organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1282-o1283

3,3′-(1,4-Phenyl­ene)bis­­[2-(propyl­amino)­benzofuro[3,2-d]pyrimidin-4(3H)-one] ethanol disolvate

aThe Library of Hubei University of Medicine, Shiyan 442000, People's Republic of China, bInstitute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, People's Republic of China, cInstitute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, People's Republic of China, and dDepartment of Pharmacy, Taihe Hospital of Hubei University of Medicine, Shiyan 442000, People's Republic of China
*Correspondence e-mail: huyangg111@yahoo.com.cn

(Received 3 March 2012; accepted 29 March 2012; online 4 April 2012)

The title compound, C32H28N6O4·2C2H5OH, consists of two 2-(propyl­amino)­benzofuro[3,2-d]pyrimidin-4(3H)-one units connected, via one of the pyrimidine N atoms, to a bridging benzene ring in the 1,4 positions. Two ethanol solvent mol­ecules are also present. The main mol­ecule lies on a center of symmetry located at the center of the benzene ring. The fused-ring system of the benzofuro[3,2-d]pyrimidine moiety is nearly planar (r.m.s. deviation = 0.016 Å) and forms a dihedral angle of 78.21 (7)° with the central benzene ring. The crystal structure features O—H⋯O and N—H⋯O inter­actions. The C atoms of the propyl­amino side chain in the main mol­ecule and the ethyl group in the solvent mol­ecule are disordered over two positions, with site-occupancy factors 0.34:0.66 and 0.42:0.58, respectively.

Related literature

The title compound may be used as a precursor for obtaining bioactive mol­ecules with antitumor activity, see: Bellarosa et al. (1996)[Bellarosa, D., Antonelli, G., Bambacioni, F., Giannotti, D., Viti, G., Nannicini, R., Giachetti, A., Dianzani, F., Witvrouw, M., Pauwels, R., Desmyter, J. & De Clercq, E. (1996). Antiviral Res. 30, 109-124.]. For the biological activity of benzofuropyrimidine derivatives, see: Moneam et al. (2004[Moneam, M., Geies, A., El-Naggar, G. & Mousa, S. (2004). J. Chin. Chem. Soc. 51, 1357-1366.]); Bodke & Sangapure (2003[Bodke, Y. & Sangapure, S. S. (2003). J. Indian Chem. Soc. 80, 187-189.]). For the crystal structures of other fused pyrimidinone derivatives, see: Hu et al. (2005[Hu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o3266-o3268.], 2006[Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457-o1459.], 2007[Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836-o1838.], 2008[Hu, Y.-G., Zhu, Z.-R. & Chen, Y.-L. (2008). Acta Cryst. E64, o321-o322.]).

[Scheme 1]

Experimental

Crystal data
  • C32H28N6O4·2C2H6O

  • Mr = 652.74

  • Monoclinic, P 21 /n

  • a = 10.1933 (12) Å

  • b = 13.6224 (16) Å

  • c = 12.5249 (15) Å

  • β = 105.409 (2)°

  • V = 1676.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS,inc., Madison, Wisconsin, USA.]) Tmin = 0.988, Tmax = 0.991

  • 10883 measured reflections

  • 2941 independent reflections

  • 2327 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.151

  • S = 1.03

  • 2941 reflections

  • 259 parameters

  • 60 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3a⋯O3 0.86 2.22 2.996 (3) 150
O3—H3b⋯O1i 0.82 2.12 2.903 (3) 159
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As a part of our ongoing work in the preparation of derivatives of heterocyclic compounds (Hu et al., 2005, 2006, 2007, 2008), we have synthesized and structurally characterized the title compound (Fig. 1). Here we wish to report an X-ray crystal structure of it (Fig. 1). In the molecule, the fused rings system of the benzo[4,5]furo[3,2-d]pyrimidine system are nearly coplanar (r.m.s. deviation= 0.016 A°), forming a dihedral angle of 78.21 (7)° with the (C1/C2/C3/C1a/C2a/C3a) phenyl ring . The crystal structure is stabilize by O—H···O and N—H···O hydrogen bonds. The C atoms of the propylamino side chain in molecule and the ethyl in solvent molecule are disordered over two positions, with site occupancy factors 0.34/0.66 and 0.42/58 for the C atoms of the propyl and the ethyl, respectively.

