metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ2-chlorido-di­chlorido­octa­methyldi-μ3-oxido-tetra­tin(IV) bis­[chloridodimeth­yl(pyrrolidine-1-carbodi­thio­ato-κ2S,S′)tin(IV)]

aDepartamento de Química, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
*Correspondence e-mail: kaokio@unal.edu.co

(Received 14 February 2012; accepted 19 April 2012; online 25 April 2012)

In the title co-crystal, [Sn4(CH3)8Cl4O2]·2[Sn(CH3)2Cl(C4H8NS2)], all the SnIV atoms are in distorted trigonal–bipyramidal environments. In the mononuclear species, the carbodithio­ate ligand is unsymmetrically coordinated to the SnIV atom, with Sn—S distances of 2.6722 (12) and 2.4706 (11) Å. All atoms with the exception of the methyl groups and one of the pyrrolidine ring CH2 groups lie on a crystallographic mirror plane. The pyrrolidine ring exhibits an envelope conformation; the C atom at the flap is disordered above and below the plane of symmetry with fixed occupation factors of 0.50. The centrosymmetric dimer species consists of a central Sn2O2 unit with two adjacent Sn2OCl four-membered rings.

Related literature

For related structures, see: Graziani et al. (1983[Graziani, R., Casellato, U. & Plazzogna, G. (1983). Acta Cryst. C39, 1188-1190.]); Othman et al. (1997[Othman, A. H., Fun, H.-K. & Yamin, B. M. (1997). Acta Cryst. C53, 1228-1230.]); Cortes et al. (2010[Cortes, C. L., Burgos, C. A. E. & Okio, C. K. Y. A. (2010). Acta Cryst. E66, m1353.]). For biological applications of organotin(IV) complexes, see: Davies & Smith (1982[Davies, A. G. & Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by G. Wilkinson, F. Gordon, A. Stone & E. W. Abel, pp. 519-616. New York: Pergamon Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(CH3)8Cl4O2]·2[Sn(CH3)2Cl(C4H8NS2)]

  • Mr = 1429.74

  • Orthorhombic, P n n m

  • a = 14.5262 (4) Å

  • b = 14.6086 (6) Å

  • c = 10.8338 (4) Å

  • V = 2299.01 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.76 mm−1

  • T = 193 K

  • 0.18 × 0.09 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.640, Tmax = 0.749

  • 11647 measured reflections

  • 2768 independent reflections

  • 2450 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.066

  • S = 1.12

  • 2767 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −1.07 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Nederlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organotin(IV) complexes have been extensively studied due to the diversity of structures that such compounds can form and to their potential biological activities as well as their wide industrial and agricultural applications (Davies & Smith, 1982). In the framework of our research for new organotin(IV) compounds (Cortes et al., 2010), we report here the obtention of the title compound. In an attempt to study the biological applications of complexes prepared from dimethyltin dichloride and pyrrolidinedithiocarbamate, the title compound has been obtained. Separately, both crystals have been reported (Graziani et al. 1983) and (Othman et al. 1997). The molecular structure and the atom-numbering scheme of the title compound are shown in Fig.1. It's a mononuclear/tetranuclear SnIV cocrystal. In the mononuclear diorganotin dithiocarbamate species, the tin atom is five-coordinated, being chelated by an asymmetrically coordinating dithiocarbamate ligand, a chloride and two methyl groups. The Sn—S bond distance (2.6708 (15) Å) aproximately trans- to the chloride atom is longer than the other Sn—S bond distance (2.4714 (14) Å) as reported by Othman et al. (1997). The centrosymmetric dimeric species bears a central part which consists of Sn2O2 ring with two adjacent Sn2OCl four-membered rings. The Sn, O and Cl atoms are nearly coplanar and the Sn (IV) atoms are in a distorted trigonal bipyramidal geometry. This behaviour is also consistent with the reported structure (Graziani et al. 1983).

Related literature top

For related structures, see: Graziani et al. (1983); Othman et al. (1997); Cortes et al. (2010). For biological applications of organotin(IV) complexes, see: Davies & Smith (1982).

Experimental top

Compound (I) was obtained by reacting dimethyltin (IV) dichloride with sodium pyrrolidinecarbodithioate in methanol under reflux for 3 h. Colourless crystals suitable for X-ray analysis were grown by slow solvent evaporation.

Refinement top

H atoms were positioned geometrically, with C—H distances of 0.96 to 1.00 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor (1997); data reduction: DENZO (Otwinowski & Minor (1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted.
Di-µ2-chlorido-dichloridooctamethyldi-µ3-oxido-tetratin(IV) bis[chloridodimethyl(pyrrolidine-1-carbodithioato- κ2S,S')tin(IV)] top
Crystal data top
[Sn4(CH3)8Cl4O2]·2[Sn(CH3)2Cl(C4H8NS2)]F(000) = 1360
Mr = 1429.74Dx = 2.065 Mg m3
Orthorhombic, PnnmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2 2nCell parameters from 11648 reflections
a = 14.5262 (4) Åθ = 2.0–27.5°
b = 14.6086 (6) ŵ = 3.76 mm1
c = 10.8338 (4) ÅT = 193 K
V = 2299.01 (14) Å3Prism, colorless
Z = 20.18 × 0.09 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
2768 independent reflections
Radiation source: fine-focus sealed tube2450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
π scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1814
Tmin = 0.640, Tmax = 0.749k = 1815
11647 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0315P)2 + 1.1007P]
where P = (Fo2 + 2Fc2)/3
2767 reflections(Δ/σ)max = 0.002
124 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
[Sn4(CH3)8Cl4O2]·2[Sn(CH3)2Cl(C4H8NS2)]V = 2299.01 (14) Å3
Mr = 1429.74Z = 2
Orthorhombic, PnnmMo Kα radiation
a = 14.5262 (4) ŵ = 3.76 mm1
b = 14.6086 (6) ÅT = 193 K
c = 10.8338 (4) Å0.18 × 0.09 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
2768 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2450 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.749Rint = 0.039
11647 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.12Δρmax = 0.75 e Å3
2767 reflectionsΔρmin = 1.07 e Å3
124 parameters
Special details top

Experimental. Absorption correction: multi-scan from symmetry-related measurements (SORTAV; Blessing, 1995)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn20.315166 (18)0.632255 (19)0.00000.02461 (9)
Sn30.559454 (18)0.59668 (2)0.00000.02538 (9)
Cl20.47009 (7)0.75444 (7)0.00000.0361 (3)
Cl30.21017 (8)0.50149 (8)0.00000.0478 (3)
O10.42728 (18)0.5486 (2)0.00000.0295 (7)
C70.3016 (2)0.6704 (3)0.1864 (3)0.0430 (9)
H7A0.35200.64340.23440.064*
H7B0.24250.64830.21830.064*
H7C0.30410.73720.19330.064*
C80.6065 (2)0.6172 (2)0.1817 (3)0.0382 (8)
H8A0.55820.59950.24010.057*
H8B0.62190.68190.19350.057*
H8C0.66140.57960.19610.057*
Sn10.02288 (2)0.29537 (2)0.00000.02941 (10)
Cl10.14100 (8)0.23939 (8)0.00000.0442 (3)
S10.20483 (8)0.26837 (8)0.00000.0322 (3)
S20.05638 (7)0.12957 (7)0.00000.0295 (3)
N10.2337 (2)0.0884 (2)0.00000.0309 (9)
C10.1741 (3)0.1552 (3)0.00000.0258 (9)
C20.2102 (3)0.0107 (3)0.00000.0472 (14)
H2A0.17040.02120.06980.057*0.50
H2B0.17040.02120.06980.057*0.50
C30.2990 (5)0.0522 (6)0.0561 (11)0.088 (5)0.50
H3A0.29890.04770.14730.106*0.50
H3B0.30690.11700.03150.106*0.50
C40.3721 (5)0.0077 (5)0.00000.073 (5)
H4A0.40960.00810.07400.151*0.50
H4B0.40960.00810.07400.151*0.50
C50.3333 (3)0.1031 (4)0.00000.0505 (15)
H5A0.35290.13730.07440.061*0.50
H5B0.35290.13730.07440.061*0.50
C60.0147 (3)0.3637 (2)0.1722 (3)0.0443 (9)
H6A0.04400.39660.17770.067*
H6B0.01870.31880.23920.067*
H6C0.06570.40740.17920.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn20.02385 (15)0.02385 (16)0.02612 (18)0.00354 (11)0.0000.000
Sn30.02293 (16)0.02345 (16)0.02978 (19)0.00087 (11)0.0000.000
Cl20.0334 (5)0.0236 (5)0.0513 (8)0.0011 (5)0.0000.000
Cl30.0336 (6)0.0302 (6)0.0796 (10)0.0038 (5)0.0000.000
O10.0185 (13)0.0209 (14)0.049 (2)0.0031 (12)0.0000.000
C70.0401 (18)0.062 (2)0.027 (2)0.0047 (17)0.0042 (15)0.0051 (18)
C80.0393 (18)0.0421 (19)0.033 (2)0.0004 (15)0.0041 (15)0.0050 (16)
Sn10.03238 (17)0.02334 (16)0.0325 (2)0.00254 (12)0.0000.000
Cl10.0275 (5)0.0356 (6)0.0694 (9)0.0064 (5)0.0000.000
S10.0309 (5)0.0253 (5)0.0405 (7)0.0071 (4)0.0000.000
S20.0227 (5)0.0235 (5)0.0421 (7)0.0021 (4)0.0000.000
N10.0206 (17)0.030 (2)0.042 (2)0.0001 (15)0.0000.000
C10.026 (2)0.027 (2)0.024 (2)0.0029 (18)0.0000.000
C20.032 (2)0.025 (2)0.085 (4)0.000 (2)0.0000.000
C30.039 (4)0.042 (4)0.184 (16)0.008 (4)0.011 (5)0.018 (6)
C40.038 (3)0.060 (5)0.120 (15)0.014 (3)0.0000.000
C50.024 (2)0.041 (3)0.087 (5)0.002 (2)0.0000.000
C60.056 (2)0.0368 (19)0.040 (2)0.0009 (17)0.0034 (18)0.0055 (16)
Geometric parameters (Å, º) top
Sn2—O12.036 (3)S1—C11.712 (4)
Sn2—C72.104 (4)S2—C11.751 (4)
Sn2—C7i2.104 (4)N1—C11.305 (6)
Sn2—Cl32.4445 (12)N1—C51.462 (6)
Sn2—Cl22.8724 (11)N1—C21.488 (6)
Sn3—O12.044 (3)C2—C31.550 (9)
Sn3—C82.105 (3)C2—C3i1.550 (9)
Sn3—C8i2.105 (3)C2—H2A0.9644
Sn3—O1ii2.132 (3)C2—H2B0.9644
Sn3—Cl22.6451 (11)C3—C3i1.22 (2)
O1—Sn3ii2.132 (3)C3—C41.505 (10)
C7—H7A0.9800C3—H3A0.9902
C7—H7B0.9800C3—H3B0.9901
C7—H7C0.9800C4—C51.504 (8)
C8—H8A0.9800C4—C3i1.505 (10)
C8—H8B0.9800C4—H4A0.9959
C8—H8C0.9800C4—H4B0.9959
Sn1—C6i2.119 (4)C5—H5A0.9900
Sn1—C62.119 (4)C5—H5B0.9900
Sn1—S22.4706 (11)C6—H6A0.9800
Sn1—Cl12.5173 (12)C6—H6B0.9800
Sn1—S12.6722 (12)C6—H6C0.9800
O1—Sn2—C7103.51 (10)C1—N1—C5123.2 (4)
O1—Sn2—C7i103.51 (10)C1—N1—C2125.1 (4)
C7—Sn2—C7i147.4 (2)C5—N1—C2111.7 (4)
O1—Sn2—Cl391.74 (8)N1—C1—S1123.3 (3)
C7—Sn2—Cl398.55 (11)N1—C1—S2119.2 (3)
C7i—Sn2—Cl398.55 (11)S1—C1—S2117.5 (2)
O1—Sn2—Cl275.29 (8)N1—C2—C3100.9 (4)
C7—Sn2—Cl284.76 (10)N1—C2—C3i100.9 (4)
C7i—Sn2—Cl284.76 (10)C3—C2—C3i46.2 (9)
Cl3—Sn2—Cl2167.02 (4)N1—C2—H2A107.1
O1—Sn3—C8110.72 (10)C3—C2—H2A138.1
O1—Sn3—C8i110.72 (10)C3i—C2—H2A97.4
C8—Sn3—C8i138.5 (2)N1—C2—H2B107.1
O1—Sn3—O1ii75.11 (12)C3—C2—H2B97.4
C8—Sn3—O1ii96.44 (10)C3i—C2—H2B138.1
C8i—Sn3—O1ii96.44 (10)H2A—C2—H2B103.3
O1—Sn3—Cl280.68 (8)C3i—C3—C466.2 (5)
C8—Sn3—Cl292.04 (10)C3i—C3—C266.9 (4)
C8i—Sn3—Cl292.04 (10)C4—C3—C2101.6 (6)
O1ii—Sn3—Cl2155.80 (8)C3i—C3—H3A176.2
Sn3—Cl2—Sn280.97 (3)C4—C3—H3A111.4
Sn2—O1—Sn3123.06 (14)C2—C3—H3A111.4
Sn2—O1—Sn3ii132.06 (14)C3i—C3—H3B74.4
Sn3—O1—Sn3ii104.89 (12)C4—C3—H3B111.4
Sn2—C7—H7A109.5C2—C3—H3B111.4
Sn2—C7—H7B109.5H3A—C3—H3B109.4
H7A—C7—H7B109.5C5—C4—C3i105.9 (5)
Sn2—C7—H7C109.5C5—C4—C3105.9 (5)
H7A—C7—H7C109.5C3i—C4—C347.7 (9)
H7B—C7—H7C109.5C5—C4—H4A114.8
Sn3—C8—H8A109.5C3i—C4—H4A125.2
Sn3—C8—H8B109.5C3—C4—H4A85.8
H8A—C8—H8B109.5C5—C4—H4B114.8
Sn3—C8—H8C109.5C3i—C4—H4B85.8
H8A—C8—H8C109.5C3—C4—H4B125.2
H8B—C8—H8C109.5H4A—C4—H4B107.2
C6i—Sn1—C6123.3 (2)N1—C5—C4103.6 (4)
C6i—Sn1—S2118.23 (10)N1—C5—H5A111.0
C6—Sn1—S2118.23 (10)C4—C5—H5A111.0
C6i—Sn1—Cl195.75 (11)N1—C5—H5B111.0
C6—Sn1—Cl195.75 (11)C4—C5—H5B111.0
S2—Sn1—Cl182.40 (4)H5A—C5—H5B109.0
C6i—Sn1—S197.18 (11)Sn1—C6—H6A109.5
C6—Sn1—S197.18 (11)Sn1—C6—H6B109.5
S2—Sn1—S170.16 (3)H6A—C6—H6B109.5
Cl1—Sn1—S1152.55 (4)Sn1—C6—H6C109.5
C1—S1—Sn183.39 (14)H6A—C6—H6C109.5
C1—S2—Sn188.99 (15)H6B—C6—H6C109.5
O1—Sn3—Cl2—Sn20.0Cl1—Sn1—S1—C10.0
C8—Sn3—Cl2—Sn2110.67 (10)C6i—Sn1—S2—C187.53 (12)
C8i—Sn3—Cl2—Sn2110.67 (10)C6—Sn1—S2—C187.53 (12)
O1ii—Sn3—Cl2—Sn20.0Cl1—Sn1—S2—C1180.0
O1—Sn2—Cl2—Sn30.0S1—Sn1—S2—C10.0
C7—Sn2—Cl2—Sn3105.46 (11)C5—N1—C1—S10.0
C7i—Sn2—Cl2—Sn3105.46 (11)C2—N1—C1—S1180.0
Cl3—Sn2—Cl2—Sn30.0C5—N1—C1—S2180.0
C7—Sn2—O1—Sn380.78 (11)C2—N1—C1—S20.0
C7i—Sn2—O1—Sn380.78 (11)Sn1—S1—C1—N1180.0
Cl3—Sn2—O1—Sn3180.0Sn1—S1—C1—S20.0
Cl2—Sn2—O1—Sn30.0Sn1—S2—C1—N1180.0
C7—Sn2—O1—Sn3ii99.22 (11)Sn1—S2—C1—S10.0
C7i—Sn2—O1—Sn3ii99.22 (11)C1—N1—C2—C3156.4 (5)
Cl3—Sn2—O1—Sn3ii0.0C5—N1—C2—C323.6 (5)
Cl2—Sn2—O1—Sn3ii180.0C1—N1—C2—C3i156.4 (5)
C8—Sn3—O1—Sn288.65 (11)C5—N1—C2—C3i23.6 (5)
C8i—Sn3—O1—Sn288.65 (11)N1—C2—C3—C3i94.7 (2)
O1ii—Sn3—O1—Sn2180.0N1—C2—C3—C437.2 (6)
Cl2—Sn3—O1—Sn20.0C3i—C2—C3—C457.6 (6)
C8—Sn3—O1—Sn3ii91.35 (11)C3i—C3—C4—C597.2 (3)
C8i—Sn3—O1—Sn3ii91.35 (11)C2—C3—C4—C539.2 (7)
O1ii—Sn3—O1—Sn3ii0.0C2—C3—C4—C3i58.1 (6)
Cl2—Sn3—O1—Sn3ii180.0C1—N1—C5—C4180.0
C6i—Sn1—S1—C1117.48 (10)C2—N1—C5—C40.0
C6—Sn1—S1—C1117.48 (10)C3i—C4—C5—N124.8 (5)
S2—Sn1—S1—C10.0C3—C4—C5—N124.8 (5)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn4(CH3)8Cl4O2]·2[Sn(CH3)2Cl(C4H8NS2)]
Mr1429.74
Crystal system, space groupOrthorhombic, Pnnm
Temperature (K)193
a, b, c (Å)14.5262 (4), 14.6086 (6), 10.8338 (4)
V3)2299.01 (14)
Z2
Radiation typeMo Kα
µ (mm1)3.76
Crystal size (mm)0.18 × 0.09 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.640, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
11647, 2768, 2450
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.066, 1.12
No. of reflections2767
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 1.07

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor (1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to Richard Welter for the X-ray analysis.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCortes, C. L., Burgos, C. A. E. & Okio, C. K. Y. A. (2010). Acta Cryst. E66, m1353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDavies, A. G. & Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by G. Wilkinson, F. Gordon, A. Stone & E. W. Abel, pp. 519–616. New York: Pergamon Press.  Google Scholar
First citationGraziani, R., Casellato, U. & Plazzogna, G. (1983). Acta Cryst. C39, 1188–1190.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Nederlands.  Google Scholar
First citationOthman, A. H., Fun, H.-K. & Yamin, B. M. (1997). Acta Cryst. C53, 1228–1230.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds