metal-organic compounds
Di-μ2-chlorido-dichloridooctamethyldi-μ3-oxido-tetratin(IV) bis[chloridodimethyl(pyrrolidine-1-carbodithioato-κ2S,S′)tin(IV)]
aDepartamento de Química, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
*Correspondence e-mail: kaokio@unal.edu.co
In the title 4(CH3)8Cl4O2]·2[Sn(CH3)2Cl(C4H8NS2)], all the SnIV atoms are in distorted trigonal–bipyramidal environments. In the mononuclear species, the carbodithioate ligand is unsymmetrically coordinated to the SnIV atom, with Sn—S distances of 2.6722 (12) and 2.4706 (11) Å. All atoms with the exception of the methyl groups and one of the pyrrolidine ring CH2 groups lie on a crystallographic mirror plane. The pyrrolidine ring exhibits an the C atom at the flap is disordered above and below the plane of symmetry with fixed occupation factors of 0.50. The centrosymmetric dimer species consists of a central Sn2O2 unit with two adjacent Sn2OCl four-membered rings.
[SnRelated literature
For related structures, see: Graziani et al. (1983); Othman et al. (1997); Cortes et al. (2010). For biological applications of organotin(IV) complexes, see: Davies & Smith (1982).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812017485/lr2051sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812017485/lr2051Isup2.hkl
Compound (I) was obtained by reacting dimethyltin (IV) dichloride with sodium pyrrolidinecarbodithioate in methanol under reflux for 3 h. Colourless crystals suitable for X-ray analysis were grown by slow solvent evaporation.
H atoms were positioned geometrically, with C—H distances of 0.96 to 1.00 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C).
Data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor (1997); data reduction: DENZO (Otwinowski & Minor (1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted. |
[Sn4(CH3)8Cl4O2]·2[Sn(CH3)2Cl(C4H8NS2)] | F(000) = 1360 |
Mr = 1429.74 | Dx = 2.065 Mg m−3 |
Orthorhombic, Pnnm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2 2n | Cell parameters from 11648 reflections |
a = 14.5262 (4) Å | θ = 2.0–27.5° |
b = 14.6086 (6) Å | µ = 3.76 mm−1 |
c = 10.8338 (4) Å | T = 193 K |
V = 2299.01 (14) Å3 | Prism, colorless |
Z = 2 | 0.18 × 0.09 × 0.06 mm |
Nonius KappaCCD diffractometer | 2768 independent reflections |
Radiation source: fine-focus sealed tube | 2450 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
π scans | θmax = 27.5°, θmin = 2.7° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −18→14 |
Tmin = 0.640, Tmax = 0.749 | k = −18→15 |
11647 measured reflections | l = −14→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0315P)2 + 1.1007P] where P = (Fo2 + 2Fc2)/3 |
2767 reflections | (Δ/σ)max = 0.002 |
124 parameters | Δρmax = 0.75 e Å−3 |
0 restraints | Δρmin = −1.07 e Å−3 |
[Sn4(CH3)8Cl4O2]·2[Sn(CH3)2Cl(C4H8NS2)] | V = 2299.01 (14) Å3 |
Mr = 1429.74 | Z = 2 |
Orthorhombic, Pnnm | Mo Kα radiation |
a = 14.5262 (4) Å | µ = 3.76 mm−1 |
b = 14.6086 (6) Å | T = 193 K |
c = 10.8338 (4) Å | 0.18 × 0.09 × 0.06 mm |
Nonius KappaCCD diffractometer | 2768 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 2450 reflections with I > 2σ(I) |
Tmin = 0.640, Tmax = 0.749 | Rint = 0.039 |
11647 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.75 e Å−3 |
2767 reflections | Δρmin = −1.07 e Å−3 |
124 parameters |
Experimental. Absorption correction: multi-scan from symmetry-related measurements (SORTAV; Blessing, 1995) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sn2 | 0.315166 (18) | 0.632255 (19) | 0.0000 | 0.02461 (9) | |
Sn3 | 0.559454 (18) | 0.59668 (2) | 0.0000 | 0.02538 (9) | |
Cl2 | 0.47009 (7) | 0.75444 (7) | 0.0000 | 0.0361 (3) | |
Cl3 | 0.21017 (8) | 0.50149 (8) | 0.0000 | 0.0478 (3) | |
O1 | 0.42728 (18) | 0.5486 (2) | 0.0000 | 0.0295 (7) | |
C7 | 0.3016 (2) | 0.6704 (3) | 0.1864 (3) | 0.0430 (9) | |
H7A | 0.3520 | 0.6434 | 0.2344 | 0.064* | |
H7B | 0.2425 | 0.6483 | 0.2183 | 0.064* | |
H7C | 0.3041 | 0.7372 | 0.1933 | 0.064* | |
C8 | 0.6065 (2) | 0.6172 (2) | 0.1817 (3) | 0.0382 (8) | |
H8A | 0.5582 | 0.5995 | 0.2401 | 0.057* | |
H8B | 0.6219 | 0.6819 | 0.1935 | 0.057* | |
H8C | 0.6614 | 0.5796 | 0.1961 | 0.057* | |
Sn1 | 0.02288 (2) | 0.29537 (2) | 0.0000 | 0.02941 (10) | |
Cl1 | −0.14100 (8) | 0.23939 (8) | 0.0000 | 0.0442 (3) | |
S1 | 0.20483 (8) | 0.26837 (8) | 0.0000 | 0.0322 (3) | |
S2 | 0.05638 (7) | 0.12957 (7) | 0.0000 | 0.0295 (3) | |
N1 | 0.2337 (2) | 0.0884 (2) | 0.0000 | 0.0309 (9) | |
C1 | 0.1741 (3) | 0.1552 (3) | 0.0000 | 0.0258 (9) | |
C2 | 0.2102 (3) | −0.0107 (3) | 0.0000 | 0.0472 (14) | |
H2A | 0.1704 | −0.0212 | −0.0698 | 0.057* | 0.50 |
H2B | 0.1704 | −0.0212 | 0.0698 | 0.057* | 0.50 |
C3 | 0.2990 (5) | −0.0522 (6) | 0.0561 (11) | 0.088 (5) | 0.50 |
H3A | 0.2989 | −0.0477 | 0.1473 | 0.106* | 0.50 |
H3B | 0.3069 | −0.1170 | 0.0315 | 0.106* | 0.50 |
C4 | 0.3721 (5) | 0.0077 (5) | 0.0000 | 0.073 (5) | |
H4A | 0.4096 | −0.0081 | 0.0740 | 0.151* | 0.50 |
H4B | 0.4096 | −0.0081 | −0.0740 | 0.151* | 0.50 |
C5 | 0.3333 (3) | 0.1031 (4) | 0.0000 | 0.0505 (15) | |
H5A | 0.3529 | 0.1373 | 0.0744 | 0.061* | 0.50 |
H5B | 0.3529 | 0.1373 | −0.0744 | 0.061* | 0.50 |
C6 | 0.0147 (3) | 0.3637 (2) | −0.1722 (3) | 0.0443 (9) | |
H6A | −0.0440 | 0.3966 | −0.1777 | 0.067* | |
H6B | 0.0187 | 0.3188 | −0.2392 | 0.067* | |
H6C | 0.0657 | 0.4074 | −0.1792 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn2 | 0.02385 (15) | 0.02385 (16) | 0.02612 (18) | 0.00354 (11) | 0.000 | 0.000 |
Sn3 | 0.02293 (16) | 0.02345 (16) | 0.02978 (19) | −0.00087 (11) | 0.000 | 0.000 |
Cl2 | 0.0334 (5) | 0.0236 (5) | 0.0513 (8) | 0.0011 (5) | 0.000 | 0.000 |
Cl3 | 0.0336 (6) | 0.0302 (6) | 0.0796 (10) | −0.0038 (5) | 0.000 | 0.000 |
O1 | 0.0185 (13) | 0.0209 (14) | 0.049 (2) | 0.0031 (12) | 0.000 | 0.000 |
C7 | 0.0401 (18) | 0.062 (2) | 0.027 (2) | 0.0047 (17) | 0.0042 (15) | −0.0051 (18) |
C8 | 0.0393 (18) | 0.0421 (19) | 0.033 (2) | 0.0004 (15) | −0.0041 (15) | −0.0050 (16) |
Sn1 | 0.03238 (17) | 0.02334 (16) | 0.0325 (2) | 0.00254 (12) | 0.000 | 0.000 |
Cl1 | 0.0275 (5) | 0.0356 (6) | 0.0694 (9) | 0.0064 (5) | 0.000 | 0.000 |
S1 | 0.0309 (5) | 0.0253 (5) | 0.0405 (7) | −0.0071 (4) | 0.000 | 0.000 |
S2 | 0.0227 (5) | 0.0235 (5) | 0.0421 (7) | −0.0021 (4) | 0.000 | 0.000 |
N1 | 0.0206 (17) | 0.030 (2) | 0.042 (2) | −0.0001 (15) | 0.000 | 0.000 |
C1 | 0.026 (2) | 0.027 (2) | 0.024 (2) | −0.0029 (18) | 0.000 | 0.000 |
C2 | 0.032 (2) | 0.025 (2) | 0.085 (4) | 0.000 (2) | 0.000 | 0.000 |
C3 | 0.039 (4) | 0.042 (4) | 0.184 (16) | 0.008 (4) | −0.011 (5) | 0.018 (6) |
C4 | 0.038 (3) | 0.060 (5) | 0.120 (15) | 0.014 (3) | 0.000 | 0.000 |
C5 | 0.024 (2) | 0.041 (3) | 0.087 (5) | −0.002 (2) | 0.000 | 0.000 |
C6 | 0.056 (2) | 0.0368 (19) | 0.040 (2) | 0.0009 (17) | −0.0034 (18) | 0.0055 (16) |
Sn2—O1 | 2.036 (3) | S1—C1 | 1.712 (4) |
Sn2—C7 | 2.104 (4) | S2—C1 | 1.751 (4) |
Sn2—C7i | 2.104 (4) | N1—C1 | 1.305 (6) |
Sn2—Cl3 | 2.4445 (12) | N1—C5 | 1.462 (6) |
Sn2—Cl2 | 2.8724 (11) | N1—C2 | 1.488 (6) |
Sn3—O1 | 2.044 (3) | C2—C3 | 1.550 (9) |
Sn3—C8 | 2.105 (3) | C2—C3i | 1.550 (9) |
Sn3—C8i | 2.105 (3) | C2—H2A | 0.9644 |
Sn3—O1ii | 2.132 (3) | C2—H2B | 0.9644 |
Sn3—Cl2 | 2.6451 (11) | C3—C3i | 1.22 (2) |
O1—Sn3ii | 2.132 (3) | C3—C4 | 1.505 (10) |
C7—H7A | 0.9800 | C3—H3A | 0.9902 |
C7—H7B | 0.9800 | C3—H3B | 0.9901 |
C7—H7C | 0.9800 | C4—C5 | 1.504 (8) |
C8—H8A | 0.9800 | C4—C3i | 1.505 (10) |
C8—H8B | 0.9800 | C4—H4A | 0.9959 |
C8—H8C | 0.9800 | C4—H4B | 0.9959 |
Sn1—C6i | 2.119 (4) | C5—H5A | 0.9900 |
Sn1—C6 | 2.119 (4) | C5—H5B | 0.9900 |
Sn1—S2 | 2.4706 (11) | C6—H6A | 0.9800 |
Sn1—Cl1 | 2.5173 (12) | C6—H6B | 0.9800 |
Sn1—S1 | 2.6722 (12) | C6—H6C | 0.9800 |
O1—Sn2—C7 | 103.51 (10) | C1—N1—C5 | 123.2 (4) |
O1—Sn2—C7i | 103.51 (10) | C1—N1—C2 | 125.1 (4) |
C7—Sn2—C7i | 147.4 (2) | C5—N1—C2 | 111.7 (4) |
O1—Sn2—Cl3 | 91.74 (8) | N1—C1—S1 | 123.3 (3) |
C7—Sn2—Cl3 | 98.55 (11) | N1—C1—S2 | 119.2 (3) |
C7i—Sn2—Cl3 | 98.55 (11) | S1—C1—S2 | 117.5 (2) |
O1—Sn2—Cl2 | 75.29 (8) | N1—C2—C3 | 100.9 (4) |
C7—Sn2—Cl2 | 84.76 (10) | N1—C2—C3i | 100.9 (4) |
C7i—Sn2—Cl2 | 84.76 (10) | C3—C2—C3i | 46.2 (9) |
Cl3—Sn2—Cl2 | 167.02 (4) | N1—C2—H2A | 107.1 |
O1—Sn3—C8 | 110.72 (10) | C3—C2—H2A | 138.1 |
O1—Sn3—C8i | 110.72 (10) | C3i—C2—H2A | 97.4 |
C8—Sn3—C8i | 138.5 (2) | N1—C2—H2B | 107.1 |
O1—Sn3—O1ii | 75.11 (12) | C3—C2—H2B | 97.4 |
C8—Sn3—O1ii | 96.44 (10) | C3i—C2—H2B | 138.1 |
C8i—Sn3—O1ii | 96.44 (10) | H2A—C2—H2B | 103.3 |
O1—Sn3—Cl2 | 80.68 (8) | C3i—C3—C4 | 66.2 (5) |
C8—Sn3—Cl2 | 92.04 (10) | C3i—C3—C2 | 66.9 (4) |
C8i—Sn3—Cl2 | 92.04 (10) | C4—C3—C2 | 101.6 (6) |
O1ii—Sn3—Cl2 | 155.80 (8) | C3i—C3—H3A | 176.2 |
Sn3—Cl2—Sn2 | 80.97 (3) | C4—C3—H3A | 111.4 |
Sn2—O1—Sn3 | 123.06 (14) | C2—C3—H3A | 111.4 |
Sn2—O1—Sn3ii | 132.06 (14) | C3i—C3—H3B | 74.4 |
Sn3—O1—Sn3ii | 104.89 (12) | C4—C3—H3B | 111.4 |
Sn2—C7—H7A | 109.5 | C2—C3—H3B | 111.4 |
Sn2—C7—H7B | 109.5 | H3A—C3—H3B | 109.4 |
H7A—C7—H7B | 109.5 | C5—C4—C3i | 105.9 (5) |
Sn2—C7—H7C | 109.5 | C5—C4—C3 | 105.9 (5) |
H7A—C7—H7C | 109.5 | C3i—C4—C3 | 47.7 (9) |
H7B—C7—H7C | 109.5 | C5—C4—H4A | 114.8 |
Sn3—C8—H8A | 109.5 | C3i—C4—H4A | 125.2 |
Sn3—C8—H8B | 109.5 | C3—C4—H4A | 85.8 |
H8A—C8—H8B | 109.5 | C5—C4—H4B | 114.8 |
Sn3—C8—H8C | 109.5 | C3i—C4—H4B | 85.8 |
H8A—C8—H8C | 109.5 | C3—C4—H4B | 125.2 |
H8B—C8—H8C | 109.5 | H4A—C4—H4B | 107.2 |
C6i—Sn1—C6 | 123.3 (2) | N1—C5—C4 | 103.6 (4) |
C6i—Sn1—S2 | 118.23 (10) | N1—C5—H5A | 111.0 |
C6—Sn1—S2 | 118.23 (10) | C4—C5—H5A | 111.0 |
C6i—Sn1—Cl1 | 95.75 (11) | N1—C5—H5B | 111.0 |
C6—Sn1—Cl1 | 95.75 (11) | C4—C5—H5B | 111.0 |
S2—Sn1—Cl1 | 82.40 (4) | H5A—C5—H5B | 109.0 |
C6i—Sn1—S1 | 97.18 (11) | Sn1—C6—H6A | 109.5 |
C6—Sn1—S1 | 97.18 (11) | Sn1—C6—H6B | 109.5 |
S2—Sn1—S1 | 70.16 (3) | H6A—C6—H6B | 109.5 |
Cl1—Sn1—S1 | 152.55 (4) | Sn1—C6—H6C | 109.5 |
C1—S1—Sn1 | 83.39 (14) | H6A—C6—H6C | 109.5 |
C1—S2—Sn1 | 88.99 (15) | H6B—C6—H6C | 109.5 |
O1—Sn3—Cl2—Sn2 | 0.0 | Cl1—Sn1—S1—C1 | 0.0 |
C8—Sn3—Cl2—Sn2 | −110.67 (10) | C6i—Sn1—S2—C1 | −87.53 (12) |
C8i—Sn3—Cl2—Sn2 | 110.67 (10) | C6—Sn1—S2—C1 | 87.53 (12) |
O1ii—Sn3—Cl2—Sn2 | 0.0 | Cl1—Sn1—S2—C1 | 180.0 |
O1—Sn2—Cl2—Sn3 | 0.0 | S1—Sn1—S2—C1 | 0.0 |
C7—Sn2—Cl2—Sn3 | 105.46 (11) | C5—N1—C1—S1 | 0.0 |
C7i—Sn2—Cl2—Sn3 | −105.46 (11) | C2—N1—C1—S1 | 180.0 |
Cl3—Sn2—Cl2—Sn3 | 0.0 | C5—N1—C1—S2 | 180.0 |
C7—Sn2—O1—Sn3 | −80.78 (11) | C2—N1—C1—S2 | 0.0 |
C7i—Sn2—O1—Sn3 | 80.78 (11) | Sn1—S1—C1—N1 | 180.0 |
Cl3—Sn2—O1—Sn3 | 180.0 | Sn1—S1—C1—S2 | 0.0 |
Cl2—Sn2—O1—Sn3 | 0.0 | Sn1—S2—C1—N1 | 180.0 |
C7—Sn2—O1—Sn3ii | 99.22 (11) | Sn1—S2—C1—S1 | 0.0 |
C7i—Sn2—O1—Sn3ii | −99.22 (11) | C1—N1—C2—C3 | −156.4 (5) |
Cl3—Sn2—O1—Sn3ii | 0.0 | C5—N1—C2—C3 | 23.6 (5) |
Cl2—Sn2—O1—Sn3ii | 180.0 | C1—N1—C2—C3i | 156.4 (5) |
C8—Sn3—O1—Sn2 | 88.65 (11) | C5—N1—C2—C3i | −23.6 (5) |
C8i—Sn3—O1—Sn2 | −88.65 (11) | N1—C2—C3—C3i | −94.7 (2) |
O1ii—Sn3—O1—Sn2 | 180.0 | N1—C2—C3—C4 | −37.2 (6) |
Cl2—Sn3—O1—Sn2 | 0.0 | C3i—C2—C3—C4 | 57.6 (6) |
C8—Sn3—O1—Sn3ii | −91.35 (11) | C3i—C3—C4—C5 | 97.2 (3) |
C8i—Sn3—O1—Sn3ii | 91.35 (11) | C2—C3—C4—C5 | 39.2 (7) |
O1ii—Sn3—O1—Sn3ii | 0.0 | C2—C3—C4—C3i | −58.1 (6) |
Cl2—Sn3—O1—Sn3ii | 180.0 | C1—N1—C5—C4 | 180.0 |
C6i—Sn1—S1—C1 | 117.48 (10) | C2—N1—C5—C4 | 0.0 |
C6—Sn1—S1—C1 | −117.48 (10) | C3i—C4—C5—N1 | 24.8 (5) |
S2—Sn1—S1—C1 | 0.0 | C3—C4—C5—N1 | −24.8 (5) |
Symmetry codes: (i) x, y, −z; (ii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Sn4(CH3)8Cl4O2]·2[Sn(CH3)2Cl(C4H8NS2)] |
Mr | 1429.74 |
Crystal system, space group | Orthorhombic, Pnnm |
Temperature (K) | 193 |
a, b, c (Å) | 14.5262 (4), 14.6086 (6), 10.8338 (4) |
V (Å3) | 2299.01 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.76 |
Crystal size (mm) | 0.18 × 0.09 × 0.06 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.640, 0.749 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11647, 2768, 2450 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.066, 1.12 |
No. of reflections | 2767 |
No. of parameters | 124 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.75, −1.07 |
Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor (1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Acknowledgements
The authors are grateful to Richard Welter for the X-ray analysis.
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cortes, C. L., Burgos, C. A. E. & Okio, C. K. Y. A. (2010). Acta Cryst. E66, m1353. Web of Science CSD CrossRef IUCr Journals Google Scholar
Davies, A. G. & Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by G. Wilkinson, F. Gordon, A. Stone & E. W. Abel, pp. 519–616. New York: Pergamon Press. Google Scholar
Graziani, R., Casellato, U. & Plazzogna, G. (1983). Acta Cryst. C39, 1188–1190. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Nederlands. Google Scholar
Othman, A. H., Fun, H.-K. & Yamin, B. M. (1997). Acta Cryst. C53, 1228–1230. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organotin(IV) complexes have been extensively studied due to the diversity of structures that such compounds can form and to their potential biological activities as well as their wide industrial and agricultural applications (Davies & Smith, 1982). In the framework of our research for new organotin(IV) compounds (Cortes et al., 2010), we report here the obtention of the title compound. In an attempt to study the biological applications of complexes prepared from dimethyltin dichloride and pyrrolidinedithiocarbamate, the title compound has been obtained. Separately, both crystals have been reported (Graziani et al. 1983) and (Othman et al. 1997). The molecular structure and the atom-numbering scheme of the title compound are shown in Fig.1. It's a mononuclear/tetranuclear SnIV cocrystal. In the mononuclear diorganotin dithiocarbamate species, the tin atom is five-coordinated, being chelated by an asymmetrically coordinating dithiocarbamate ligand, a chloride and two methyl groups. The Sn—S bond distance (2.6708 (15) Å) aproximately trans- to the chloride atom is longer than the other Sn—S bond distance (2.4714 (14) Å) as reported by Othman et al. (1997). The centrosymmetric dimeric species bears a central part which consists of Sn2O2 ring with two adjacent Sn2OCl four-membered rings. The Sn, O and Cl atoms are nearly coplanar and the Sn (IV) atoms are in a distorted trigonal bipyramidal geometry. This behaviour is also consistent with the reported structure (Graziani et al. 1983).