Related literature top

The title compound may be used as a precursor for obtaining bioactive molecules, see: Bellarosa et al. (1996). For the biological activity of benzofuropyrimidine derivatives, see: Moneam et al. (2004); Bodke & Sangapure (2003). For the crystal structures of other fused pyrimidinone derivatives, see: Hu et al. (2005, 2006, 2007, 2008).

Experimental top

The compound was synthesized according to the procedures previously described in the literature (Hu et al., 2005, 2006, 2007, 2008).

Refinement top

All H-atoms were positioned with idealized geometry and refined isotropic (Uiso(H)= 1.5Ueq(C)for methyl H atoms and Uiso(H) =1.2Ueq(C) for all other H atoms) using a riding model with C—H = 0.93°, 0.97° and 0.96 Å, O—H = 0.82°, N—H = 0.86°.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
3,3'-(1,4-Phenylene)bis[2-(propylamino)benzofuro[3,2-d]pyrimidin- 4(3H)-one] ethanol disolvate top
Crystal data top
C32H28N6O4·2C2H6OF(000) = 692
Mr = 652.74Dx = 1.293 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3984 reflections
a = 10.1933 (12) Åθ = 2.3–26.6°
b = 13.6224 (16) ŵ = 0.09 mm1
c = 12.5249 (15) ÅT = 298 K
β = 105.409 (2)°Block, colorless
V = 1676.7 (3) Å30.14 × 0.12 × 0.10 mm
Z = 2
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2941 independent reflections
Radiation source: fine-focus sealed tube2327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.988, Tmax = 0.991k = 1316
10883 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0753P)2 + 0.3428P]
where P = (Fo2 + 2Fc2)/3
2941 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.17 e Å3
60 restraintsΔρmin = 0.23 e Å3
Crystal data top
C32H28N6O4·2C2H6OV = 1676.7 (3) Å3
Mr = 652.74Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.1933 (12) ŵ = 0.09 mm1
b = 13.6224 (16) ÅT = 298 K
c = 12.5249 (15) Å0.14 × 0.12 × 0.10 mm
β = 105.409 (2)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2941 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2327 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.991Rint = 0.060
10883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05460 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
2941 reflectionsΔρmin = 0.23 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6148 (2)0.02496 (15)0.58223 (16)0.0567 (5)
H10.69190.04220.63760.068*
C20.53256 (19)0.09654 (14)0.52147 (15)0.0506 (5)
C30.4179 (2)0.07207 (15)0.43955 (16)0.0561 (5)
H30.36280.12100.39910.067*
C40.6653 (2)0.24409 (15)0.50513 (16)0.0538 (5)
C50.6309 (2)0.38471 (15)0.58744 (16)0.0546 (5)
C60.5310 (2)0.34514 (15)0.62721 (17)0.0594 (6)
C70.4899 (2)0.24663 (16)0.60962 (17)0.0588 (5)
C80.6399 (2)0.48678 (14)0.62188 (17)0.0587 (6)
C90.5417 (3)0.49804 (15)0.67922 (18)0.0654 (6)
C100.5178 (3)0.58535 (18)0.7266 (2)0.0794 (7)
H100.45140.59090.76470.095*
C110.5975 (3)0.66348 (18)0.7143 (2)0.0870 (9)
H110.58550.72360.74560.104*
C120.6954 (3)0.65482 (17)0.6563 (2)0.0861 (9)
H120.74730.70940.64940.103*
C130.7177 (3)0.56759 (16)0.6088 (2)0.0727 (7)
H130.78270.56270.56920.087*
C140.8284 (3)0.2270 (2)0.3940 (3)0.0960 (9)
H14A0.82530.18820.32850.115*0.58
H14B0.80230.29330.36880.115*0.58
H14C0.83510.29800.39900.115*0.42
H14D0.81450.20680.31760.115*0.42
C150.9688 (6)0.2310 (5)0.4575 (7)0.118 (2)0.58
H15A0.97640.26440.52720.141*0.58
H15B1.02230.26670.41680.141*0.58
C161.0198 (10)0.1280 (6)0.4782 (7)0.138 (3)0.58
H16A0.96950.09430.52190.207*0.58
H16B1.11460.12890.51720.207*0.58
H16C1.00810.09460.40880.207*0.58
C15'0.9540 (9)0.1753 (13)0.4727 (13)0.161 (6)0.42
H15C0.96050.19520.54830.194*0.42
H15D0.93950.10490.46820.194*0.42
C16'1.0849 (9)0.1976 (10)0.4471 (10)0.149 (4)0.42
H16D1.10450.14730.39990.223*0.42
H16E1.15660.19990.51470.223*0.42
H16F1.07840.25990.41030.223*0.42
C170.5680 (9)0.0856 (5)0.1674 (7)0.148 (3)0.66
H17A0.50090.10240.20550.223*0.66
H17B0.52540.08070.08940.223*0.66
H17C0.63680.13560.18030.223*0.66
C180.6292 (9)0.0070 (5)0.2079 (5)0.118 (2)0.66
H18A0.56170.05880.18780.142*0.66
H18B0.70200.02160.17370.142*0.66
C17'0.6268 (14)0.0358 (14)0.1313 (9)0.137 (4)0.34
H17D0.70500.07780.15280.205*0.34
H17E0.55870.06650.07280.205*0.34
H17F0.65270.02580.10580.205*0.34
C18'0.5711 (10)0.0189 (12)0.2276 (7)0.099 (3)0.34
H18C0.52390.07720.24200.118*0.34
H18D0.50640.03490.21190.118*0.34
N10.56533 (17)0.19870 (11)0.54545 (13)0.0526 (4)
N20.70225 (18)0.33593 (12)0.52685 (15)0.0586 (5)
N30.7232 (2)0.18964 (13)0.44097 (17)0.0680 (5)
H3A0.69660.12990.42710.082*
O10.40323 (19)0.20284 (12)0.64207 (15)0.0807 (5)
O20.47273 (17)0.41186 (11)0.68384 (13)0.0729 (5)
O30.6821 (2)0.00452 (14)0.32441 (15)0.0915 (6)
H3B0.66930.05770.35060.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0582 (12)0.0497 (12)0.0530 (11)0.0030 (9)0.0011 (9)0.0018 (9)
C20.0579 (12)0.0437 (11)0.0488 (10)0.0026 (9)0.0118 (9)0.0019 (8)
C30.0608 (12)0.0466 (12)0.0537 (11)0.0037 (9)0.0028 (9)0.0055 (9)
C40.0551 (12)0.0461 (11)0.0563 (11)0.0006 (9)0.0076 (9)0.0007 (9)
C50.0603 (12)0.0448 (11)0.0500 (10)0.0001 (9)0.0006 (9)0.0004 (9)
C60.0698 (13)0.0472 (12)0.0582 (12)0.0014 (10)0.0115 (10)0.0089 (9)
C70.0677 (13)0.0522 (12)0.0563 (12)0.0050 (11)0.0160 (10)0.0041 (10)
C80.0683 (13)0.0435 (11)0.0517 (11)0.0035 (10)0.0061 (10)0.0004 (9)
C90.0775 (15)0.0475 (13)0.0591 (12)0.0056 (11)0.0028 (11)0.0069 (10)
C100.0969 (19)0.0583 (15)0.0710 (15)0.0152 (13)0.0012 (13)0.0132 (12)
C110.115 (2)0.0478 (14)0.0770 (17)0.0193 (15)0.0122 (16)0.0084 (12)
C120.111 (2)0.0410 (13)0.0850 (17)0.0000 (13)0.0106 (16)0.0040 (12)
C130.0867 (17)0.0468 (13)0.0709 (14)0.0030 (11)0.0030 (12)0.0050 (10)
C140.094 (2)0.0741 (18)0.136 (3)0.0151 (16)0.059 (2)0.0216 (17)
C150.082 (4)0.139 (6)0.149 (5)0.045 (4)0.060 (4)0.051 (5)
C160.142 (6)0.163 (7)0.107 (4)0.039 (5)0.029 (4)0.018 (4)
C15'0.142 (9)0.174 (10)0.181 (9)0.029 (8)0.065 (8)0.033 (8)
C16'0.098 (6)0.193 (9)0.156 (7)0.000 (6)0.037 (5)0.007 (7)
C170.183 (6)0.123 (5)0.118 (4)0.041 (4)0.001 (4)0.004 (4)
C180.155 (6)0.110 (4)0.094 (4)0.021 (4)0.042 (4)0.005 (3)
C17'0.151 (8)0.157 (9)0.107 (7)0.029 (7)0.042 (6)0.029 (7)
C18'0.095 (6)0.121 (8)0.083 (6)0.002 (6)0.030 (5)0.000 (6)
N10.0602 (10)0.0416 (9)0.0541 (9)0.0036 (7)0.0120 (8)0.0030 (7)
N20.0621 (10)0.0441 (10)0.0661 (11)0.0044 (8)0.0110 (8)0.0015 (8)
N30.0744 (12)0.0507 (10)0.0860 (13)0.0094 (9)0.0339 (10)0.0097 (9)
O10.0978 (13)0.0648 (11)0.0927 (12)0.0184 (9)0.0484 (11)0.0170 (9)
O20.0882 (11)0.0563 (10)0.0750 (10)0.0013 (8)0.0233 (9)0.0165 (8)
O30.1105 (15)0.0799 (12)0.0767 (12)0.0173 (10)0.0123 (11)0.0047 (9)
Geometric parameters (Å, º) top
C1—C3i1.373 (3)C14—H14B0.9700
C1—C21.376 (3)C14—H14C0.9700
C1—H10.9300C14—H14D0.9700
C2—C31.376 (3)C15—C161.494 (8)
C2—N11.444 (2)C15—H15A0.9700
C3—C1i1.373 (3)C15—H15B0.9700
C3—H30.9300C16—H16A0.9600
C4—N21.314 (3)C16—H16B0.9600
C4—N31.340 (3)C16—H16C0.9600
C4—N11.396 (3)C15'—C16'1.484 (9)
C5—N21.356 (3)C15'—H15C0.9700
C5—C61.359 (3)C15'—H15D0.9700
C5—C81.451 (3)C16'—H16D0.9600
C6—O21.380 (2)C16'—H16E0.9600
C6—C71.406 (3)C16'—H16F0.9600
C7—O11.221 (3)C17—C181.439 (7)
C7—N11.412 (3)C17—H17A0.9600
C8—C91.387 (4)C17—H17B0.9600
C8—C131.391 (3)C17—H17C0.9600
C9—O21.378 (3)C18—O31.415 (6)
C9—C101.379 (3)C18—H18A0.9700
C10—C111.372 (4)C18—H18B0.9700
C10—H100.9300C17'—C18'1.482 (9)
C11—C121.386 (4)C17'—H17D0.9600
C11—H110.9300C17'—H17E0.9600
C12—C131.375 (4)C17'—H17F0.9600
C12—H120.9300C18'—O31.457 (8)
C13—H130.9300C18'—H18C0.9700
C14—C151.442 (6)C18'—H18D0.9700
C14—N31.446 (3)N3—H3A0.8600
C14—C15'1.561 (9)O3—H3B0.8200
C14—H14A0.9700
C3i—C1—C2119.50 (18)N3—C14—H14D111.9
C3i—C1—H1120.3C15'—C14—H14D112.0
C2—C1—H1120.3H14A—C14—H14D17.5
C3—C2—C1120.85 (18)H14B—C14—H14D89.3
C3—C2—N1119.49 (17)H14C—C14—H14D109.6
C1—C2—N1119.65 (17)C14—C15—C16108.0 (6)
C1i—C3—C2119.65 (18)C14—C15—H15A110.1
C1i—C3—H3120.2C16—C15—H15A110.1
