)C3—C41.5556 (19)
O71—C711.2174 (19)C3—C311.5498 (19)
O72—C711.3180 (18)C4—C71.5615 (19)
O72—H720.94 (3)C4—C51.5407 (18)
O1W—H11W0.90 (2)C5—C61.520 (2)
O1W—H12W0.93 (2)C7—C711.509 (2)
N31—C31.5026 (17)C1—H10.9800
N31—H31A0.94 (2)C2—H20.9800
N31—H31B0.91 (2)C4—H40.9800
N31—H31C0.874 (18)C5—H5A0.9700
C1—C71.510 (2)C5—H5B0.9700
C1—C61.5095 (19)C6—H60.9800
C1—C21.525 (2)C7—H70.9800
C2—C31.5125 (19)
C71—O72—H72116.7 (16)C1—C7—C497.18 (11)
H11W—O1W—H12W109 (2)C4—C7—C71110.69 (11)
H31A—N31—H31B110.8 (18)O31—C31—O32125.46 (13)
C3—N31—H31C114.7 (11)O31—C31—C3114.95 (11)
C3—N31—H31A109.1 (12)O32—C31—C3119.58 (12)
C3—N31—H31B110.1 (10)O71—C71—C7125.36 (13)
H31B—N31—H31C103.1 (15)O72—C71—C7115.84 (12)
H31A—N31—H31C108.9 (16)O71—C71—O72118.79 (14)
C6—C1—C7106.96 (12)C2—C1—H1122.00
C2—C1—C7106.99 (11)C6—C1—H1122.00
C2—C1—C659.72 (9)C7—C1—H1122.00
C3—C2—C6106.15 (11)C1—C2—H2122.00
C1—C2—C659.64 (9)C3—C2—H2122.00
C1—C2—C3107.21 (11)C6—C2—H2122.00
N31—C3—C4111.41 (10)C5—C4—H4117.00
N31—C3—C31106.12 (11)C7—C4—H4117.00
N31—C3—C2112.81 (11)C3—C4—H4117.00
C2—C3—C31116.96 (11)C4—C5—H5A112.00
C4—C3—C31112.14 (11)C6—C5—H5A112.00
C2—C3—C497.41 (10)C6—C5—H5B112.00
C3—C4—C5100.95 (10)C4—C5—H5B112.00
C5—C4—C7101.06 (11)H5A—C5—H5B110.00
C3—C4—C7101.48 (10)C2—C6—H6122.00
C4—C5—C696.91 (10)C5—C6—H6122.00
C2—C6—C5107.50 (11)C1—C6—H6122.00
C1—C6—C5107.01 (11)C4—C7—H7111.00
C1—C6—C260.64 (9)C71—C7—H7111.00
C1—C7—C71116.11 (12)C1—C7—H7111.00
C6—C1—C2—C398.97 (12)C2—C3—C4—C750.96 (11)
C7—C1—C2—C31.10 (14)C31—C3—C4—C570.29 (13)
C7—C1—C2—C6100.07 (12)C31—C3—C4—C7174.09 (10)
C2—C1—C6—C5100.87 (12)N31—C3—C31—O3134.29 (16)
C7—C1—C6—C2100.12 (12)N31—C3—C31—O32146.79 (13)
C7—C1—C6—C50.76 (15)C2—C3—C31—O31161.14 (12)
C2—C1—C7—C431.88 (13)C2—C3—C31—O3219.94 (19)
C2—C1—C7—C71149.16 (12)C4—C3—C31—O3187.56 (14)
C6—C1—C7—C430.86 (13)C4—C3—C31—O3291.36 (15)
C6—C1—C7—C7186.42 (14)C3—C4—C5—C651.88 (12)
C1—C2—C3—N3186.65 (13)C7—C4—C5—C652.27 (12)
C1—C2—C3—C430.35 (12)C3—C4—C7—C151.65 (12)
C1—C2—C3—C31149.86 (11)C3—C4—C7—C71173.10 (11)
C6—C2—C3—N31149.18 (11)C5—C4—C7—C152.08 (12)
C6—C2—C3—C432.19 (12)C5—C4—C7—C7169.37 (13)
C6—C2—C3—C3187.33 (14)C4—C5—C6—C132.48 (14)
C1—C2—C6—C5100.06 (12)C4—C5—C6—C231.34 (13)
C3—C2—C6—C1100.80 (12)C1—C7—C71—O716.7 (2)
C3—C2—C6—C50.74 (14)C1—C7—C71—O72174.76 (12)
N31—C3—C4—C5170.94 (11)C4—C7—C71—O71102.86 (16)
N31—C3—C4—C767.13 (13)C4—C7—C71—O7275.74 (15)
C2—C3—C4—C552.85 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O71i0.90 (2)2.02 (2)2.9161 (16)176 (2)
O1W—H12W···O31ii0.93 (2)1.77 (2)2.6792 (16)168 (2)
N31—H31A···O31ii0.94 (2)1.87 (2)2.7712 (17)161 (2)
