metal-organic compounds
catena-Poly[[[tetraaquacopper(II)]-μ-4,4′-bipyridyl-κ2N:N′] tetrafluoridosuccinate tetrahydrate]
aFaculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: hanlei@nbu.edu.cn
In the title compound, {[Cu(C10H8N2)(H2O)4](C4F4O4)·4H2O}n, the CuII atom adopts an elongated octahedral geometry because of the Jahn–Teller effect. Both cation and anion have crystallographic twofold rotation symmetry with the twofold axes passing through the Cu and N atoms and through the midpoint of the central C—C bond. The 4,4′-bipyridyl ligand links the CuII atoms into a linear chain along the b axis. O—H⋯O hydrogen-bonding interactions between the cationic chains and the tetrafluoridosuccinate anions and the free water molecules generate a three-dimensional supramolecular network.
Related literature
For background to metal-organic framework structures, see: Allendorf et al. (2009). For the construction of hybrid frameworks with perfluorinated ligands, see: Yang et al. (2007); Hulvey et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812014948/mw2062sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812014948/mw2062Isup2.hkl
A mixture of tetrafluorosuccinic acid (18.7 mg), 4,4'-bipyridyl (24.7 mg) and Cu(NO3)2.3H2O (15.2 mg) was dissolved in water (8 ml) and stirred for 0.5 h at room temperature. It was then sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for 48 h. Blue crystals suitable for X-ray analysis were obtained after cooling the solution to room temperature. The yield is ca 70% based on Cu2+.
H atoms on O were located in difference maps and the O—H distances adjusted to 0.82 Å while H atoms on C were positioned geometrically with C—H = 0.93 Å. All were allowed to ride on their respective parent atoms with Uiso(H) = 1.2 Ueq(C or O).
Data collection: SMART (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. ORTEP drawing showing the coordination sphere of the Cu2+ center in the title compound with 50% probability displacement ellipsoids. Symmetry codes i: 1-x,y,1.5-z; ii: x,1+y,z; iii: x,1-y,z; iv: 0.5-z,0.5-y,1-z. | |
Fig. 2. View down the c axis of the three-dimensional hydrogen bonding supramolecular network of the title compound. |
[Cu(C10H8N2)(H2O)4](C4F4O4)·4H2O | F(000) = 1132 |
Mr = 551.89 | Dx = 1.641 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 8384 reflections |
a = 17.112 (3) Å | θ = 3.0–27.4° |
b = 11.135 (2) Å | µ = 1.07 mm−1 |
c = 12.126 (2) Å | T = 298 K |
β = 104.85 (3)° | Block, blue |
V = 2233.3 (7) Å3 | 0.44 × 0.22 × 0.10 mm |
Z = 4 |
Bruker SMART APEX diffractometer | 2546 independent reflections |
Radiation source: fine-focus sealed tube | 2115 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 28 pixels mm-1 | θmax = 27.4°, θmin = 3.0° |
ω scans | h = −22→21 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −14→14 |
Tmin = 0.650, Tmax = 0.900 | l = −15→15 |
10662 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0175P)2 + 4.9756P] where P = (Fo2 + 2Fc2)/3 |
S = 1.28 | (Δ/σ)max = 0.001 |
2546 reflections | Δρmax = 0.70 e Å−3 |
153 parameters | Δρmin = −0.78 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0077 (3) |
[Cu(C10H8N2)(H2O)4](C4F4O4)·4H2O | V = 2233.3 (7) Å3 |
Mr = 551.89 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 17.112 (3) Å | µ = 1.07 mm−1 |
b = 11.135 (2) Å | T = 298 K |
c = 12.126 (2) Å | 0.44 × 0.22 × 0.10 mm |
β = 104.85 (3)° |
Bruker SMART APEX diffractometer | 2546 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2115 reflections with I > 2σ(I) |
Tmin = 0.650, Tmax = 0.900 | Rint = 0.026 |
10662 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.28 | Δρmax = 0.70 e Å−3 |
2546 reflections | Δρmin = −0.78 e Å−3 |
153 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.87438 (3) | 0.7500 | 0.02173 (14) | |
F1 | 0.33513 (10) | 0.31057 (16) | 0.46607 (16) | 0.0488 (5) | |
F2 | 0.29291 (11) | 0.33959 (16) | 0.61875 (14) | 0.0457 (4) | |
O1 | 0.43960 (11) | 0.87146 (15) | 0.58758 (13) | 0.0277 (4) | |
H3 | 0.4154 | 0.8089 | 0.5664 | 0.033* | |
H4 | 0.4087 | 0.9285 | 0.5680 | 0.033* | |
O2 | 0.16201 (13) | 0.45430 (18) | 0.49626 (16) | 0.0426 (5) | |
O3 | 0.20898 (16) | 0.4317 (2) | 0.34192 (18) | 0.0559 (7) | |
O4 | 0.36711 (11) | 0.88591 (16) | 0.79355 (15) | 0.0307 (4) | |
H7 | 0.3579 | 0.8968 | 0.8561 | 0.037* | |
H8 | 0.3448 | 0.9399 | 0.7503 | 0.037* | |
O5 | 0.35115 (14) | 0.6752 (2) | 0.5062 (2) | 0.0533 (6) | |
H9 | 0.3262 | 0.6610 | 0.5542 | 0.064* | |
H10 | 0.3197 | 0.7005 | 0.4479 | 0.064* | |
O6 | 0.23890 (14) | 0.7923 (2) | 0.32616 (18) | 0.0540 (6) | |
H12 | 0.2530 | 0.8407 | 0.2843 | 0.065* | |
H11 | 0.2113 | 0.7397 | 0.2874 | 0.065* | |
N1 | 0.5000 | 0.6931 (2) | 0.7500 | 0.0212 (6) | |
N2 | 0.5000 | 0.0563 (2) | 0.7500 | 0.0231 (6) | |
C1 | 0.45882 (16) | 0.6311 (2) | 0.8111 (2) | 0.0296 (5) | |
H1 | 0.4301 | 0.6731 | 0.8541 | 0.035* | |
C2 | 0.45722 (17) | 0.5067 (2) | 0.8129 (2) | 0.0315 (6) | |
H2 | 0.4276 | 0.4668 | 0.8561 | 0.038* | |
C3 | 0.5000 | 0.4417 (3) | 0.7500 | 0.0244 (7) | |
C4 | 0.5000 | 0.3076 (3) | 0.7500 | 0.0246 (7) | |
C5 | 0.48432 (17) | 0.2427 (2) | 0.8399 (2) | 0.0298 (6) | |
H5 | 0.4737 | 0.2827 | 0.9019 | 0.036* | |
C6 | 0.48451 (16) | 0.1187 (2) | 0.8369 (2) | 0.0277 (5) | |
H6 | 0.4735 | 0.0766 | 0.8975 | 0.033* | |
C7 | 0.26765 (16) | 0.3133 (2) | 0.5056 (2) | 0.0339 (6) | |
C8 | 0.20728 (18) | 0.4103 (2) | 0.4409 (2) | 0.0363 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0336 (3) | 0.01019 (19) | 0.0216 (2) | 0.000 | 0.00738 (16) | 0.000 |
F1 | 0.0408 (10) | 0.0482 (10) | 0.0676 (12) | 0.0108 (8) | 0.0323 (9) | 0.0130 (9) |
F2 | 0.0502 (10) | 0.0491 (10) | 0.0327 (8) | 0.0104 (8) | 0.0014 (7) | 0.0004 (7) |
O1 | 0.0379 (10) | 0.0199 (8) | 0.0241 (8) | 0.0054 (7) | 0.0058 (7) | 0.0010 (7) |
O2 | 0.0532 (13) | 0.0414 (11) | 0.0369 (10) | 0.0262 (10) | 0.0185 (9) | 0.0090 (9) |
O3 | 0.0837 (17) | 0.0539 (14) | 0.0366 (11) | 0.0379 (13) | 0.0276 (11) | 0.0198 (10) |
O4 | 0.0366 (10) | 0.0288 (9) | 0.0296 (9) | 0.0033 (8) | 0.0135 (7) | 0.0058 (7) |
O5 | 0.0492 (13) | 0.0590 (14) | 0.0498 (13) | −0.0107 (11) | 0.0090 (10) | −0.0077 (11) |
O6 | 0.0659 (15) | 0.0598 (14) | 0.0361 (11) | −0.0240 (12) | 0.0125 (10) | −0.0009 (10) |
N1 | 0.0260 (14) | 0.0129 (12) | 0.0245 (13) | 0.000 | 0.0063 (11) | 0.000 |
N2 | 0.0333 (16) | 0.0125 (12) | 0.0273 (14) | 0.000 | 0.0145 (12) | 0.000 |
C1 | 0.0395 (14) | 0.0167 (11) | 0.0392 (13) | 0.0029 (10) | 0.0224 (11) | −0.0002 (10) |
C2 | 0.0433 (16) | 0.0166 (11) | 0.0427 (14) | −0.0001 (10) | 0.0260 (12) | 0.0033 (10) |
C3 | 0.0317 (18) | 0.0126 (14) | 0.0307 (17) | 0.000 | 0.0115 (14) | 0.000 |
C4 | 0.0319 (18) | 0.0121 (14) | 0.0325 (17) | 0.000 | 0.0130 (14) | 0.000 |
C5 | 0.0484 (16) | 0.0163 (11) | 0.0303 (13) | −0.0009 (10) | 0.0206 (11) | −0.0027 (9) |
C6 | 0.0429 (15) | 0.0178 (11) | 0.0282 (12) | 0.0002 (10) | 0.0194 (11) | 0.0016 (9) |
C7 | 0.0338 (14) | 0.0386 (15) | 0.0323 (13) | 0.0102 (12) | 0.0140 (11) | 0.0063 (11) |
C8 | 0.0484 (17) | 0.0291 (13) | 0.0312 (13) | 0.0147 (12) | 0.0101 (12) | 0.0082 (11) |
Cu1—O1i | 1.9760 (17) | N1—C1 | 1.338 (3) |
Cu1—O1 | 1.9761 (17) | N2—C6 | 1.344 (3) |
Cu1—N1 | 2.018 (3) | N2—C6i | 1.344 (3) |
Cu1—N2ii | 2.025 (3) | N2—Cu1iii | 2.025 (3) |
F1—C7 | 1.360 (3) | C1—C2 | 1.386 (3) |
F2—C7 | 1.360 (3) | C1—H1 | 0.9300 |
O1—H3 | 0.8180 | C2—C3 | 1.388 (3) |
O1—H4 | 0.8212 | C2—H2 | 0.9300 |
O2—C8 | 1.248 (3) | C3—C2i | 1.388 (3) |
O3—C8 | 1.232 (3) | C3—C4 | 1.494 (4) |
O4—H7 | 0.8224 | C4—C5 | 1.390 (3) |
O4—H8 | 0.8241 | C4—C5i | 1.390 (3) |
O5—H9 | 0.8196 | C5—C6 | 1.382 (3) |
O5—H10 | 0.8200 | C5—H5 | 0.9300 |
O6—H12 | 0.8182 | C6—H6 | 0.9300 |
O6—H11 | 0.8207 | C7—C7iv | 1.525 (6) |
N1—C1i | 1.338 (3) | C7—C8 | 1.560 (4) |
O1i—Cu1—O1 | 178.11 (10) | C3—C2—H2 | 120.1 |
O1i—Cu1—N1 | 89.06 (5) | C2—C3—C2i | 117.2 (3) |
O1—Cu1—N1 | 89.06 (5) | C2—C3—C4 | 121.38 (15) |
O1i—Cu1—N2ii | 90.94 (5) | C2i—C3—C4 | 121.38 (15) |
O1—Cu1—N2ii | 90.94 (5) | C5—C4—C5i | 117.4 (3) |
N1—Cu1—N2ii | 180.000 (1) | C5—C4—C3 | 121.31 (15) |
Cu1—O1—H3 | 114.9 | C5i—C4—C3 | 121.30 (15) |
Cu1—O1—H4 | 114.1 | C6—C5—C4 | 119.8 (2) |
H3—O1—H4 | 109.3 | C6—C5—H5 | 120.1 |
H7—O4—H8 | 108.2 | C4—C5—H5 | 120.1 |
H9—O5—H10 | 109.4 | N2—C6—C5 | 122.6 (2) |
H12—O6—H11 | 109.5 | N2—C6—H6 | 118.7 |
C1i—N1—C1 | 117.8 (3) | C5—C6—H6 | 118.7 |
C1i—N1—Cu1 | 121.09 (14) | F1—C7—F2 | 106.3 (2) |
C1—N1—Cu1 | 121.09 (14) | F1—C7—C7iv | 107.5 (3) |
C6—N2—C6i | 117.8 (3) | F2—C7—C7iv | 107.8 (3) |
C6—N2—Cu1iii | 121.12 (14) | F1—C7—C8 | 110.5 (2) |
C6i—N2—Cu1iii | 121.12 (14) | F2—C7—C8 | 110.9 (2) |
N1—C1—C2 | 122.7 (2) | C7iv—C7—C8 | 113.5 (3) |
N1—C1—H1 | 118.7 | O3—C8—O2 | 128.4 (3) |
C2—C1—H1 | 118.7 | O3—C8—C7 | 116.5 (2) |
C1—C2—C3 | 119.8 (2) | O2—C8—C7 | 115.1 (2) |
C1—C2—H2 | 120.1 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x, y+1, z; (iii) x, y−1, z; (iv) −x+1/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H11···O4v | 0.82 | 2.01 | 2.826 (3) | 172 |
O6—H12···O3vi | 0.82 | 2.07 | 2.879 (3) | 168 |
O5—H10···O6 | 0.82 | 2.02 | 2.830 (3) | 168 |
O5—H9···O6v | 0.82 | 2.11 | 2.871 (3) | 155 |
O4—H8···O3v | 0.82 | 1.90 | 2.725 (3) | 176 |
O4—H7···O2vii | 0.82 | 2.01 | 2.824 (3) | 170 |
O1—H4···O2v | 0.82 | 1.81 | 2.630 (2) | 172 |
O1—H3···O5 | 0.82 | 1.88 | 2.697 (3) | 174 |
Symmetry codes: (v) −x+1/2, −y+3/2, −z+1; (vi) −x+1/2, y+1/2, −z+1/2; (vii) −x+1/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C10H8N2)(H2O)4](C4F4O4)·4H2O |
Mr | 551.89 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 17.112 (3), 11.135 (2), 12.126 (2) |
β (°) | 104.85 (3) |
V (Å3) | 2233.3 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.07 |
Crystal size (mm) | 0.44 × 0.22 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.650, 0.900 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10662, 2546, 2115 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.647 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.085, 1.28 |
No. of reflections | 2546 |
No. of parameters | 153 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −0.78 |
Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H11···O4i | 0.82 | 2.01 | 2.826 (3) | 172 |
O6—H12···O3ii | 0.82 | 2.07 | 2.879 (3) | 168 |
O5—H10···O6 | 0.82 | 2.02 | 2.830 (3) | 168 |
O5—H9···O6i | 0.82 | 2.11 | 2.871 (3) | 155 |
O4—H8···O3i | 0.82 | 1.90 | 2.725 (3) | 176 |
O4—H7···O2iii | 0.82 | 2.01 | 2.824 (3) | 170 |
O1—H4···O2i | 0.82 | 1.81 | 2.630 (2) | 172 |
O1—H3···O5 | 0.82 | 1.88 | 2.697 (3) | 174 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (21071087) and the K. C. Wong Magna Fund in Ningbo University.
References
Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. (2009). Chem. Soc. Rev. 38, 1330–1352. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hulvey, Z., Ayala, E., Furman, J. D., Forster, P. M. & Cheetham, A. K. (2009). Cryst. Growth Des. 9, 4759–4765. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, C., Wang, X.-P. & Omary, M. A. (2007). J. Am. Chem. Soc. 129, 15454–15455. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal-organic frameworks have been widely studied over the past few decades owing to their important applications in gas storage, catalysis, sensing, nonlinear optics, magnetism, luminescence and ferroelectricity (Allendorf et al., 2009). Recently, the construction of hybrid framework materials using perfluorinated ligands has attracted much attention based on reports of interesting gas storage properties for such materials containing porous surfaces with exposed fluorine atoms (Yang et al., 2007). Tetrafluorosuccinic acid, as a perfluorinated dicarboxylate ligand, is an excellent candidate for the construction of hybrid frameworks with diverse structures (Hulvey et al., 2009) and with which the title compound, Cu(C10H8N2)(H2O)4.C4F4O4.4H2O, was hydrothermally prepared from Cu(NO3)2.3H2O and 4,4'-bipyridyl as coligand.
Both cation and anion have crystallographic 2-fold rotation symmetry with the 2-fold axes passing through Cu1, N1 and N2 and through the midpoint of the central C—C bond. The metal adopts a tetragonally elongated octahedral geometry because of the Jahn-Teller effect. The O4 atom occupies the elongated vertex with a Cu1—O4 distance of 2.462 (2) Å. The O1, N1 and N2 atoms occupy the equatorial plane with a Cu1—O1 distance of 1.976 (2) Å and Cu1—N1 and Cu1—N2 distances of 2.019 (3) and 2.027 (3) Å respectively (Figure 1). Adjacent CuII centers are bridged by 4,4'-bipy ligands to generate a one-dimensional linear chain structure parallel to the b axis. As shown in Figure 2 and Table 1, O—H···O hydrogen-bonding interactions between the cationic one-dimensional chains and the tetrafluorosuccinate anions and the free water molecules generate a three-dimensional supramolecular network.