C2—C3—H3120.2C14—C15—H15B110.1
N2—C4—N3120.22 (19)C16—C15—H15B110.1
N2—C4—N1122.93 (19)H15A—C15—H15B108.4
N3—C4—N1116.85 (18)C16'—C15'—C14113.9 (9)
N2—C5—C6125.20 (19)C16'—C15'—H15C108.8
N2—C5—C8129.4 (2)C14—C15'—H15C108.8
C6—C5—C8105.39 (19)C16'—C15'—H15D108.8
C5—C6—O2113.20 (18)C14—C15'—H15D108.8
C5—C6—C7122.9 (2)H15C—C15'—H15D107.7
O2—C6—C7123.9 (2)C15'—C16'—H16D109.5
O1—C7—C6128.7 (2)C15'—C16'—H16E109.5
O1—C7—N1121.00 (19)H16D—C16'—H16E109.5
C6—C7—N1110.25 (19)C15'—C16'—H16F109.5
C9—C8—C13119.0 (2)H16D—C16'—H16F109.5
C9—C8—C5105.22 (19)H16E—C16'—H16F109.5
C13—C8—C5135.7 (2)O3—C18—C17110.6 (5)
O2—C9—C10124.5 (3)O3—C18—H18A109.5
O2—C9—C8111.97 (18)C17—C18—H18A109.5
C10—C9—C8123.5 (2)O3—C18—H18B109.5
C11—C10—C9116.3 (3)C17—C18—H18B109.5
C11—C10—H10121.8H18A—C18—H18B108.1
C9—C10—H10121.8C18'—C17'—H17D109.5
C10—C11—C12121.5 (2)C18'—C17'—H17E109.5
C10—C11—H11119.3H17D—C17'—H17E109.5
C12—C11—H11119.3C18'—C17'—H17F109.5
C13—C12—C11121.7 (3)H17D—C17'—H17F109.5
C13—C12—H12119.2H17E—C17'—H17F109.5
C11—C12—H12119.2O3—C18'—C17'109.3 (9)
C12—C13—C8117.9 (3)O3—C18'—H18C109.8
C12—C13—H13121.0C17'—C18'—H18C109.8
C8—C13—H13121.0O3—C18'—H18D109.8
C15—C14—N3121.6 (4)C17'—C18'—H18D109.8
C15—C14—C15'30.8 (5)H18C—C18'—H18D108.3
N3—C14—C15'99.0 (5)C4—N1—C7124.16 (18)
C15—C14—H14A106.9C4—N1—C2120.16 (16)
N3—C14—H14A106.9C7—N1—C2115.68 (16)
C15'—C14—H14A97.2C4—N2—C5114.54 (18)
C15—C14—H14B106.9C4—N3—C14122.8 (2)
N3—C14—H14B106.9C4—N3—H3A118.6
C15'—C14—H14B137.2C14—N3—H3A118.6
H14A—C14—H14B106.7C9—O2—C6104.22 (18)
C15—C14—H14C83.4C18—O3—C18'31.7 (4)
N3—C14—H14C111.9C18—O3—H3A124.5
C15'—C14—H14C112.2C18'—O3—H3A102.6
H14A—C14—H14C125.7C18—O3—H3B109.5
H14B—C14—H14C26.1C18'—O3—H3B110.8
C15—C14—H14D114.7H3A—O3—H3B119.4
C3i—C1—C2—C30.2 (3)N3—C14—C15'—C16'179.6 (12)
C3i—C1—C2—N1178.92 (18)N2—C4—N1—C72.6 (3)
C1—C2—C3—C1i0.2 (4)N3—C4—N1—C7176.89 (18)
N1—C2—C3—C1i178.92 (18)N2—C4—N1—C2177.97 (18)
N2—C5—C6—O2178.42 (17)N3—C4—N1—C22.6 (3)
C8—C5—C6—O20.5 (2)O1—C7—N1—C4179.69 (19)
N2—C5—C6—C70.2 (3)C6—C7—N1—C40.5 (3)
C8—C5—C6—C7179.07 (19)O1—C7—N1—C20.2 (3)
C5—C6—C7—O1179.0 (2)C6—C7—N1—C2180.00 (17)
O2—C6—C7—O12.5 (4)C3—C2—N1—C4101.3 (2)
C5—C6—C7—N10.7 (3)C1—C2—N1—C480.0 (2)
O2—C6—C7—N1177.70 (18)C3—C2—N1—C778.2 (2)
N2—C5—C8—C9178.42 (19)C1—C2—N1—C7100.5 (2)
C6—C5—C8—C90.4 (2)N3—C4—N2—C5176.47 (18)
N2—C5—C8—C130.4 (4)N1—C4—N2—C53.0 (3)
C6—C5—C8—C13179.3 (2)C6—C5—N2—C41.7 (3)
C13—C8—C9—O2179.31 (18)C8—C5—N2—C4176.91 (18)
C5—C8—C9—O20.2 (2)N2—C4—N3—C140.8 (3)
C13—C8—C9—C101.3 (3)N1—C4—N3—C14179.7 (2)
C5—C8—C9—C10179.6 (2)C15—C14—N3—C481.6 (4)