N31—H31B···O71iii0.91 (2)2.29 (2)3.1261 (17)153.0 (15)
N31—H31B···O72iii0.91 (2)2.27 (2)3.0720 (17)147.6 (15)
N31—H31C···O32iv0.874 (18)1.925 (17)2.7769 (16)164.4 (17)
O72—H72···O1W0.94 (3)1.60 (3)2.5282 (16)174 (3)
C5—H5A···O320.972.513.0865 (19)118
C6—H6···O72v0.982.533.1105 (17)118
C7—H7···N310.982.562.9097 (19)101
C7—H7···O32iv0.982.353.2678 (17)155
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H11NO4·H2O
Mr215.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)7.7565 (2), 11.4103 (2), 10.3339 (3)
β (°) 94.888 (2)
V3)911.27 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.30 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.990, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7572, 2128, 1589
Rint0.026
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.091, 0.97
No. of reflections2128
No. of parameters160
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O71i0.90 (2)2.02 (2)2.9161 (16)176 (2)
O1W—H12W···O31ii0.93 (2)1.77 (2)2.6792 (16)168 (2)
N31—H31A···O31ii0.94 (2)1.87 (2)2.7712 (17)161 (2)
N31—H31B···O71iii0.91 (2)2.29 (2)3.1261 (17)153.0 (15)
N31—H31B···O72iii0.91 (2)2.27 (2)3.0720 (17)147.6 (15)
N31—H31C···O32iv0.874 (18)1.925 (17)2.7769 (16)164.4 (17)
O72—H72···O1W0.94 (3)1.60 (3)2.5282 (16)174 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Science and Engineering Faculty and the University Library, Queensland University of Technology and Griffith University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationApgar, P. A. & Ludwig, M. L. (1972). J. Am. Chem. Soc. 94, 964–967.  CSD CrossRef CAS Web of Science Google Scholar
First citationAvendaño López, C. & González Trigo, G. (1985). Advances in Heterocyclic Chemistry, Vol. 38, edited by A. R. Katritsky, pp. 177–228. Amsterdam: Elsevier.  Google Scholar
First citationBucherer, H. T. & Steiner, W. J. (1934). J. Prakt. Chem. 140, 291–316.  CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFortier, S., DeTitta, G., Fronckowiak, M., Smith, G. D. & Hauptman, H. A. (1979). Acta Cryst. B35, 2062–2066.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLiu, K. G. & Doller, D. (2011). Annual Reports in Medicinal Chemistry, pp. 3–17. Amsterdam: Elsevier.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrecher, A. (1850). Ann. Chem. Pharm. 75, 27–45.  Google Scholar
First citationTager, H. S. & Christensen, H. N. (1972). J. Am. Chem. Soc. 94, 968–972.  CrossRef CAS Web of Science Google Scholar
First citationWermuth, U. D. (1995). PhD thesis, Griffith University, Nathan, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1468-o1469
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds