organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1403

N-(2-Chloro­benzo­yl)-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 31 March 2012; accepted 11 April 2012; online 18 April 2012)

In the title compound, C14H12ClNO3S, the C=O bond is syn to the Cl substituent in the adjacent benzene ring. The C—S—N—C torsion angle is −80.6 (6)°. The chloro­benzoyl ring is disordered and was refined using a split model [occupancy ratio 0.537 (3):0.463 (3)]. In the crystal, mol­ecules are linked by pairs of N—H⋯O(S) hydrogen bonds, forming inversion dimers.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779-790.], 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.]), of N-(substitutedbenzo­yl)-aryl­sulfonamides, see: Gowda et al. (2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o1467.]), of N-chloro­aryl­amides, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]) and of N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO3S

  • Mr = 309.76

  • Monoclinic, C 2/c

  • a = 25.079 (4) Å

  • b = 8.1963 (7) Å

  • c = 18.397 (3) Å

  • β = 131.77 (1)°

  • V = 2820.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 K

  • 0.48 × 0.20 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.822, Tmax = 0.935

  • 5253 measured reflections

  • 2432 independent reflections

  • 1623 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.115

  • S = 1.16

  • 2432 reflections

  • 216 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.02 2.867 (4) 169
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000, 2007), N-(substitutedbenzoyl)-arylsulfonamides (Gowda et al., 2010), N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(2-chlorobenzoyl)-4-methylbenzenesulfonamide (I) has been determined. The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond (Fig. 1), similar to that observed in i>N-(2-chlorobenzoyl)-4-chlorobenzenesulfonamide (II)(Gowda et al., 2010). Further, the conformation of the C=O bond in the C—SO2—NH—C(O) segment of (I) is syn to the ortho-Cl in the benzoyl ring, similar to that observed between in (II).

The molecules are twisted at the S atom with the torsional angle of -80.6 (6)°, compared to that of 65.7 (2)° in (II).

The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 65.0 (5)°, compared to the value of 88.5 (1)° in (II).

Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 66.1 (2)°, compared to the value of 58.2 (1)° in (II).

The packing of molecules linked by of N—H···O(S) hydrogen bonds(Table 1) is shown in Fig. 2.

Related literature top

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000, 2007), of N-(substitutedbenzoyl)-arylsulfonamides, see: Gowda et al. (2010), of N-chloroarylamides, see: Jyothi & Gowda (2004) and of N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Experimental top

The title compound was prepared by refluxing a mixture of 2-chlorobenzoic acid, 4-methylbenzenesulfonamide and phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of the solvent in its toluene solution at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H distances of 0.93 Å (C-aromatic) and 0.96 Å (C-methyl) and N—H = 0.86 (2) %A.

Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

The chlorobenzyol ring with atoms C8, C9, C10, C11, C12, C13 and CL1 is disordered and was refined using a split model. The corresponding site-occupation factors were refined so that their sum was unity [0.536 (4)–0.464 (4)]. The corresponding bond distances in the disordered groups were restrained to be equal. The C atoms of lower occupancy were refined isotropic.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and disordering is shown as full and dashed lines.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines and the disordering is not shown for clarity.
N-(2-Chlorobenzoyl)-4-methylbenzenesulfonamide top
Crystal data top
C14H12ClNO3SF(000) = 1280
Mr = 309.76Dx = 1.459 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2528 reflections
a = 25.079 (4) Åθ = 2.5–27.9°
b = 8.1963 (7) ŵ = 0.42 mm1
c = 18.397 (3) ÅT = 293 K
β = 131.77 (1)°Prism, colourless
V = 2820.4 (7) Å30.48 × 0.20 × 0.16 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2432 independent reflections
Radiation source: fine-focus sealed tube1623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Rotation method data acquisition using ω and phi scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2329
Tmin = 0.822, Tmax = 0.935k = 97
5253 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0079P)2 + 10.754P]
where P = (Fo2 + 2Fc2)/3
2432 reflections(Δ/σ)max = 0.002
216 parametersΔρmax = 0.30 e Å3
15 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H12ClNO3SV = 2820.4 (7) Å3
Mr = 309.76Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.079 (4) ŵ = 0.42 mm1
b = 8.1963 (7) ÅT = 293 K
c = 18.397 (3) Å0.48 × 0.20 × 0.16 mm
β = 131.77 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2432 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1623 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.935Rint = 0.033
5253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07115 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0079P)2 + 10.754P]
where P = (Fo2 + 2Fc2)/3
2432 reflectionsΔρmax = 0.30 e Å3
216 parametersΔρmin = 0.31 e Å3
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.46756 (6)0.21314 (14)0.84045 (8)0.0370 (3)
O10.47071 (16)0.0832 (4)0.8932 (2)0.0501 (8)
O20.53214 (14)0.2614 (4)0.8617 (2)0.0451 (8)
O30.31747 (17)0.0536 (4)0.7036 (2)0.0606 (10)
N10.41113 (17)0.1593 (4)0.7243 (2)0.0392 (9)
H1N0.42210.18920.69090.047*
C10.4310 (2)0.3870 (5)0.8486 (3)0.0331 (10)
C20.4617 (2)0.5370 (5)0.8639 (3)0.0453 (12)
H20.50040.54680.86770.054*
C30.4343 (2)0.6723 (6)0.8737 (3)0.0494 (12)
H30.45470.77410.88400.059*
C40.3767 (2)0.6586 (6)0.8682 (3)0.0408 (11)
C50.3469 (2)0.5060 (6)0.8526 (3)0.0475 (12)
H50.30790.49570.84810.057*
C60.3739 (2)0.3701 (6)0.8436 (3)0.0452 (12)
H60.35400.26800.83430.054*
C70.3475 (2)0.0709 (5)0.6741 (3)0.0406 (11)
C80.3257 (5)0.0153 (13)0.5801 (7)0.030 (3)0.537 (3)
C90.2525 (4)0.0070 (12)0.4939 (6)0.031 (2)0.537 (3)
C100.2260 (5)0.0831 (12)0.4066 (6)0.031 (2)0.537 (3)
H100.17800.08300.34960.037*0.537 (3)
C110.2799 (5)0.1586 (11)0.4153 (6)0.037 (2)0.537 (3)
H110.26670.21120.36050.044*0.537 (3)
C120.3534 (6)0.1611 (11)0.5014 (7)0.043 (2)0.537 (3)
H120.38590.21510.50110.052*0.537 (3)
C130.3767 (6)0.0868 (14)0.5831 (8)0.040 (3)0.537 (3)
H130.42490.08390.63890.048*0.537 (3)
Cl10.18345 (12)0.0821 (3)0.48116 (17)0.0546 (8)0.537 (3)
C8'0.3105 (7)0.0155 (17)0.5785 (9)0.024 (4)*0.463 (3)
C9'0.3503 (7)0.090 (2)0.5695 (10)0.041 (5)*0.463 (3)
C10'0.3175 (8)0.158 (2)0.4767 (11)0.075 (6)*0.463 (3)
H10'0.34200.22350.46630.089*0.463 (3)
C11'0.2470 (8)0.118 (2)0.4041 (11)0.061 (6)*0.463 (3)
H11'0.22440.15710.34210.073*0.463 (3)
C12'0.2056 (8)0.0234 (18)0.4137 (11)0.083 (5)*0.463 (3)
H12'0.15730.00460.36100.099*0.463 (3)
C13'0.2385 (8)0.0399 (19)0.5032 (11)0.066 (5)*0.463 (3)
H13'0.21240.09950.51340.079*0.463 (3)
Cl1'0.43803 (18)0.1591 (4)0.6657 (3)0.0793 (13)0.463 (3)
C140.3471 (3)0.8079 (6)0.8782 (3)0.0576 (14)
H14A0.34780.89810.84570.086*
H14B0.37570.83340.94600.086*
H14C0.29870.78720.84940.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0378 (6)0.0369 (6)0.0381 (6)0.0007 (6)0.0260 (5)0.0026 (5)
O10.068 (2)0.0397 (19)0.0475 (19)0.0079 (17)0.0404 (19)0.0108 (15)
O20.0334 (17)0.054 (2)0.0472 (18)0.0044 (15)0.0267 (15)0.0123 (15)
O30.055 (2)0.079 (3)0.064 (2)0.0214 (19)0.046 (2)0.0109 (19)
N10.045 (2)0.041 (2)0.038 (2)0.0101 (18)0.0304 (19)0.0067 (17)
C10.036 (2)0.033 (3)0.034 (2)0.001 (2)0.024 (2)0.0004 (19)
C20.046 (3)0.041 (3)0.061 (3)0.008 (2)0.040 (3)0.005 (2)
C30.058 (3)0.035 (3)0.067 (3)0.009 (2)0.046 (3)0.006 (2)
C40.045 (3)0.042 (3)0.034 (2)0.009 (2)0.026 (2)0.002 (2)
C50.048 (3)0.052 (3)0.062 (3)0.004 (3)0.045 (3)0.005 (3)
C60.053 (3)0.037 (3)0.063 (3)0.006 (2)0.046 (3)0.008 (2)
C70.036 (3)0.038 (3)0.045 (3)0.007 (2)0.026 (2)0.002 (2)
C80.024 (5)0.017 (5)0.056 (6)0.010 (4)0.030 (5)0.005 (4)
C90.034 (5)0.032 (6)0.035 (5)0.001 (4)0.026 (5)0.001 (4)
C100.024 (5)0.038 (6)0.041 (5)0.007 (4)0.026 (5)0.000 (4)
C110.028 (5)0.036 (5)0.036 (6)0.006 (4)0.018 (5)0.002 (4)
C120.050 (7)0.035 (5)0.063 (7)0.006 (5)0.046 (6)0.006 (4)
C130.041 (7)0.047 (6)0.043 (6)0.006 (6)0.032 (6)0.011 (5)
Cl10.0510 (16)0.0559 (16)0.0613 (16)0.0102 (12)0.0392 (14)0.0080 (12)
Cl1'0.078 (2)0.065 (2)0.110 (3)0.0042 (18)0.069 (2)0.0242 (19)
C140.066 (3)0.054 (3)0.055 (3)0.017 (3)0.041 (3)0.005 (3)
Geometric parameters (Å, º) top
S1—O11.407 (3)C9—Cl11.745 (9)
S1—O21.446 (3)C10—C111.397 (12)
S1—N11.654 (3)C10—H100.9300
S1—C11.754 (4)C11—C121.420 (12)
O3—C71.195 (5)C11—H110.9300
N1—C71.400 (5)C12—C131.342 (11)
N1—H1N0.8600C12—H120.9300
C1—C21.377 (5)C13—H130.9300
C1—C61.380 (5)C8'—C13'1.373 (17)
C2—C31.378 (6)C8'—C9'1.412 (15)
C2—H20.9300C9'—C10'1.423 (16)
C3—C41.384 (6)C9'—Cl1'1.762 (13)
C3—H30.9300C10'—C11'1.368 (15)
C4—C51.385 (6)C10'—H10'0.9300
C4—C141.506 (6)C11'—C12'1.398 (14)
C5—C61.369 (6)C11'—H11'0.9300
C5—H50.9300C12'—C13'1.360 (16)
C6—H60.9300C12'—H12'0.9300
C7—C8'1.408 (12)C13'—H13'0.9300
C7—C81.589 (11)C14—H14A0.9600
C8—C131.374 (14)C14—H14B0.9600
C8—C91.419 (12)C14—H14C0.9600
C9—C101.410 (12)
O1—S1—O2118.86 (19)C8—C9—Cl1126.8 (7)
O1—S1—N1107.20 (18)C11—C10—C9112.3 (8)
O2—S1—N1105.20 (17)C11—C10—H10123.8
O1—S1—C1110.41 (19)C9—C10—H10123.8
O2—S1—C1108.09 (19)C10—C11—C12124.9 (7)
N1—S1—C1106.31 (18)C10—C11—H11117.5
C7—N1—S1127.5 (3)C12—C11—H11117.5
C7—N1—H1N116.2C13—C12—C11121.1 (9)
S1—N1—H1N116.2C13—C12—H12119.5
C2—C1—C6121.2 (4)C11—C12—H12119.5
C2—C1—S1119.3 (3)C12—C13—C8116.7 (11)
C6—C1—S1119.5 (3)C12—C13—H13121.6
C1—C2—C3119.0 (4)C8—C13—H13121.6
C1—C2—H2120.5C13'—C8'—C7122.9 (11)
C3—C2—H2120.5C13'—C8'—C9'121.9 (12)
C2—C3—C4120.8 (4)C7—C8'—C9'114.5 (10)
C2—C3—H3119.6C8'—C9'—C10'119.3 (12)
C4—C3—H3119.6C8'—C9'—Cl1'125.9 (10)
C3—C4—C5118.7 (4)C10'—C9'—Cl1'114.7 (12)
C3—C4—C14120.1 (4)C11'—C10'—C9'114.7 (13)
C5—C4—C14121.1 (4)C11'—C10'—H10'122.7
C6—C5—C4121.2 (4)C9'—C10'—H10'122.7
C6—C5—H5119.4C10'—C11'—C12'126.5 (15)
C4—C5—H5119.4C10'—C11'—H11'116.8
C5—C6—C1119.0 (4)C12'—C11'—H11'116.8
C5—C6—H6120.5C13'—C12'—C11'117.5 (15)
C1—C6—H6120.5C13'—C12'—H12'121.3
O3—C7—N1123.2 (4)C11'—C12'—H12'121.3
O3—C7—C8'115.9 (7)C12'—C13'—C8'119.7 (13)
N1—C7—C8'120.3 (7)C12'—C13'—H13'120.1
O3—C7—C8125.2 (5)C8'—C13'—H13'120.1
N1—C7—C8111.3 (5)C4—C14—H14A109.5
C8'—C7—C815.5 (7)C4—C14—H14B109.5
C13—C8—C9122.8 (9)H14A—C14—H14B109.5
C13—C8—C7120.6 (8)C4—C14—H14C109.5
C9—C8—C7116.5 (8)H14A—C14—H14C109.5
C10—C9—C8122.0 (8)H14B—C14—H14C109.5
C10—C9—Cl1111.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.022.867 (4)169
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H12ClNO3S
Mr309.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.079 (4), 8.1963 (7), 18.397 (3)
β (°) 131.77 (1)
V3)2820.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.48 × 0.20 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.822, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
5253, 2432, 1623
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.115, 1.16
No. of reflections2432
No. of parameters216
No. of restraints15
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0079P)2 + 10.754P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.30, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.022.867 (4)168.6
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o1467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.  CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1403
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds