organic compounds
1,4-Bis[4-(tert-butylsulfanyl)phenyl]buta-1,3-diyne
aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de
The 24H26S2, consits of one half-molecule, which is located on a center of inversion. The two benzene rings are exactly coplanar while the tert-butyl group is oriented nearly perpendicular to the ring plane [C—S—C—C = −81.14 (11)°].
of the title compound, CRelated literature
For background to this work, see: Pearson & Tour (1997); Kergueris et al. (1999). For related structures, see: Kergueris et al. (1999); Mayor et al. (2003). For the synthetic procedure, see: van Dijk et al. (2006). For the unsubstituted 1,4-diphenylbuta-1,3-diyne, see: Hori et al. (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536812017710/nc2274sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812017710/nc2274Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812017710/nc2274Isup3.cml
The title compound has been obtained as a by-product during attempted Sonogashira cross coupling reaction of tert-butyl-(4-ethynylphenyl)sulfane with 2,6-dibromoanthra-9,10-quinone in diisopropylamine. For the synthetic procedure, see: van Dijk et al., (2006). The plate shaped crystals are colourless and stable in the air.
H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Perspective view of the title compound with labelling showing 50% probability displacement ellipsoids for the non-H atoms. Symmetry code: i = -x+2, -y, -z+2. |
C24H26S2 | F(000) = 404 |
Mr = 378.57 | Dx = 1.140 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 13.6286 (5) Å | Cell parameters from 4805 reflections |
b = 6.4269 (2) Å | θ = 2.8–30.5° |
c = 14.1290 (5) Å | µ = 0.25 mm−1 |
β = 116.937 (2)° | T = 153 K |
V = 1103.29 (7) Å3 | Plate, colourless |
Z = 2 | 0.53 × 0.20 × 0.05 mm |
Bruker APEXII CCD area-detector diffractometer | 3028 independent reflections |
Radiation source: fine-focus sealed tube | 2450 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
phi and ω scans | θmax = 29.4°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −17→18 |
Tmin = 0.881, Tmax = 0.989 | k = −8→8 |
11825 measured reflections | l = −19→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0415P)2 + 0.3498P] where P = (Fo2 + 2Fc2)/3 |
3028 reflections | (Δ/σ)max < 0.001 |
121 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C24H26S2 | V = 1103.29 (7) Å3 |
Mr = 378.57 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.6286 (5) Å | µ = 0.25 mm−1 |
b = 6.4269 (2) Å | T = 153 K |
c = 14.1290 (5) Å | 0.53 × 0.20 × 0.05 mm |
β = 116.937 (2)° |
Bruker APEXII CCD area-detector diffractometer | 3028 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2450 reflections with I > 2σ(I) |
Tmin = 0.881, Tmax = 0.989 | Rint = 0.025 |
11825 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.35 e Å−3 |
3028 reflections | Δρmin = −0.20 e Å−3 |
121 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.93054 (2) | 0.80456 (5) | 0.55276 (2) | 0.02231 (10) | |
C1 | 0.93335 (10) | 0.62309 (18) | 0.64857 (9) | 0.0206 (2) | |
C2 | 0.90994 (11) | 0.68270 (19) | 0.73135 (10) | 0.0250 (3) | |
H2 | 0.8874 | 0.8214 | 0.7343 | 0.030* | |
C3 | 0.91924 (11) | 0.5417 (2) | 0.80912 (10) | 0.0261 (3) | |
H3 | 0.9019 | 0.5832 | 0.8643 | 0.031* | |
C4 | 0.95429 (10) | 0.33764 (19) | 0.80637 (10) | 0.0234 (3) | |
C5 | 0.97762 (11) | 0.2782 (2) | 0.72369 (10) | 0.0257 (3) | |
H5 | 1.0013 | 0.1402 | 0.7212 | 0.031* | |
C6 | 0.96658 (11) | 0.41878 (19) | 0.64538 (10) | 0.0247 (3) | |
H6 | 0.9817 | 0.3760 | 0.5890 | 0.030* | |
C7 | 0.78266 (11) | 0.8255 (2) | 0.45814 (11) | 0.0308 (3) | |
C8 | 0.73566 (15) | 0.6125 (3) | 0.41517 (14) | 0.0523 (5) | |
H8A | 0.7786 | 0.5482 | 0.3831 | 0.078* | |
H8B | 0.6589 | 0.6271 | 0.3614 | 0.078* | |
H8C | 0.7391 | 0.5247 | 0.4733 | 0.078* | |
C9 | 0.78203 (13) | 0.9643 (3) | 0.37009 (13) | 0.0467 (4) | |
H9A | 0.7060 | 0.9860 | 0.3159 | 0.070* | |
H9B | 0.8241 | 0.8972 | 0.3378 | 0.070* | |
H9C | 0.8155 | 1.0989 | 0.4001 | 0.070* | |
C10 | 0.72009 (13) | 0.9298 (3) | 0.51159 (14) | 0.0480 (4) | |
H10A | 0.7237 | 0.8416 | 0.5697 | 0.072* | |
H10B | 0.6430 | 0.9492 | 0.4595 | 0.072* | |
H10C | 0.7534 | 1.0653 | 0.5399 | 0.072* | |
C11 | 0.97122 (11) | 0.1931 (2) | 0.88969 (10) | 0.0259 (3) | |
C12 | 0.98954 (11) | 0.0698 (2) | 0.95990 (10) | 0.0265 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02344 (15) | 0.02417 (15) | 0.02180 (16) | 0.00002 (11) | 0.01242 (12) | 0.00352 (11) |
C1 | 0.0213 (5) | 0.0224 (5) | 0.0181 (6) | −0.0005 (4) | 0.0090 (5) | 0.0011 (4) |
C2 | 0.0327 (7) | 0.0210 (6) | 0.0255 (6) | 0.0017 (5) | 0.0169 (5) | 0.0000 (5) |
C3 | 0.0347 (7) | 0.0264 (6) | 0.0222 (6) | 0.0008 (5) | 0.0173 (5) | −0.0011 (5) |
C4 | 0.0267 (6) | 0.0230 (6) | 0.0205 (6) | −0.0010 (5) | 0.0107 (5) | 0.0013 (4) |
C5 | 0.0330 (7) | 0.0218 (6) | 0.0237 (6) | 0.0030 (5) | 0.0141 (5) | −0.0002 (5) |
C6 | 0.0307 (6) | 0.0257 (6) | 0.0212 (6) | 0.0022 (5) | 0.0148 (5) | −0.0005 (5) |
C7 | 0.0244 (6) | 0.0385 (7) | 0.0259 (7) | 0.0009 (5) | 0.0083 (5) | 0.0080 (6) |
C8 | 0.0453 (9) | 0.0535 (10) | 0.0391 (9) | −0.0178 (8) | 0.0026 (8) | −0.0021 (8) |
C9 | 0.0375 (8) | 0.0616 (11) | 0.0362 (8) | 0.0078 (7) | 0.0125 (7) | 0.0244 (8) |
C10 | 0.0305 (8) | 0.0661 (11) | 0.0508 (10) | 0.0153 (8) | 0.0215 (7) | 0.0150 (9) |
C11 | 0.0321 (6) | 0.0246 (6) | 0.0235 (6) | 0.0000 (5) | 0.0147 (5) | −0.0011 (5) |
C12 | 0.0340 (7) | 0.0246 (6) | 0.0246 (6) | 0.0015 (5) | 0.0167 (6) | −0.0007 (5) |
S1—C1 | 1.7740 (12) | C7—C9 | 1.528 (2) |
S1—C7 | 1.8509 (13) | C7—C10 | 1.526 (2) |
C1—C2 | 1.3980 (17) | C8—H8A | 0.9800 |
C1—C6 | 1.3964 (17) | C8—H8B | 0.9800 |
C2—C3 | 1.3852 (17) | C8—H8C | 0.9800 |
C2—H2 | 0.9500 | C9—H9A | 0.9800 |
C3—C4 | 1.4022 (17) | C9—H9B | 0.9800 |
C3—H3 | 0.9500 | C9—H9C | 0.9800 |
C4—C5 | 1.3957 (17) | C10—H10A | 0.9800 |
C4—C11 | 1.4339 (17) | C10—H10B | 0.9800 |
C5—C6 | 1.3828 (17) | C10—H10C | 0.9800 |
C5—H5 | 0.9500 | C11—C12 | 1.2042 (18) |
C6—H6 | 0.9500 | C12—C12i | 1.370 (3) |
C7—C8 | 1.517 (2) | ||
C1—S1—C7 | 103.83 (6) | C9—C7—S1 | 103.49 (10) |
C2—C1—C6 | 119.01 (11) | C10—C7—S1 | 110.13 (10) |
C2—C1—S1 | 121.60 (9) | C7—C8—H8A | 109.5 |
C6—C1—S1 | 119.27 (9) | C7—C8—H8B | 109.5 |
C3—C2—C1 | 120.72 (11) | H8A—C8—H8B | 109.5 |
C3—C2—H2 | 119.6 | C7—C8—H8C | 109.5 |
C1—C2—H2 | 119.6 | H8A—C8—H8C | 109.5 |
C2—C3—C4 | 119.99 (12) | H8B—C8—H8C | 109.5 |
C2—C3—H3 | 120.0 | C7—C9—H9A | 109.5 |
C4—C3—H3 | 120.0 | C7—C9—H9B | 109.5 |
C5—C4—C3 | 119.25 (11) | H9A—C9—H9B | 109.5 |
C5—C4—C11 | 119.79 (11) | C7—C9—H9C | 109.5 |
C3—C4—C11 | 120.89 (11) | H9A—C9—H9C | 109.5 |
C6—C5—C4 | 120.49 (11) | H9B—C9—H9C | 109.5 |
C6—C5—H5 | 119.8 | C7—C10—H10A | 109.5 |
C4—C5—H5 | 119.8 | C7—C10—H10B | 109.5 |
C5—C6—C1 | 120.52 (11) | H10A—C10—H10B | 109.5 |
C5—C6—H6 | 119.7 | C7—C10—H10C | 109.5 |
C1—C6—H6 | 119.7 | H10A—C10—H10C | 109.5 |
C8—C7—C9 | 110.82 (14) | H10B—C10—H10C | 109.5 |
C8—C7—C10 | 111.40 (14) | C12—C11—C4 | 177.35 (14) |
C9—C7—C10 | 110.38 (13) | C11—C12—C12i | 179.74 (18) |
C8—C7—S1 | 110.35 (11) | ||
C7—S1—C1—C2 | −81.14 (11) | C11—C4—C5—C6 | −177.00 (12) |
C7—S1—C1—C6 | 103.04 (11) | C4—C5—C6—C1 | 0.9 (2) |
C6—C1—C2—C3 | −0.12 (19) | C2—C1—C6—C5 | −0.87 (19) |
S1—C1—C2—C3 | −175.95 (10) | S1—C1—C6—C5 | 175.06 (10) |
C1—C2—C3—C4 | 1.1 (2) | C1—S1—C7—C8 | −55.80 (12) |
C2—C3—C4—C5 | −1.11 (19) | C1—S1—C7—C9 | −174.41 (11) |
C2—C3—C4—C11 | 175.99 (12) | C1—S1—C7—C10 | 67.60 (12) |
C3—C4—C5—C6 | 0.13 (19) |
Symmetry code: (i) −x+2, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C24H26S2 |
Mr | 378.57 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 153 |
a, b, c (Å) | 13.6286 (5), 6.4269 (2), 14.1290 (5) |
β (°) | 116.937 (2) |
V (Å3) | 1103.29 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.53 × 0.20 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.881, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11825, 3028, 2450 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.691 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.091, 1.04 |
No. of reflections | 3028 |
No. of parameters | 121 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.20 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was performed within the Cluster of Excellence "Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering (ADDE)" that is financially supported by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK).
References
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dijk, E. H. van, Myles, D. J. T., van der Veen, M. H. & Hummelen, J. C. (2006). Org. Lett. 8, 2333–2336. Web of Science PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hori, K., Yamabe, T., Kenichi, F., Kobayashi, S. & Taniguchi, H. (1987). J. Mol. Struct. (THEOCHEM), 153, 295–305. CrossRef Google Scholar
Kergueris, C., Bourgoin, J.-P., Palacin, S., Esteve, D., Urbina, C., Magoga, M. & Joachim, C. (1999). Phys. Rev. B, 59, 12505–12513. Web of Science CrossRef CAS Google Scholar
Mayor, M., Weber, H. B., Reichert, J., Elbing, M., Hänisch, C., Beckmann, D. & Fischer, M. (2003). Angew. Chem. Int. Ed. 42, 5834–5838. Web of Science CSD CrossRef CAS Google Scholar
Pearson, D. L. & Tour, J. M. (1997). J. Org. Chem. 62, 1376–1387. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rod-type oligo(phenyleneethynylene)s are important representatives of conjugated molecular wires (Pearson et al., 1997). Molecular rods consisting protected terminal thiol anchor groups have been embedded as passive elements in Molecular Break-Junctions (Kergueris et al., 1999). As a part of our ongoing project on the synthesis of corresponding structures, the title compound was obtained as a by-product and was identified by single-crystal X-ray diffraction. It crystallizes with one half of the molecule in the unit cell, i.e. the molecule adopts inversion symmetry. The molecule features an almost planar geometry except for the tert-butyl groups which are slightly twisted out of the plane (C(7)—S(1)—C(1)—C(2) 81.15 (14) °, C(1)—S(1)—C(7)—C(10) -67.57 (12) °). Compared with the unsubstituted 1,4-diphenylbuta-1,3-diyne (Hori et al., 1987), the position of atoms shows marginal differences. Bond distances of the ring are in the range 1.38–1.40 Å, the shortest being C(5)—C(6)=1.383 (19) Å. The angles in the ring are between 119.01 (12) and 120.47 (13) °. The C—S distance is in good agreement with the literature data [S(1)—C(1) 1.7747 (14) Å, S(1)—C(7) 1.8514 (17) Å] (Mayor et al., 2003).