O2—C9—C10—C11179.4 (2)C15'—C14—N3—C4104.2 (8)
C8—C9—C10—C110.1 (3)C10—C9—O2—C6179.3 (2)
C9—C10—C11—C120.7 (4)C8—C9—O2—C60.0 (2)
C10—C11—C12—C130.2 (4)C5—C6—O2—C90.3 (2)
C11—C12—C13—C80.9 (3)C7—C6—O2—C9178.9 (2)
C9—C8—C13—C121.6 (3)C17—C18—O3—C18'44.0 (11)
C5—C8—C13—C12179.6 (2)C17—C18—O3—H3A8.6
N3—C14—C15—C1668.1 (6)C17'—C18'—O3—C1829.5 (10)
C15'—C14—C15—C1620.3 (14)C17'—C18'—O3—H3A108.4
C15—C14—C15'—C16'40.1 (9)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3a···O30.862.222.996 (3)150
O3—H3b···O1i0.822.122.903 (3)159
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC32H28N6O4·2C2H6O
Mr652.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.1933 (12), 13.6224 (16), 12.5249 (15)
β (°) 105.409 (2)
V3)1676.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.988, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10883, 2941, 2327
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.151, 1.03
No. of reflections2941
No. of parameters259
No. of restraints60
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3a···O30.862.222.996 (3)150
O3—H3b···O1i0.822.122.903 (3)159
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors are grateful to Dr X. G. Meng (Key Laboratory of Pesticides & Chemical Biology of the Ministry of Education, Central China Normal University, Wuhan, Hubei, China) for the data collection and analysis. This work was supported by the Natural Science Foundation of Hubei Provincial Department of Science and Technology (No. 2011CDB08301) and the Science Research Project of Hubei University of Medicine (Nos. 2011CXX03 and No. 2009QDJ15).

References

First citationBellarosa, D., Antonelli, G., Bambacioni, F., Giannotti, D., Viti, G., Nannicini, R., Giachetti, A., Dianzani, F., Witvrouw, M., Pauwels, R., Desmyter, J. & De Clercq, E. (1996). Antiviral Res. 30, 109–124.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBodke, Y. & Sangapure, S. S. (2003). J. Indian Chem. Soc. 80, 187–189.  CAS Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o3266–o3268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836–o1838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457–o1459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Y.-G., Zhu, Z.-R. & Chen, Y.-L. (2008). Acta Cryst. E64, o321–o322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoneam, M., Geies, A., El-Naggar, G. & Mousa, S. (2004). J. Chin. Chem. Soc. 51, 1357–1366.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS,inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1282-o1283
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds